BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk"

Transkripsi

1 BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sering menjadi pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk menunjang perkembangan ilmu pengetahuan dan teknologi. Sebagai sarana berfikir dalam memecahkan masalah secara logis, sistematis, obyektif, kritis, dan juga rasional, matematika dapat diterapkan dalam berbagai disiplin ilmu. Permasalahan-permasalahan dalam disiplin ilmu sains maupun teknik telah banyak ditransformasi ke dalam persamaan matematika melalui proses pemodelan matematika. Melalui pemodelan matematika permasalahan yang ada menjadi lebih sederhana dan lebih mudah dicari penyelesaiannya. Salah satu model matematika yang banyak digunakan adalah persamaan diferensial. Persamaan diferensial adalah persamaan yang memuat turunan dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas (Ross, 1984). Salah satu jenis persamaan diferensial yaitu persamaan diferensial parsial. Persamaan diferensial parsial memegang peranan penting dalam penggambaran keadaaan fisis, dimana besaran-besaran yang terlibat di dalamnya berubah terhadap ruang dan waktu. Persamaan diferensial parsial adalah persamaan diferensial yang memuat turunan dari satu atau lebih variabel tak bebas terhadap lebih dari satu variabel bebas (Ross, 1984). Dengan kata lain, persamaan ini haruslah melibatkan paling sedikit dua variabel bebas. 1

2 Salah satu persamaan diferensial parsial yang merupakan contoh klasik dari persamaan elliptik yaitu persamaan Laplace. Persamaan Laplace merupakan persamaan dasar dari teori potensial dan memegang peranan penting pada ilmu fisika maupun teknik. Persamaan ini dapat digunakan untuk mendeskripsikan perilaku potensial listrik, potensial gravitasi, potensial fluida, maupun suatu aliran suhu yang tidak bergantung pada waktu (Arfken, 1985). Tidak ada nilai awal yang menyertai persamaan Laplace, karena persamaan tersebut tidak bergantung pada waktu atau steady state (Duffy, 2003). Berbeda dengan persamaaan diferensial parsial yang berhubungan dengan waktu seperti persamaan panas dan persamaan gelombang. Meskipun demikian, persamaan ini diikuti dengan syarat batas tertentu. Penyelesaian masalah persamaan diferensial parsial pada tugas akhir ini menggunakan metode separasi variabel. Pemilihan metode tersebut dikarenakan persamaan Laplace merupakan persamaan yang separabel pada koordinat kartesius, polar, maupun silinder (Greenberg, 1998). Ide dasar metode separasi variabel yaitu transformasi suatu persamaan diferensial parsial kedalam persamaan diferensial biasa, setelah diperoleh persamaan diferensial biasa kemudian diselesaikan sehingga diperoleh penyelesaian dari persamaan diferensial parsial. Dalam penyelesaian persamaan diferensial parsial akan diperoleh penyelesaian secara umum. Untuk memperoleh penyelesaian secara khusus, diperlukan adanya nilai awal dan syarat batas. Penelitian mengenai persamaan Laplace dimensi dua sudah pernah dilakukan oleh Thoriq Aziz (2013) dengan judul Fungsi Harmonik dan 2

3 Penerapan Persamaan Laplace dalam Menyelesaikan Masalah Nilai Batas pada Koordinat Polar. Penelitian tersebut membahas tentang penerapan fungsi harmonik digunakan untuk menyelesaikan permasalahan nilai batas Dirichlet pada koordinat polar dalam domain yang berbeda, dimana fungsi harmonik merupakan penyelesaian dari persamaan Laplace. Namun, pada penelitian tersebut lebih menekankan pada perhitungan penyelesaian persamaan Laplace dalam koordinat polar dalam beberapa domain secara matematis. Salah satu topik pada tugas akhir ini sudah pernah dibahas dalam buku yang berjudul Boundary Value Problems and Partial Differential Equations oleh Mayer Humi, namun pada buku tersebut lebih menekankan perhitungan secara matematis. Hal yang serupa juga terlihat dalam buku yang berjudul Advanced Engineering Mathematics (Second Edition) oleh Greenberg. Oleh karena itu, tugas akhir ini membahas persamaan Laplace dimensi dua yang lebih menekankan tentang implementasi secara riil dengan syarat batas yang berbeda. Implementasi secara riil yang dimaksud yaitu aplikasi persamaan Laplace pada proses perambatan panas. Proses pemanasan atau pendinginan pada suatu lempengan logam dua dimensi banyak diaplikasikan dalam kehidupan sehari-hari. Misalnya saja untuk memonitoring kondisi suhu dari suatu bahan dalam pabrik atau industri rumahan. Penggunaan konsep perambatan panas ini sebenarnya menggunakan persamaan diferensial parsial parabolik yaitu persamaan panas yang bergantung terhadap ruang dan waktu. Namun karena proses pemanasan terjadi dalam waktu yang lama, sehingga kondisi sistem mengalami steady state dimana panas tidak 3

4 berubah terhadap perubahan waktu secara langsung. Perubahan panas hanya terjadi karena adanya sumber panas yang diletakkan pada batas lempengan logam dan perubahannya hanya tergantung kepada posisi. Sehingga berdasarkan kondisi diatas, permasalahan ini bisa dikaji dengan menggunakan persamaan Laplace. Kajian yang dimaksud pada penelitian ini meliputi pemodelan persamaan Laplace serta penentuan penyelesaian untuk permasalahan syarat batas dengan metode separasi variabel. Syarat batas yang digunakan yaitu syarat batas Dirichlet dan syarat batas Robin. Simulasi proses perambatan panas dilakukan pada lempengan logam dua dimensi, sehingga akan melibatkan persamaan Laplace yang berdimensi dua pula. Terdapat dua sistem koordinat yang bersesuaian dengan persamaan diferensial yang berdimensi dua yaitu sistem koordinat kartesius dan koordinat polar. Dalam hal ini bidang dua dimensi berbentuk persegi panjang untuk sistem koordinat kartesius dan berupa cakram untuk sistem koordinat polar. B. Batasan Masalah Beberapa pembatasan ruang lingkup permasalahan yang perlu diperhatikan dalam tugas akhir ini yaitu sebagai berikut. 1. Persamaan Laplace dimensi dua dengan syarat batas Dirichlet dan Robin. 2. Penyelesaian persamaan Laplace dimensi dua menggunakan metode separasi variabel. 4

5 C. Rumusan Masalah Berdasarkan latar belakang yang telah dipaparkan di atas, sehingga dapat diperoleh rumusan masalah sebagai berikut. 1. Bagaimana model persamaan Laplace dimensi dua?. 2. Bagaimana penyelesaian persamaan Laplace dimensi dua dengan syarat batas Dirichlet pada bidang persegi panjang? 3. Bagaimana penyelesaian persamaan Laplace dimensi dua dengan syarat batas Robin pada bidang persegi panjang? 4. Bagaimana penyelesaian persamaan Laplace dimensi dua dengan syarat batas Dirichlet pada daerah dalam cakram? D. Tujuan Penulisan Berdasarkan rumusan masalah di atas, tujuan penulisan tugas akhir ini adalah sebagai berikut. 1. Menjelaskan model persamaan Laplace dimensi dua. 2. Menjelaskan penyelesaian persamaan Laplace dimensi dua dengan syarat batas Dirichlet pada bidang persegi panjang. 3. Menjelaskan penyelesaian persamaan Laplace dimensi dua dengan syarat batas Robin pada bidang persegi panjang. 4. Menjelaskan penyelesaian persamaan Laplace dimensi dua dengan syarat batas Dirichlet pada daerah dalam cakram. 5

6 E. Manfaat Penulisan Manfaat dari penulisan tugas akhir ini adalah sebagai berikut 1. Bagi Mahasiswa, menambah pengetahuan tentang model persamaan Laplace dimensi dua, mampu menyelesaikan persamaan Laplace dimensi dua sehingga dapat diperoleh penyelesaian dari persamaan Laplace dimensi dua dengan syarat batas Dirichlet maupun syarat batas Robin. 2. Bagi Universitas, mampu memberikan tulisan yang berkualitas tentang persamaan Laplace dimensi dua dan beberapa kasus persamaan Laplace dimensi dua. 3. Bagi pembaca, mampu memberikan tambahan referensi mengenai persamaan Laplace dimensi dua dan penyelesaiannya. 6

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan salah satu topik dalam matematika yang cukup menarik untuk dikaji lebih lanjut. Hal itu karena banyak permasalahan kehidupan

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang memiliki banyak manfaat, diantaranya sebagai salah satu ilmu bantu yang sangat penting dalam kehidupan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS Tinjauan kasus persamaan... (Agus Supratama) 67 TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS ANALITICALLY REVIEW WAVE EQUATIONS IN ONE-DIMENSIONAL WITH VARIOUS

Lebih terperinci

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan ilmu matematika yang dapat digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya dalam ilmu kesehatan yaitu

Lebih terperinci

BAB I PENDAHULUAN. perpindahan energi yang mungkin terjadi antara material atau benda sebagai akibat

BAB I PENDAHULUAN. perpindahan energi yang mungkin terjadi antara material atau benda sebagai akibat BAB I PENDAHULUAN A. LATAR BELAKANG Ilmu termodinamika merupakan ilmu yang berupaya untuk memprediksi perpindahan energi yang mungkin terjadi antara material atau benda sebagai akibat dari perbedaan suhu

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis. Selain itu, literatur-literatur

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama dipelajari dan berkembang pesat. Perkembangan ilmu matematika tidak terlepas dari perkembangan

Lebih terperinci

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK ANALYTICALLY REVIEW ON ONE-DIMENSIONAL HEAT EQUATION Oleh: Ahmadi 1), Hartono 2), Nikenasih Binatari 3) Program Studi Matematika, Jurusan Pendidikan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut dapat dikembangkan melalui pemodelan matematika. Sehingga dengan

Lebih terperinci

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method) Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 320 Persamaan Laplace Menggunakan Metode Crank-Nicholson (The Solution of Laplace Equation Using Crank-Nicholson Method) Titis

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan Diferensial Parsial (PDP) digunakan oleh Newton dan para ilmuwan pada abad ketujuhbelas untuk mendeskripsikan tentang hukum-hukum dasar pada fisika.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika adalah salah satu ilmu pengetahuan yang mempunyai peranan sangat besar dalam kehidupan nyata. Salah satu bagian dari matematika adalah persamaan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial merupakan persamaan yang didalamnya terdapat beberapa derivatif. Persamaan diferensial menyatakan hubungan antara derivatif dari satu variabel

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method

Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method Prosiding Matematika ISSN: 2460-6464 Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method 1 Maulana Yusri

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Teknikom : Vol. No. (27) E-ISSN : 2598-2958 PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya Utama,

Lebih terperinci

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Teknikom : Vol. No. (27) ISSN : 2598-2958 (online) Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya

Lebih terperinci

APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK

APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK APPLICATION OF CELLULAR AUTOMATA METHOD TO DETERMINATION OF STEADY STATE TEMPERATURE DISTRIBUTION Apriansyah 1* 1*

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan difusi dan sebaran temperatur pada geometri menjadi hal yang penting dalam berbagai bidang, seperti bidang fisika, kimia maupun kedokteran. Persamaan

Lebih terperinci

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2)

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) 1) Program Studi Fisika Jurusan Fisika Universitas Tanjungpura 2)Program Studi Ilmu Kelautan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar belakang

BAB I PENDAHULUAN 1.1 Latar belakang BAB I PENDAHULUAN Pada bab pendahuluan dijelaskan mengenai latar belakang yang mendasari penelitian ini yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah yang

Lebih terperinci

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH 1105 100 056 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan diferensial adalah persamaan yang memuat derivatif dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas. Persamaan diferensial

Lebih terperinci

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9,

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) Revisi ke: Tanggal: GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) SPMI-UNDIP/GBPP/xx.xx.xx/xxx Disetujui oleh Dekan Fak Mata Kuliah : Fisika Matematika II Kode/ Bobot : PAF 215/4 sks Deskripsi singkat : Mata

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang permasalahan, tujuan penulisan, tinjauan pustaka, metode penelitian, dan sistematika penulisan. 1.1. Latar Belakang Permasalahan Dalam

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

Prosiding Matematika ISSN:

Prosiding Matematika ISSN: Prosiding Matematika ISSN: 2460-6464 Solusi Numerik Distribusi Tekanan dengan Persamaan Difusi Dua Dimensi pada Reservoir Panas Bumi Fasa Air Menggunakan Skema Crank-Nicholson Numerical Solution for Pressure

Lebih terperinci

Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson

Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson Jurnal Penelitian Sains Volume 13 Nomer 2(B) 13204 Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson Siti Sailah Jurusan Fisika FMIPA, Universitas Sriwijaya, Sumatera Selatan,

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK Dalam bab ini, kita akan mengamati perambatan gelombang pada fluida ideal dengan dasar rata. Perhatikan gambar di bawah ini. Gambar 3.1 Aliran Fluida pada Dasar

Lebih terperinci

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Jurnal LOG!K@, Jilid 6, No. 1, 2016, Hal. 11-22 ISSN 1978 8568 SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Afo Rakaiwa dan Suma inna Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan diferensial merupakan ilmu matematika yang dapat digunakan untuk menjelaskan masalah-masalah fisis. Masalah fisis merupakan masalah yang berkaitan

Lebih terperinci

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER ABSTRAK Telah dilakukan perhitungan secara analitik dan numerik dengan pendekatan finite difference

Lebih terperinci

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Suhartono dan Solikhin Zaki Jurusan Matematika FMIPA UNDIP Abstrak Penelitian

Lebih terperinci

PENYELESAIAN MASALAH DIFUSI PANAS PADA SUATU KABEL PANJANG

PENYELESAIAN MASALAH DIFUSI PANAS PADA SUATU KABEL PANJANG PENYELESAIAN MASALAH DIFUSI PANAS PADA SUATU KABEL PANJANG Moh. Alex Maghfur ), Ari Kusumastuti ) ) Mahasiswa Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Maulana Malik Ibrahim Jalan Gajayana

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI STATISTIKA

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI STATISTIKA RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI STATISTIKA A. MATA KULIAH Nama Mata Kuliah : Maa I Kode/sks : MAS 4215/ 3 Semester : II Status (Wajib/Pilihan) : Wajib (W) Prasyarat : MAM 4190 (Maa Dasar)

Lebih terperinci

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Wafha Fardiah 1), Joko Sampurno 1), Irfana Diah Faryuni 1), Apriansyah 1) 1) Program Studi Fisika Fakultas Matematika

Lebih terperinci

1. BAB I PENDAHULUAN Latar Belakang

1. BAB I PENDAHULUAN Latar Belakang 1. BAB I PENDAHULUAN 1.1. Latar Belakang Sistem merupakan sekumpulan obyek yang saling berinteraksi dan memiliki keterkaitan antara satu obyek dengan obyek lainnya. Dalam proses perkembangan ilmu pengetahuan,

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1.

Pertemuan Kesatu. Matematika III. Oleh Mohammad Edy Nurtamam, S.Pd., M.Si. Page 1. Pertemuan Kesatu Matematika III Oleh Mohammad Edy Nurtamam, S.Pd., M.Si Page 1 Materi 1. Persamaan Diferensial Orde I Pengenalan bentuk dasar Pers. Diff. Orde I. Definisi Derajat,Orde. Konsep Pemisahan

Lebih terperinci

SISTEM KENDALI PROPORSIONAL, INTEGRAL, DAN DERIVATIF (PID) PADA PERSAMAAN PANAS*

SISTEM KENDALI PROPORSIONAL, INTEGRAL, DAN DERIVATIF (PID) PADA PERSAMAAN PANAS* Jurnal Natural Vol.16, No.2, 2016 ISSN 1141-8513 SISTEM KENDALI PROPORSIONAL, INTEGRAL, DAN DERIVATIF (PID) PADA PERSAMAAN PANAS* Muhammad Ikhwan *, Said Munzir, dan Nurmaulidar Jurusan Matematika, Fakultas

Lebih terperinci

KOMPUTASI DISTRIBUSI SUHU DALAM KEADAAN MANTAP (STEADY STATE) PADA LOGAM DALAM BERBAGAI DIMENSI

KOMPUTASI DISTRIBUSI SUHU DALAM KEADAAN MANTAP (STEADY STATE) PADA LOGAM DALAM BERBAGAI DIMENSI Prosiding Seminar Nasional Penelitian, Pendidikan & Penerapan MIPA, Hotel Sahid Raya Yogyakarta, 8 Februari KOMPUTASI DISTRIBUSI SUHU DALAM KEADAAN MANTAP (STEADY STATE) PADA LOGAM DALAM BERBAGAI DIMENSI

Lebih terperinci

Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu

Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu JURNAL SAINS DAN SENI POMITS Vol., No., () - Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu Alifinanda Firca Ardini, Lukman Hanafi Matematika, Fakultas MIPA, Institut

Lebih terperinci

BAB I PENDAHULUAN. Karena penyelesaian partikular tidak diketahui, maka diadakan subtitusi: = = +

BAB I PENDAHULUAN. Karena penyelesaian partikular tidak diketahui, maka diadakan subtitusi: = = + BAB I PENDAHULUAN 1.1 Latar Belakang Peran matematika sebagai suatu ilmu pada dasarnya tidak dapat dipisahkan dari ilmu lainnya. Dalam ilmu fisika, industri, ekonomi, keuangan, teknik sipil peran matematika

Lebih terperinci

BAB 1 PENDAHULUAN. pemanasan tersebut akan timbul suatu masalah apabila daerah yang dipanaskan

BAB 1 PENDAHULUAN. pemanasan tersebut akan timbul suatu masalah apabila daerah yang dipanaskan BAB 1 PENDAHULUAN 1.1 Latar Belakang Penggunaan laser dalam bidang kedokteran sudah mulai sering dipakai, misalnya untuk terapi kanker kulit yaitu dengan memanaskannya. Akan tetapi dalam pemanasan tersebut

Lebih terperinci

METODE ELEMEN HINGGA DAN PENERAPANNYA DALAM TEKNIK KIMIA: ARTIKEL REVIEW. Ummi Habibah *) Abstrak

METODE ELEMEN HINGGA DAN PENERAPANNYA DALAM TEKNIK KIMIA: ARTIKEL REVIEW. Ummi Habibah *) Abstrak METODE ELEMEN HINGGA DAN PENERAPANNYA DALAM TEKNIK KIMIA: ARTIKEL REVIEW Ummi Habibah *) Abstrak Problem rekayasa dan teknik kimia khususnya yang memiliki model matematika banyak yang berbentuk persamaan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pembahasan tentang persamaan diferensial parsial terus berkembang baik secara teori maupun aplikasi. Dalam pemodelan matematika pada permasalahan di bidang

Lebih terperinci

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

PERAN PENTING LAJU PERUBAHAN KALOR PADA MODEL DINAMIK UNSUR UNSUR UTAMA IKLIM

PERAN PENTING LAJU PERUBAHAN KALOR PADA MODEL DINAMIK UNSUR UNSUR UTAMA IKLIM PERAN PENTING LAJU PERUBAHAN KALOR PADA MODEL DINAMIK UNSUR UNSUR UTAMA IKLIM A.I. Jaya 1 1 Jurusan Matematika FMIPA UNTAD Kampus BumiTadulakoTondo Palu Abstrak Model dinamik interkasi unsur unsure utama

Lebih terperinci

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI JURNAL MATEMATIKA DAN KOMPUTER EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Kushartantya dan Awalina Kurniastuti Jurusan Matematika

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 25-31, April 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 25-31, April 2002, ISSN : Vol. 5. No., 5-3, April 00, ISSN : 40-858 PEMODELAN ALIRAN FLUIDA DIMENSI DUA YANG MELALUI SILINDER BERPENAMPANG AIRFOIL DARI PENJUMLAHAN DUA LINGKARAN Idha Sihwaningrum Fakultas Biologi UNSOED Abstract

Lebih terperinci

ANALISIS DAN SIMULASI DISTRIBUSI TEMPERATUR RUANGAN BERDASARKAN BENTUK ATAP MENGGUNAKAN FINITE DIFFERENCE METHOD BERBASIS PYTHON

ANALISIS DAN SIMULASI DISTRIBUSI TEMPERATUR RUANGAN BERDASARKAN BENTUK ATAP MENGGUNAKAN FINITE DIFFERENCE METHOD BERBASIS PYTHON ANALISIS DAN SIMULASI DISTRIBUSI TEMPERATUR RUANGAN BERDASARKAN BENTUK ATAP MENGGUNAKAN FINITE DIFFERENCE METHOD BERBASIS PYTHON Denny Pratama, Viska Noviantri, Alexander Agung S.G. Matematika dan Teknik

Lebih terperinci

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT Agusman Sahari. 1 1 Jurusan Matematika FMIPA UNTAD Kampus Bumi Tadulako Tondo Palu Abstrak Dalam paper ini mendeskripsikan tentang solusi masalah transport polutan

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

yang selalu berubah, tidak pasti, dan kompetitif. solving), penalaran (reasoning), komunikasi (communication), koneksi

yang selalu berubah, tidak pasti, dan kompetitif. solving), penalaran (reasoning), komunikasi (communication), koneksi 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika merupakan ilmu universal yang mendasari teknologi modern, mempunyai peran penting dalam berbagai disiplin ilmu dan memajukan daya pikir manusia.

Lebih terperinci

Contoh klasik dari persamaan hiperbolik adalah persamaan gelombang yang dinyatakan oleh

Contoh klasik dari persamaan hiperbolik adalah persamaan gelombang yang dinyatakan oleh APLIKASI PERSAMAAN DIFFERENSIAL PARSIAL Persamaan diferensial parsial dijumpai dalam kaitan dengan berbagai masalah fisik dan geometris bila fungsi yang terlibat tergantung pada dua atau lebih peubah bebas.

Lebih terperinci

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi JURNAL FOURIER Oktober 2013, Vol. 2, No. 2, 113-123 ISSN 2252-763X Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi Annisa Eki Mulyati dan Sugiyanto Program Studi Matematika Fakultas

Lebih terperinci

PENERAPAN FUNGSI BESSEL DALAM PERPINDAHAN PANAS PADA SETENGAH SILINDER

PENERAPAN FUNGSI BESSEL DALAM PERPINDAHAN PANAS PADA SETENGAH SILINDER SKRIPSI PENERAPAN FUNGSI BESSEL DALAM PERPINDAHAN PANAS PADA SETENGAH SILINDER ARIF WIDODO 09610017 PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SUNAN KALIJAGA YOGYAKARTA

Lebih terperinci

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b)

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b) POSITRON, Vol. VI, No. 1 (1), Hal. 17 - ISSN : 1-9 Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduanus Yosep Godja a), Andi Ihwan a)*, Apriansah b) a Jurusan

Lebih terperinci

SATUAN ACARA PEMBELAJARAN (SAP)

SATUAN ACARA PEMBELAJARAN (SAP) SATUAN ACARA PEMBELAJARAN (SAP) Disetujui oleh Revisi ke:. Tanggal:. SPMI-UNDIP/SAP/xx.xx.xx/xxx Dekan Fak. Mata Kuliah : Fisika Matematika II Kode/ Bobot : PAF 215 /4 sks Pertemuan ke : 1 A. Kompetensi

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan matematika merupakan bidang matematika yang berusaha untuk merepresentasikan dan menjelaskan masalah dunia nyata dalam pernyataan matematik. Representasi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Di antara beberapa disiplin ilmu, fisika

Lebih terperinci

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak

Lebih terperinci

FOURIER April 2013, Vol. 2, No. 1, PENYELESAIAN PERSAMAAN TELEGRAPH DAN SIMULASINYA. Abstract

FOURIER April 2013, Vol. 2, No. 1, PENYELESAIAN PERSAMAAN TELEGRAPH DAN SIMULASINYA. Abstract FOURIER April 2013, Vol. 2, No. 1, 42 53 PENYELESAIAN PERSAMAAN TELEGRAPH DAN SIMULASINYA Agus Miftakus Surur 1, Yudi Ari Adi 2, Sugiyanto 3 1, 3 Matematika, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu

Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu Oleh : Alifinanda Firca Ardini 1209100064 Pembimbing: Drs.Lukman Hanafi, M.Sc Abstrak Indonesia merupakan negara penghasil

Lebih terperinci

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) MATEMATIKA TEKNIK

RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) MATEMATIKA TEKNIK RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) MATEMATIKA TEKNIK Program Studi: Teknik Elektro dan Teknologi Informasi Semester: Genap 2013/2014 OLEH : Ir. Mulyana Husni Rois Ali, S.T., M.Eng.

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

MAKALAH FISIKA GELOMBANG I TRANSFORMASI FOURIER. Disusun oleh : I Made Oka Guna Antara ( ) I Putu Adi Susanta ( )

MAKALAH FISIKA GELOMBANG I TRANSFORMASI FOURIER. Disusun oleh : I Made Oka Guna Antara ( ) I Putu Adi Susanta ( ) MAKALAH FISIKA GELOMBANG I TRANSFORMASI FOURIER Disusun oleh : I Made Oka Guna Antara (1108205007) I Putu Adi Susanta (1108255009) JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral. Topik utama kalkulus diferensial yaitu turunan. Turunan mempunyai aplikasi

Lebih terperinci

SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI

SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI Oleh Titis Miranti NIM 101810101012 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2014 HALAMAN

Lebih terperinci

PENERAPAN MODIFIKASI FUNGSI BESSEL PADA PERPINDAHAN PANAS DI PIRINGAN MELINGKAR

PENERAPAN MODIFIKASI FUNGSI BESSEL PADA PERPINDAHAN PANAS DI PIRINGAN MELINGKAR SKRIPSI PENERAPAN MODIFIKASI FUNGSI BESSEL PADA PERPINDAHAN PANAS DI PIRINGAN MELINGKAR ANNISA EKI MULYATI 09610039 PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SUNAN

Lebih terperinci

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL Marpipon Haryandi 1, Asmara Karma 2, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA 3.1 Deskripsi Masalah Permasalahan yang dibahas di dalam Tugas Akhir ini adalah mengenai aliran fluida yang mengalir keluar melalui sebuah celah

Lebih terperinci

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA Nama Mahasiswa : Asri Budi Hastuti NRP : 1205 100 006 Dosen Pembimbing : Drs. Kamiran, M.Si. Abstrak Kontrol optimal temperatur

Lebih terperinci

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS Sulistyono, Metode Beda Hingga Skema Eksplisit 4 APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS Bambang Agus Sulistyono Program Studi Pendidikan Matematika FKIP UNP Kediri bb7agus@gmail.com

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Ditinjau dari bidang ilmu pengetahuan, teori persamaan diferensial merupakan suatu cabang analisis matematika yang banyak dipakai dalam kehidupan nyata,

Lebih terperinci

Distribusi Temperatur Pada Microwave menggunakan Metode CFD

Distribusi Temperatur Pada Microwave menggunakan Metode CFD Distribusi Temperatur Pada Microwave menggunakan Metode CFD Rosyida Permatasari1, a *, M. Sjahrul Annas2,b, Bobby Ardian3,c Universitas Trisakti Jl. Kyai Tapa No. 1 Grogol Jakarta Indonesia a prosyida@yahoo.com,

Lebih terperinci

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema,

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa hal yang menjadi landasan dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Topik bahasan : Analisis Vektor Tujuan pembelajaran umum : Mahasiswa memahami kalkulus vektor dan dapat menerapkannya dalam bidang rekayasa. Jumlah pertemuan : 3 (tiga ) kali 1, 2 dan 3 1. Mengingat mbali

Lebih terperinci

BAB I PENDAHULUAN. tesis ini. Selain itu, literatur-literatur yang mendasari tesis ini akan diuraikan

BAB I PENDAHULUAN. tesis ini. Selain itu, literatur-literatur yang mendasari tesis ini akan diuraikan 1 BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis ini. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis ini. Selain itu, literatur-literatur

Lebih terperinci

Distribusi Air Bersih Pada Sistem Perpipaan Di Suatu Kawasan Perumahan

Distribusi Air Bersih Pada Sistem Perpipaan Di Suatu Kawasan Perumahan JURNAL SAINS POMITS Vol. 1, No. 1, 2013 1-6 1 Distribusi Air Bersih Pada Sistem Perpipaan Di Suatu Kawasan Perumahan Annisa Dwi Sulistyaningtyas, Prof. Dr. Basuki Widodo, M.Sc. Jurusan Matematika, Fakultas

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 1 (1) (2012) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm MODEL PERPINDAHAN KALOR PADA MESIN PENGERING PADI Ninik Rahayu, St. Budi Waluya, dan Wuryanto Jurusan Matematika,

Lebih terperinci

1/14/2010. Jurusan Informatika

1/14/2010. Jurusan Informatika Riani L Jurusan Informatika Universitas Komputer Indonesia 1 PENDAHULUAN Pemodelan & Simulasi : Alat yang digunakan untuk mempelajari atau menganalisis perilaku suatu sistem/proses. Tujuan mempelajari

Lebih terperinci

RPKPS (Rencana Program Kegiatan Pembelajaran Semester) Program Studi : S1 Matematika Jurusan/Fakultas : Matematika/FMIPA

RPKPS (Rencana Program Kegiatan Pembelajaran Semester) Program Studi : S1 Matematika Jurusan/Fakultas : Matematika/FMIPA Ver.1.0 : Desember 2015 1. Nama Mata kuliah Persamaan Biasa Semester/Kode/SKS IV / MAM2201 / 3 2. Silabus Mata kuliah ini berisi teori tentang diferensial. Solusi diferensial orde satu dan dua homogen

Lebih terperinci

BOUNDARY ELEMENT METHOD UNTUK MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN LAPLACE DIMENSI DUA

BOUNDARY ELEMENT METHOD UNTUK MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN LAPLACE DIMENSI DUA Jurnal LOG!K@, Jilid 7, o., 07, Hal. - 36 ISS 978 8568 BOUDARY ELEMET METHOD UTUK MEYELESAIKA MASALAH SYARAT BATAS PERSAMAA LAPLAE DIMESI DUA Muhammad Manaqib Program Studi Matematika, Fakultas Sains dan

Lebih terperinci

Unnes Journal of Mathematics SOLUSI SISTEM OSILASI DUA DERAJAT KEBEBASAN PADA RANGKAIAN PEGAS GANDENG DENGAN PEREDAM DAN GAYA LUAR

Unnes Journal of Mathematics SOLUSI SISTEM OSILASI DUA DERAJAT KEBEBASAN PADA RANGKAIAN PEGAS GANDENG DENGAN PEREDAM DAN GAYA LUAR UJM 3 (1) (2014) Unnes Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm SOLUSI SISTEM OSILASI DUA DERAJAT KEBEBASAN PADA RANGKAIAN PEGAS GANDENG DENGAN PEREDAM DAN GAYA LUAR Zumrotul

Lebih terperinci

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Kode Mata Kuliah : TE 318 SKS : 3 Matematika Teknik I Prasarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Tujuan : Mahasiswa memahami permasalahan teknik dalam bentuk PD atau integral, serta

Lebih terperinci

PERSAMAAN STURM-LIOUVILLE REGULAR PADA PERSAMAAN PANAS. Skripsi. untuk memenuhi sebagian persyaratan. Mencapai derajat Sarjana S-1

PERSAMAAN STURM-LIOUVILLE REGULAR PADA PERSAMAAN PANAS. Skripsi. untuk memenuhi sebagian persyaratan. Mencapai derajat Sarjana S-1 PERSAMAAN STURM-LIOUVILLE REGULAR PADA PERSAMAAN PANAS Skripsi untuk memenuhi sebagian persyaratan Mencapai derajat Sarjana S-1 Progam Studi Matematika diajukan oleh Nanik Hidayati 07610025 Kepada PROGAM

Lebih terperinci