GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)"

Transkripsi

1 Revisi ke: Tanggal: GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) SPMI-UNDIP/GBPP/xx.xx.xx/xxx Disetujui oleh Dekan Fak Mata Kuliah : Fisika Matematika II Kode/ Bobot : PAF 215/4 sks Deskripsi singkat : Mata Kuliah Fisika Matematika II merupakan kelanjutan dari Mata kuliah Fisika Matematika I dengan materi kuliah berisi konsep matematika lanjutan yang kemudian diaplikasikan pada hukum-hukum Fisika dari suatu fenomena fisis yang lebih lanjut pula. Untuk mengikuti kuliah ini diperlukan kemampuan matematika yang sudah cukup mapan sehingga harus menguasai dahulu materi kuliah Fisika Matematika I (merupakan syarat utama untuk mengikuti kuliah Fisika Matematika II). Materi kuliah Fisika Matematika II terdiri dari Kalkulus Variasi, Analisis Tensor, Fungsi-Fungsi Khusus, Variabel Kompleks, Persamaan Differensial Khas dan Persamaan Differensial Parsial. Dari materinya bisa dilihat bahwa kuliah ini menekankan kepada bentuk formulasi matematika lanjutan yang diaplikasikan pada hukum-hukum Fisika yang lebih kompleks pula dan meliputi penelaahan dalam masalah perhitungan aksi (action) dari suatu persamaan fisis dengan menggunakan konsep kalkulus variasi yang dipadukan dengan persamaan gerakan pada koordinat n dimensi (tensor) serta pemecahan persamaan differensial orde dua khusus, fungsi kompleks serta transformasi dari fungsi posisi terhadap momentum (Fourier) berbagai integrasi lanjutan yang diselesaikan dengan transformasi Laplace. Standar kompetensi (SK) : Pada akhir kuliah ini, mahasiswa dapat menghubungkan berbagai konsep matematika lanjutan untuk menyelesaikan permasalahan yang dinyatakan dalam hukum-hukum Fisika lanjutan No Kompetensi dasar (KD) Pokok bahasan Sub pokok bahasan Metode Pembelajaran Soft skill* Pustaka 1 Mahasiswa dapat: Kalkulus Variasi Persamaan Euler 4, 6, 11 [1] : Menemukan titik stasioner suatu fungsi untuk Persamaan Euler dalam [4] : menentukan jarak/lintasan antara dua titik koordinat polar dan problem Menjelaskan persamaan Euler Brachistochrone 3 x 100 menit. Menemukan geodesi suatu bidang Fungsi beberapa variabel menggunakan persamaan Euler (Prinsip Hamilton/Persamaan (Pertemuan ke 1-3) Menjelaskan persamaan Euler pada koordinat Lagrange) polar Menemukan fungsi kurva menghubungkan dua titik dan lintasan menggunakan persamaan Euler pada koordinat polar Menemukan persamaan gerak sistem mekanik Problem Isoperimetrik

2 menggunakan prinsip Hamilton (persamaan Lagrange) Menemukan persamaan kurva dalam problem isoperimetrik 2 Mahasiswa dapat: Menuliskan notasi skalar dan vektor dalam operasi penulisan tensor. Menghubungkan antara Tensor dan Matriks Menuliskan operasi Tensor menggunakan notasi-notasi matriks. Menjelastkan aturan penyederhanaan penulisan tanda penjumlahan dalam tensor (konvensi penjumlahan Einstein). Menjelaskan aturan penulisan operasi vektorvektor kontravarian yang diungkapkan dalam notasi Tensor dan operasi matriks. Menjelaskan aturan penulisan operasi vektorvektor kovarian yang diungkapkan dalam notasi Tensor dan operasi matriks. Menjelaskan aturan penulisan invarian (skalar) yang diungkapkan dalam notasi Tensor dan operasi matriks. Menjelaskan operasi penulisan Tensor Orde kedua atau lebih Menghubungkan tensor orde-2 dengan operasi matriks Menuliskan beberapa notasi matematik seperti tensor metrik, simbol Levi-Civita dan jarak lintasan dengan menggunakan tensor metrik. Membuktikan persamaan Maxwell dari kasus Tensor Medan Elektromagnetik. 3 Mahasiswa dapat: Menuliskan perumusan fungsi-fungsi khusus (faktorial, gamma, beta, error, green, Delta Dirac dan fungsi eliptik) Menghitung integrasi menggunakan fungsi faktorial Analisis Tensor Skalar dan Vektor Hubungan diantara Tensor dan Matrik Konvensi Penjumlahan Einstein Vektor-vektor kontravarian Vektor-vektor kovarian. Skalar (invarian) Tensor Orde dua atau lebih. Notasi Matematik dalam tensor. Aplikasi Tensor pada persamaan Maxwell. Fungsi-Fungsi Khusus Fungsi faktorial Fungsi Gamma untuk n kecil dan negatif Formula-formula penting fungsi Gamma Fungsi Gamma untuk n besar 3 x 100 menit (Pertemuan ke 4-6) 4 x 100 menit. (Pertemuan ke 7-10) 4, 6, 11 [1] : [4] : , 6, 11 [1] : [4] : [5] : ,

3 Menghitung integral menggunakan fungsi gamma Membuktikan formula-formula penting fungsi Gamma Membuktikan persamaan yang menghubungkan fungsi gamma dan fungsi beta Menghitung integral dengan mengkombinasikan fungsi gamma dan fungsi beta Memperkirakan Fungsi Gamma untuk nilai n yang sangat besar dalam bentuk rumus Stirling Menghitung integral menggunakan fungsi Beta dan fungsi Error untuk menyelesaikan kasuskasus dalam ilmu geofisika. Menghitung integral eliptik dalam bentuk Legendre dan Jacobi Menghitung panjang lengkungan ellpis, contoh pada gerak pendulum Menjelaskan pengertian fisis Fungsi Green dan Delta Dirac Menemukan solusi persamaan diferensial menggunakan fungsi Green dan Delta Dirac 4 Mahasiswa dapat: Menjelaskan definisi fungsi analitik yang mempunyai sebuah turunan. Menyebutkan teorema-teorema yang mendasari kondisi dari persamaan Cauchy- Riemann menjelaskan definisi fungsi harmonik Menjelaskan integral lintasan tertutup yang memenuhi syarat Cauchy. Menyebutkan peryaratan teorema Cauchy bagi integral lintasan tertutup. Menguraikan definisi dari deret Laurent serta koefisien dari deret Laurent. Menjelaskan definisi teorema Residu dengan titik singular yang terisolasi. Menghitung residu dengan memakai deret Fungsi kompleks Variabel dan Formula Stirling Fungsi Beta Fungsi Error Fungsi dan Integral Eliptik Fungsi Green Fungsi Delta Dirac. Pengertian fungsi analitik. Persamaan Cauchy-Riemann dan fungsi harmonik Integral lintasan tertutup. Teorema Cauchy Deret Laurent Teorema Residu Cara menentukan Residu Penggunaan residu untuk menghitung integral-integral tertentu Pemetaan konformal 3 x 100 menit. (Pertemuan ke 11-13) 4, 6, 11 [1] : [4] : [5] :

4 Laurent, kutub sederhana serta multi kutub. Menghitung integral-integral dari koordinat polar, bentuk kompleks dan lain-lain menggunakan residu Menghubungkan pemetaan konformal koordinat dua dimensi dari koordinat kartesian ke koordinat polar atau sebaliknya. 5 Mahasiswa diharapkan sedikitnya mampu memahami dan menjelaskan tentang: Fungsi generator Bessel, untuk mencari solusi Fungsi Bessel dan persamaan diferensial orde dua dari Fungsi Bessel dengan menggunakan cara penderetan. Solusi Fungsi Bessel lainnya yang disebut sebagai Fungsi Neumann dan Fungsi Hankel. Aplikasi persamaan diferensial Bessel pada solusi persamaan penjalaran gelombang elektromagnetik dalam silinder konduktor pada sistem koordinat silinder. Orthogonalitas Fungsi Bessel dalam bentuk integral dari fungsi Bessel yang dapat digunakan untuk mencari konstanta normalisasi pada persamaan Bessel. Fungsi generator Legendre, untuk mencari solusi Fungsi Legendre dan persamaan diferensial orde dua dari Fungsi Legendre dengan menggunakan cara penderetan. Fungsi turunan dari Legendre yang disebut sebagai Fungsi Legendre asosiasi serta mencari persamaan differensial Legendre asosiasi. Orthogonalitas Fungsi Legendre dan Legendre Asosiasi dalam bentuk integral yang dapat digunakan untuk mencari konstanta normalisasi pada persamaan Legendre dan Legendre asosiasi. Aplikasi Fungsi Legendre pada kasus Persamaan diferensial khas. bentuk Fungsi Generator Bessel. Fungsi Neumann dan Fungsi Hankel. Aplikasi persamaan differensial Bessel. Orthogonalitas Fungsi Bessel. Fungsi generator Legendre. Fungsi Legendre asosiasi. Orthogonalitas Fungsi Legendre. Aplikasi Fungsi Legendre. Fungsi generator Hermite. Aplikasi fungsi Hermite. Fungsi generator Laguerre. Fungsi Laguerre asosiasi Aplikasi Fungsi Laguerre Asosiasi. 5 x 100 menit. (Pertemuan ke 14-18) 4, 6, 11 [1] : [3] : 50 55, 62 67, [4] : [5] :

5 potensial listrik dari sumber muatan tunggal (monopol) serta Fungsi Legendre asosiasi untuk pemecahan solusi Persamaan Laplace dalam koordinat bola. Fungsi generator Hermite, untuk mencari solusi Fungsi Hermite dan persamaan diferensial orde dua dari Fungsi Hermite serta orthogonalitas Fungsi hermite dengan menggunakan cara pendifferensialan. Aplikasi Fungsi Hermite pada kasus osilator harmonik 1 Dimensi. Fungsi generator Laguerre, untuk mencari solusi Fungsi Laguerre dan persamaan diferensial orde dua dari Fungsi Laguerre serta orthogonalitas Fungsi laguerre dengan menggunakan cara penderetan. Fungsi turunan dari Laguerre yang disebut sebagai Fungsi Laguerre asosiasi serta mencari persamaan differensial Laguerre asosiasi serta orthogonalitas Fungsi laguerre asosiasi. Aplikasi Fungsi Laguerre asosiasi pada pemecahan solusi dari Atom hidrogen. 6 Mahasiswa dapat: Menemukan distribusi temperatur yang tak bergantung waktu sebagai fungsi dari posisi/ruang menggunakan persamaan Laplace Menemukan distribusi temperatur sebagai fungsi posisi dan waktu menggunakan persamaan difusi Menemukan fungsi gerak gelombang dan vibrasi 7. Mahasiswa dapat menjelaskan tentang: Bentuk integral dari Transformasi Laplace dan beberapa sifat dari transformasi laplace beserta beberapa transformasi Laplace. Persamaan Differensial Parsial Persamaan Laplace dalam koordinat Cartesian Persamaan Difusi/Aliran Panas Persaman Gelombang dan Vibrasi Transformasi Laplace Transformasi Laplace Kebalikan Transformasi Laplace Transformasi Laplace untuk menyelesaikan persamaan diferensial 3 x 100 menit. (Pertemuan ke 19-21) 3 x 100 menit 4, 6, 11 [1] : [4] : [5] : , 6, 11 [1] : [2] : [4] :

6 Bentuk perumusan dari kebalikan transformasi Laplace serta beberapa sifat kebalikan dari Transformasi Laplace. Menemukan solusi PDB menggunakan transformasi Laplace. Aplikasi Transformasi Laplace serta kebalikannya pada rangkaian RLC untuk mencari nilai dari arus listrik. Menjelaskan transformasi Laplace dalam menyelesaikan persamaan diferensial parsial. Menemukan distribusi temperatur menggunakan transformasi Laplace. Aplikasi Transformasi Laplace Penyelesaian persamaan diferensial parsial menggunakan transformasi Laplace. (Pertemuan ke 22-24) Referensi: [1] Boas, M.L., 1966, Mathematical Methods in The Physical Sciences, second ed., John Willey & Sons. [2] Spiegel, Murray R., 1965, Laplace Transforms, Mc Graw-Hill Book Company. [3] Yariv, Amnon, 1982, An Introduction to Theory and Aplications of Quantum Mechanics, John Wiley and Sons. [4] Arfken, G. B. And Weber, H. J., 2005, Mathematical Methods for Physicists, Elsevier Academic Press, USA. [5] Wyld, H. W., 2005, Mathematical Methods for Physics, Advanced Book Program, Perseus Books, Reading, Massachusetts.

7

SATUAN ACARA PEMBELAJARAN (SAP)

SATUAN ACARA PEMBELAJARAN (SAP) SATUAN ACARA PEMBELAJARAN (SAP) Disetujui oleh Revisi ke:. Tanggal:. SPMI-UNDIP/SAP/xx.xx.xx/xxx Dekan Fak. Mata Kuliah : Fisika Matematika II Kode/ Bobot : PAF 215 /4 sks Pertemuan ke : 1 A. Kompetensi

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) Revisi ke: Tanggal: GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) SPMI-UNDIP/GBPP/xx.xx.xx/xxx Disetujui oleh Dekan Fak Mata Kuliah : Fisika Matematika I Kode/ Bobot : PAF 208/4 sks Deskripsi singkat : Mata

Lebih terperinci

SATUAN ACARA PEMBELAJARAN (SAP)

SATUAN ACARA PEMBELAJARAN (SAP) SATUAN ACARA PEMBELAJARAN (SAP) Disetujui oleh Revisi ke:. Tanggal:. SPMI-UNDIP/SAP/xx.xx.xx/xxx Dekan Fak. Mata Kuliah : Fisika Matematika I Kode/ Bobot : PAF 208 /4 sks Pertemuan ke : 1 A. Kompetensi

Lebih terperinci

APLIKASI MATEMATIKA UNTUK FISIKA DAN TEKNIK

APLIKASI MATEMATIKA UNTUK FISIKA DAN TEKNIK APLIKASI MATEMATIKA UNTUK FISIKA DAN TEKNIK Penulis : Dr. Asep Yoyo Wardaya Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Nama/Kode Mata Kuliah : Matematika Fisika II/FI-431 Tujuan Matakuliah : Jumlah SKS/Semester : 3/ 2(3) mahasiswa diharapkan memiliki pengetahuan dan pemahaman yang baik tentang

Lebih terperinci

GARIS - GARIS BESAR PROGRAM PENGAJARAN

GARIS - GARIS BESAR PROGRAM PENGAJARAN Judul Matakuliah Nomor Kode/SKS Deskripsi Singkat GARIS - GARIS BESAR PROGRAM PENGAJARAN Tujuan Instniksional Umum Fisika Matematika II MAF 222/4 SKS Mata kuliali ini merapakan perangkat analisis dalam

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD-045315 Mingg u Ke Pokok Bahasan dan TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajaran Media Tugas

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMATIKA TEKNIK 2 KODE/SKS : IT042227 / 2 SKS Pertemuan Pokok Bahasan dan TIU 1 Pendahuluan Mahasiswa mengerti tentang mata kuliah Matematika Teknik 2 : bahan ajar,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama dipelajari dan berkembang pesat. Perkembangan ilmu matematika tidak terlepas dari perkembangan

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan matematika merupakan bidang matematika yang berusaha untuk merepresentasikan dan menjelaskan masalah dunia nyata dalam pernyataan matematik. Representasi

Lebih terperinci

KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA)

KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) 2 Deskripsi Mata Kuliah 2017/2018 2. KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM 2.1 Kelompok Mata Kuliah

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP xx.xx.xx xx Revisi ke Tanggal Dikaji Ulang Oleh Dikendalikan Oleh Disetujui Oleh Ketua Program Studi GPM DekanFakultas. UNIVERSITAS

Lebih terperinci

PENDAHULUAN FISIKA KUANTUM. Asep Sutiadi (1974)/( )

PENDAHULUAN FISIKA KUANTUM. Asep Sutiadi (1974)/( ) PENDAHULUAN FISIKA KUANTUM FI363 / 3 sks Asep Sutiadi (1974)/(0008097002) TUJUAN PERKULIAHAN Selesai mengikuti mata kuliah ini mahasiswa diharapkan mampu menjelaskan pada kondisi seperti apa suatu permasalahan

Lebih terperinci

KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA)

KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) 2 Deskripsi Mata Kuliah 2014 2. KELOMPOK MATA KULIAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM 2.1 Kelompok Mata Kuliah Matematika

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP 10.09.04 PAF220 Revisi ke - Tanggal 13 September 2013 Dikaji Ulang Oleh Ketua Program Studi Fisika Dikendalikan Oleh GPM

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Topik bahasan : Analisis Vektor Tujuan pembelajaran umum : Mahasiswa memahami kalkulus vektor dan dapat menerapkannya dalam bidang rekayasa. Jumlah pertemuan : 3 (tiga ) kali 1, 2 dan 3 1. Mengingat mbali

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib. : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib. : Aip Saripudin, M.T. DESKIPSI MATA KULIAH EL-121 Matematika Teknik I: S1, 3 SKS, Semester II Mata kuliah ini merupakan kuliah lanjut. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika

Lebih terperinci

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Kode Mata Kuliah : TE 318 SKS : 3 Matematika Teknik I Prasarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Tujuan : Mahasiswa memahami permasalahan teknik dalam bentuk PD atau integral, serta

Lebih terperinci

III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S

III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S Standar : Setelah mengikuti perkuliahan ini mahasiswa diharapkan memiliki

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : KALKULUS 3 KODE / SKS : IT042219 / 2 SKS Pertemuan Pokok Bahasan dan TIU Geometri pada bidang, vektor vektor pada bidang : pendekatan secara geometrik dan secara

Lebih terperinci

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif iii Daftar Isi TINJAUAN MATA KULIAH... xiii MODUL 1: PERSAMAAN DIFERENSIAL ORDE SATU 1.1 Pengertian PD Orde Satu dan Solusinya... 1.2 Latihan... 1.7 Rangkuman... 1.9 Tes Formatif 1..... 1.10 PD Variabel

Lebih terperinci

JURUSAN TEKNIK ELEKTRO

JURUSAN TEKNIK ELEKTRO DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS ANDALAS FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) Mata Kuliah Matematika Teknik I Dosen Heru Dibyo Laksono

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP xx.xx.xx xx Revisi ke Tanggal Dikaji Ulang Oleh Dikendalikan Oleh Disetujui Oleh Ketua Program Studi GPM Dekan Fakultas.

Lebih terperinci

Silabus dan Rencana Perkuliahan

Silabus dan Rencana Perkuliahan Silabus dan Rencana Perkuliahan Mata kuliah : PEND.FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Team Dosen Pend fisika Kuantum Yuyu R.T, Parlindungan S. dan Asep S Standar Kompetensi : Setelah mengikuti

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang permasalahan, tujuan penulisan, tinjauan pustaka, metode penelitian, dan sistematika penulisan. 1.1. Latar Belakang Permasalahan Dalam

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA A. MATA KULIAH RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA Nama Mata Kuliah : Matematika II Kode/sks : MAS 4116/ 3 Semester : III Status (Wajib/Pilihan) : Wajib (W) Prasyarat : MAS 4215

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 1. PENDAHULUAN Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI - FAKULTAS

Lebih terperinci

I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat

I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat 1 I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat : Tidak Ada IV. Status Matakuliah : Wajib V. Deskripsi Mata Kuliah Mata kuliah ini merupakan mata kuliah wajib Program Studi

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

RANCANGAN KEGIATAN PEMBELAJARAN MATA KULIAH MATEMATIKA LANJUT 203H1204. Dosen Pengampu Prof. Dr. Syamsuddin Toaha, M.Sc. Naimah Aris, S.Si, M.Math.

RANCANGAN KEGIATAN PEMBELAJARAN MATA KULIAH MATEMATIKA LANJUT 203H1204. Dosen Pengampu Prof. Dr. Syamsuddin Toaha, M.Sc. Naimah Aris, S.Si, M.Math. RANCANGAN KEGIATAN PEMBELAJARAN MATA KULIAH MATEMATIKA LANJUT 203H1204 Dosen Pengampu Prof. Dr. Syamsuddin Toaha, M.Sc. Naimah Aris, S.Si, M.Math. PROGRAM STUDI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP 10.09.04 PAF 219 Revisi ke - Tanggal 13 September 2013 Dikaji Ulang Oleh Ketua Program Studi Fisika Dikendalikan Oleh GPM

Lebih terperinci

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON Rif ati Dina Handayani 1 ) Abstract: Suatu partikel yang bergerak dengan momentum p, menurut hipotesa

Lebih terperinci

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH 1105 100 056 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN GARIS-GARIS BESAR PROGRAM PENGAJARAN JUDUL MATA KULIAH : FISIKA DASAR NOMOR KODE / SKS : FIS 101 / 3(2-3) DESKRIPSI SINGKAT : Mata kuliah Fisika Dasar ini diberikan di TPB untuk membekali seluruh mahasiswa

Lebih terperinci

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder:

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder: LAMPIRAN A.TRANSFORMASI KOORDINAT 1. Koordinat silinder Hubungan antara koordinat kartesian dengan koordinat silinder: Vector kedudukan adalah Jadi, kuadrat elemen panjang busur adalah: Maka: Misalkan

Lebih terperinci

PENGANTAR DASAR MATEMATIKA REKAYASA, oleh Markoni Hak Cipta 2014 pada penulis

PENGANTAR DASAR MATEMATIKA REKAYASA, oleh Markoni Hak Cipta 2014 pada penulis PENGANTAR DASAR MATEMATIKA REKAYASA, oleh Markoni Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057 E-mail: info@grahailmu.co.id Hak Cipta dilindungi

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) GARIS-GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) MATA KULIAH KODE MATA KULIAH/SKS DESKRIPSI SINGKAT : MEKANIKA : PAF 4201/ 4 SKS : Matakuliah ini dapat memberikan penjelasan dan pemahaman analisis & deskriptif

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Relativitas Einstein Relativitas merupakan subjek yang penting yang berkaitan dengan pengukuran (pengamatan) tentang di mana dan kapan suatu kejadian terjadi dan bagaimana

Lebih terperinci

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd BUKU DIKTAT ANALISA VARIABEL KOMPLEKS OLEH : DWI IVAYANA SARI, M.Pd i DAFTAR ISI BAB I. BILANGAN KOMPLEKS... 1 I. Bilangan Kompleks dan Operasinya... 1 II. Operasi Hitung Pada Bilangan Kompleks... 1 III.

Lebih terperinci

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sering menjadi pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk menunjang perkembangan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak BAB II DASAR TEORI Ada beberapa teori yang berkaitan dengan konsep-konsep umum mengenai aliran fluida. Beberapa akan dibahas pada bab ini. Diantaranya adalah hukum kekekalan massa dan hukum kekekalan momentum.

Lebih terperinci

JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK

JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK Kasus-kasus fisika yang diangkat pada mata kuliah Fisika Komputasi akan dijawab secara numerik. Validasi jawaban

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 1.4. Hipotesis 1. Model penampang hamburan Galster dan Miller memiliki perbedaan mulai kisaran energi 0.3 sampai 1.0. 2. Model penampang hamburan Galster dan Miller memiliki kesamaan pada kisaran energi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah ANALISIS KOMPLEKS Pendahuluan Bil Kompleks Bil Riil Bil Imaginer (khayal) Bil Rasional Bil Irasional Bil Pecahan Bil Bulat Sistem Bilangan Kompleks Bil Bulat - Bil Bulat 0 Bil Bulat + Untuk maka bentuk

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kode / SKS Program Studi Fakultas : Medan Elektromagnetik : IT012221 / 2 SKS : Sistem Komputer : Ilmu Komputer & Teknologi Informasi 1 Pendahuluan Menjelaskan latar belakang sejarah dan 2 Analisis

Lebih terperinci

KALKULUS LANJUT. Oleh: Prayudi. Edisi Pertama Cetakan pertama, 2009

KALKULUS LANJUT. Oleh: Prayudi. Edisi Pertama Cetakan pertama, 2009 KALKULUS LANJUT Oleh: Prayudi Edisi Pertama Cetakan pertama, 2009 Hak Cipta 2009 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Lanjut 1 Kode / SKS : IT012219 / 2 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 Turunan Parsial Mahasiswa mampu menentukan turunan parsial

Lebih terperinci

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2)

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2) INTEGRAL, Vol. 1 No. 1, Maret 5 FUNGSI DELTA DIRAC Marwan Wirianto 1) dan Wono Setya Budhi ) 1) Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Katolik Parahyangan, Bandung

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Elektromagnetika merupakan cabang fisika yang menjadi tonggak munculnya teori-teori fisika modern dan banyak diterapkan dalam perkembangan teknologi saat ini,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Mekanika geometrik merupakan bidang kajian yang membahas subyek-subyek seperti persamaan diferensial, kalkulus variasi, analisis vektor dan tensor, aljabar

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Di antara beberapa disiplin ilmu, fisika

Lebih terperinci

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator ISSN:2089 0133 Indonesian Journal of Applied Physics (2012) Vol.2 No.1 halaman 6 April 2012 Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator Fuzi Marati Sholihah

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang memiliki banyak manfaat, diantaranya sebagai salah satu ilmu bantu yang sangat penting dalam kehidupan

Lebih terperinci

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor ANALISIS VEKTOR Aljabar Vektor Operasi vektor Besaran yang memiliki nilai dan arah disebut dengan vektor. Contohnya adalah perpindahan, kecepatan, percepatan, gaya, dan momentum. Sementara itu, besaran

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

BAB III TENSOR. Berdasarkan uraian bab sebelumnya yang telah menjelaskan beberapa

BAB III TENSOR. Berdasarkan uraian bab sebelumnya yang telah menjelaskan beberapa BAB III TENSOR Berdasarkan uraian bab sebelumnya yang telah menjelaskan beberapa istilah dan materi pendukung yang berkaitan dengan tensor, pada bab ini akan dijelaskan pengertian dasar dari tensor. Tensor

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

BAHASAN DAN RUJUKAN. Minggu ke- Pokok Bahasan Subpokok Bahasan

BAHASAN DAN RUJUKAN. Minggu ke- Pokok Bahasan Subpokok Bahasan BAHASAN DAN RUJUKAN Minggu ke- Pokok Bahasan Subpokok Bahasan 1 Pendahuluan a. gambaran sederhana b. definisi dan makna fisis penampang lintang hamburan c. penjelasan tentang perkuliahan (buku acuan, dll)

Lebih terperinci

Persamaan Diferensial Parsial Umum Orde Pertama

Persamaan Diferensial Parsial Umum Orde Pertama Persamaan Diferensial Parsial Umum Orde Pertama Persamaan diferensial parsial umum orde pertama untuk fungsi memiliki bentuk: di mana dan. Dalam hal ini dipandang sebagai fungsi dari lima argumen. Di sini

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah Mata kuliah Fisika Matematika di Jurusan Pendidikan Fisika FMIPA UNY bertujuan agar mahasiswa memiliki

BAB I PENDAHULUAN A. Latar Belakang Masalah Mata kuliah Fisika Matematika di Jurusan Pendidikan Fisika FMIPA UNY bertujuan agar mahasiswa memiliki 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Mata kuliah Fisika Matematika di Jurusan Pendidikan Fisika FMIPA UNY bertujuan agar mahasiswa memiliki kemampuan dalam merumuskan berbagai proses fisika ke

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata Kuliah : Kalkulus II Bobot Mata Kuliah : 3 Sks GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Deskripsi Mata Kuliah : Persamaan Differensil Orde I; Persamaan DifferensialTingkat Satu; Persamaan Differensial

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut dapat dikembangkan melalui pemodelan matematika. Sehingga dengan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral. Topik utama kalkulus diferensial yaitu turunan. Turunan mempunyai aplikasi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam perkembangan dunia sains, ilmu fisika mempunyai peran penting untuk memahami fenomena alam dari yang sederhana sampai yang kompleks. Hal itu dapat dilihat

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU SILABUS Mata Pelajaran : Matematika Satuan Pendidikan : SMA Ungguan BPPT Darus Sholah Jember kelas : XII IPA Semester : Ganjil Jumlah Pertemuan : 44 x 35 menit (22 pertemuan) STANDAR 1. Menggunakan konsep

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika adalah salah satu ilmu pengetahuan yang mempunyai peranan sangat besar dalam kehidupan nyata. Salah satu bagian dari matematika adalah persamaan

Lebih terperinci

PENENTUAN MEDAN GRAVITASI EINSTEIN DALAM RUANG MINKOWSKI MENGGUNAKAN SIMBOL CHRISTOFFEL JENIS I DAN II SKRIPSI MELLY FRIZHA

PENENTUAN MEDAN GRAVITASI EINSTEIN DALAM RUANG MINKOWSKI MENGGUNAKAN SIMBOL CHRISTOFFEL JENIS I DAN II SKRIPSI MELLY FRIZHA PENENTUAN MEDAN GRAVITASI EINSTEIN DALAM RUANG MINKOWSKI MENGGUNAKAN SIMBOL CHRISTOFFEL JENIS I DAN II SKRIPSI Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar Sarjana Sains MELLY FRIZHA

Lebih terperinci

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS Tinjauan kasus persamaan... (Agus Supratama) 67 TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS ANALITICALLY REVIEW WAVE EQUATIONS IN ONE-DIMENSIONAL WITH VARIOUS

Lebih terperinci

SILABUS. Deskripsi Mata Kuliah : Merupakan lanjutan dari kalkulus-2 yang menitikberatkan pada pemahaman dan penguasaan konsep dan aplikasi integral

SILABUS. Deskripsi Mata Kuliah : Merupakan lanjutan dari kalkulus-2 yang menitikberatkan pada pemahaman dan penguasaan konsep dan aplikasi integral SILABUS Kode Mata Kuliah : IT043223 Nama Mata kuliah : KALKULUS 3 Jumlah SKS : 2 Semester : III Deskripsi Mata Kuliah : Merupakan lanjutan dari -2 yang menitikberatkan pada pemahaman dan penguasaan konsep

Lebih terperinci

Pendahuluan Elektromagnetika

Pendahuluan Elektromagnetika Revisi Februari 2002 Modul 1 EE 2323 Elektromagnetika Telekomunikasi Pendahuluan Elektromagnetika Oleh : Nachwan Mufti Adriansyah, ST Organisasi Modul 1 Pendahuluan Elektromagnetika A. Latar Belakang Sejarah

Lebih terperinci

Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma

Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma Fungsi Gamma Pengantar Matematika Teknik Kimia Muthia Elma Fungsi Gamma Defenisi Merupakan salah satu fungsi khusus yang biasanya disajikan dalam pembahasan kalkulus tingkat lanjut Dalam aplikasinya fungsi

Lebih terperinci

UJIAN AKHIR SEMESTER METODE NUMERIS I

UJIAN AKHIR SEMESTER METODE NUMERIS I PETUNJUK UJIAN AKHIR SEMESTER METODE NUMERIS I DR. IR. ISTIARTO, M.ENG. KAMIS, 8 JUNI 017 OPEN BOOK 150 MENIT 1. Saudara tidak boleh menggunakan komputer untuk mengerjakan soal ujian ini.. Tuliskan urutan/cara/formula

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

Bab II Fungsi Kompleks

Bab II Fungsi Kompleks Bab II Fungsi Kompleks Variabel kompleks z secara fisik ditentukan oleh dua variabel lain, yakni bagian realnya x dan bagian imajinernya y, sehingga dituliskan z z(x,y). Oleh sebab itu fungsi variabel

Lebih terperinci

Candi Gebang Permai Blok R/6 Yogyakarta Telp. : ; Fax. :

Candi Gebang Permai Blok R/6 Yogyakarta Telp. : ; Fax. : MATEMATIKA TEKNIK Oleh : Prayudi Edisi Pertama Cetakan Pertama, 2006 Hak Cipta 2006 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan difusi dan sebaran temperatur pada geometri menjadi hal yang penting dalam berbagai bidang, seperti bidang fisika, kimia maupun kedokteran. Persamaan

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN Mata Kuliah : Fisika Kuantum Kode : SKS : 2 sks Semester : VIII/VII Nama Dosen : Drs. Iyon Suyana, M.Si Pustaka : Buku utama SATUAN ACARA PERKULIAHAN Standar Kompotensi : Menguasai pengetahuan yang mendalam

Lebih terperinci

MATA KULIAH KODE RUMPUN MK BOBOT (SKS) SEMESTER DIREVISI. Elektromagnetika DTH1K3 Telekomunikasi T =3 P = Juni 2016

MATA KULIAH KODE RUMPUN MK BOBOT (SKS) SEMESTER DIREVISI. Elektromagnetika DTH1K3 Telekomunikasi T =3 P = Juni 2016 RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI D3 TEKNIK TELEKOMUNIKASI FAKULTAS ILMU TERAPAN TELKOM UNIVERSITY MATA KULIAH KODE RUMPUN MK BOBOT (SKS) SEMESTER DIREVISI Elektromagnetika DTH1K3 Telekomunikasi

Lebih terperinci

Bab 2. Persamaan Einstein dan Ricci Flow. 2.1 Geometri Riemann

Bab 2. Persamaan Einstein dan Ricci Flow. 2.1 Geometri Riemann Bab 2 Persamaan Einstein dan Ricci Flow 2.1 Geometri Riemann Sebuah himpunan M disebut sebagai manifold jika tiap titik Q dalam M memiliki lingkungan terbuka S yang dapat dipetakan 1-1 melalui sebuah pemetaan

Lebih terperinci

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2009 2 DAFTAR ISI DAFTAR ISI 2 1 Sistem Bilangan Kompleks (C) 1 1 Pendahuluan...............................

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas Bab 2 TEORI DASAR 2.1 Model Aliran Panas Perpindahan panas adalah energi yang dipindahkan karena adanya perbedaan temperatur. Terdapat tiga cara atau metode bagiamana panas dipindahkan: Konduksi Konduksi

Lebih terperinci

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan.

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. Kriteria apa saa yang dapat digunakan untuk menentukan properti

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : Kalkulus 3 Kode Mata : DK - 1309 Jurusan / Jenjang : S1 SISTEM KOMPUTER Tujuan Instruksional Umum : Agar mahasiswa

Lebih terperinci

Bab 5 Potensial Skalar. A. Pendahuluan

Bab 5 Potensial Skalar. A. Pendahuluan Bab 5 Potensial Skalar A. Pendahuluan Pada pokok bahasan terdahulu medan listrik merupakan besaran vektor yang memberikan informasi lengkap tentang efek-efek elektrostatik. Secara substansial informasi

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN GARIS-GARIS BESAR PROGRAM PENGAJARAN Mata Kuliah : Fisika Umum Kode/SKS : FIS 102 / 2 (2-0) Deskrisi : Mata Kuliah Fisika A ini diberikan untuk mayor yang berbasis IPA tetapi tidak memerlukan dasar fisika

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

Universitas Gadjah Mada 1

Universitas Gadjah Mada 1 I. Nama Mata Kuliah : LISTRIK MAGNET A II. Kode / SKS : MSF-2411 / 2 III. Prasyarat : - Mekanika B (MSF-2128)** - Fisika Matematik IA (MSF-2010A)** (** harus pernah ditempuh meskipun tidak lulus) IV. Status

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu bentuk model matematika adalah berupa persamaan diferensial. Persamaan diferensial sering digunakan dalam memodelkan suatu permasalahan untuk menggambarkan

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/ Materi Aktivitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/ Materi Aktivitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11.54201 / Kalkulus II 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks :

Lebih terperinci

SOLUSI STATIK PERSAMAAN MEDAN EINSTEIN UNTUK RUANG VAKUM BERSIMETRI SILINDER DAN PERSAMAAN GERAK PARTIKEL JATUH BEBAS DARI SOLUSI TERSEBUT

SOLUSI STATIK PERSAMAAN MEDAN EINSTEIN UNTUK RUANG VAKUM BERSIMETRI SILINDER DAN PERSAMAAN GERAK PARTIKEL JATUH BEBAS DARI SOLUSI TERSEBUT SOLUSI STATIK PERSAMAAN MEDAN EINSTEIN UNTUK RUANG VAKUM BERSIMETRI SILINDER DAN PERSAMAAN GERAK PARTIKEL JATUH BEBAS DARI SOLUSI TERSEBUT SKRIPSI Oleh A.Syaiful Lutfi NIM 081810201005 JURUSAN FISIKA FAKULTAS

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA No. SIL/EKO/EKO 304/17 Revisi : 01 Tgl : 10 November 2011 Hal 1 dari 6 MATA KULIAH : MATEMATIKA TEKNIK KODE MATA KULIAH : EKO 304 SEMESTER : II PROGRAM STUDI : Pendidikan Teknik Elektro, Pendidikan Teknik

Lebih terperinci

Modul 6 berisi pengertian integral garis (kurva), sifat-sifat dan penerapannya. Pengintegralan sepanjang kurva, kita harus memperhatikan arah kurva,

Modul 6 berisi pengertian integral garis (kurva), sifat-sifat dan penerapannya. Pengintegralan sepanjang kurva, kita harus memperhatikan arah kurva, ix T Tinjauan Mata Kuliah ujuan mempelajari mata kuliah ini adalah agar Anda memiliki kemampuan dalam menjelaskan aljabar vektor, turunan dan integral fungsi vektor, serta mampu menerapkannya dalam geometri

Lebih terperinci

SOLUSI PERSAMAAN RICCI FLOW UNTUK RUANG EMPAT DIMENSI BERSIMETRI SILINDER

SOLUSI PERSAMAAN RICCI FLOW UNTUK RUANG EMPAT DIMENSI BERSIMETRI SILINDER SOLUSI PERSAMAAN RICCI FLOW UNTUK RUANG EMPAT DIMENSI BERSIMETRI SILINDER SKRIPSI Oleh Sudarmadi NIM 061810201112 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2012 SOLUSI

Lebih terperinci

ANALISIS DISTRIBUSI SUHU PADA PELAT DUA DIMENSI DENGAN MENGGUNAKAN METODA BEDA HINGGA

ANALISIS DISTRIBUSI SUHU PADA PELAT DUA DIMENSI DENGAN MENGGUNAKAN METODA BEDA HINGGA Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol No., esember 0 ISSN: 087-9946 ANALISIS ISTRIBUSI SUHU PAA PELAT UA IMENSI ENGAN MENGGUNAKAN METOA BEA HINGGA Supardiyono Jurusan Fisika FMIPA UNESA Kampus

Lebih terperinci