INTERPOLASI PARAMETRIK SEBAGAI PILIHAN LAIN DI ANTARA INTERPOLASI LAGRANGE, SPLAIN-KUBIK DAN NEWBERY-GARRETT. M. Bunjamin *

dokumen-dokumen yang mirip
Pertemuan 9 : Interpolasi 1 (P9) Interpolasi. Metode Newton Metode Spline

Course Note Numerical Method : Interpolation

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan

TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA

BAB 5 Interpolasi dan Aproksimasi

BAB 2 DENGAN MENGGUNAKAN INTERPOLASI INTERPOLASI SPLINE LINIER DAN INTERPOLASI SPLINE

Analisis Regresi Spline Kuadratik

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

Open Source. Not For Commercial Use

BAB II LANDASAN TEORI

BAB III TURUNAN DALAM RUANG DIMENSI-n

BAB I PENDAHULUAN. Analisis regresi merupakan metode analisis data yang telah diterapkan

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada

MA1201 MATEMATIKA 2A Hendra Gunawan

MODEL MATEMATIK UNTUK MENENTUKAN LAMA JATUH BATANG KENDALI. Elfrida Saragi *, Utaja **

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f).

BAB II LANDASAN TEORI

Matematik Ekonom Fungsi nonlinear

Persamaan Parametrik

LEMBAR KERJA SISWA (LKS) Pertemuan I

TUJUAN INSTRUKSIONAL KHUSUS

Interpolasi dan Ekstrapolasi

Interpolasi dan Ekstrapolasi

Limit Fungsi. Bab. Limit fungsi Pendekatan (kiri dan kanan) Bentuk tentu dan tak tentu Perkalian sekawan A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

Tinjauan Mata Kuliah

BAB 2 LANDASAN TEORI

LIMIT DAN KEKONTINUAN

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan

BAB I INTEGRAL TAK TENTU

Modul Matematika 2012

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP)

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PEMODELAN KURS RUPIAH TERHADAP MATA UANG EURO DENGAN PENDEKATAN REGRESI SPLINE. Sulton Syafii Katijaya 1, Suparti 2, Sudarno 3.

Kalkulus II. Diferensial dalam ruang berdimensi n

TINJAUAN MATA KULIAH... MODUL 1: LOGIKA MATEMATIKA 1.1 Kegiatan Belajar 1: Latihan Rangkuman Tes Formatif

BAB IV HASIL DAN PEMBAHASAN. mendapatkan model dan faktor-faktornya, terlebih dahulu akan dibahas. bagaimana mendapatkan sampel dalam penelitian ini.

6 FUNGSI LINEAR DAN FUNGSI

untuk i = 0, 1, 2,..., n

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7

PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

Metode Numerik - Interpolasi WILLY KRISWARDHANA

INTEGRAL. Bab. Di unduh dari : Bukupaket.com. Integral tak tentu Fungsi aljabar Derivatif Antiderivatif A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

BAB I PENDAHULUAN A. Latar Belakang Masalah

PEMAKAIAN VARIABEL INDIKATOR DALAM PEMODELAN. Mike Susmikanti *

TURUNAN DALAM RUANG DIMENSI-n

Integral dan Aplikasinya

BAB IV HITUNG DIFERENSIAL

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT

PENDAHULUAN METODE NUMERIK

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd

MA1201 MATEMATIKA 2A Hendra Gunawan

MENENTUKAN NILAI EKSTREM SUKU BANYAK TERTENTU DENGAN PERTIDAKSAMAAN RATA-RATA

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

BAB I VEKTOR DALAM BIDANG

BAB 5 PENGGUNAAN TURUNAN

Asimtot.wordpress.com FUNGSI TRANSENDEN

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN

BAB IV HASIL DAN PEMBAHASAN

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

KALKULUS I TEOREMA NILAI RATAAN (Mean Value Theorem) SUTRIANI HIDRI Matematika B

Penyajian Data dalam Bentuk Tabel

PENDEKATAN VALUE BILANGAN TRAPEZOIDAL FUZZY DALAM METODE MAGNITUDE

Triyana Muliawati, S.Si., M.Si.

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI

Tujuan. Interpolasi berguna untuk memperkirakan nilai-nilai tengah antara titik data yang sudah ditentukan dan tepat.

JURUSAN TEKNIK ELEKTRO

BAB I PENDAHULUAN Latar belakang

BAB 2 LANDASAN TEORI

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah

STUDI MENGENAI KURVA PARAMETRIK CATMULL-ROM SPLINES SKRIPSI AZWAR SYARIF

BAB 1 PENDAHULUAN. 1.1 Latar belakang

DASAR-DASAR ANALISIS MATEMATIKA

BAB II PELENGKUNG TIGA SENDI

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange

Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc

KALKULUS (IT 131) Fakultas Teknologi Informasi - Universitas Kristan Satya Wacana. Bagian 3. Limit & Kontinuitas ALZ DANNY WOWOR

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT

A. 3 x 3 + 2x + C B. 2x 3 + 2x + C. C. 2 x 3 + 2x + C. D. 3 x 3 + 2x + C. E. 3 x 3 + 2x 2 + C A. 10 B. 20 C. 40 D. 80 E. 160

PEMODELAN KASUS KEMISKINAN DI JAWA TENGAH MENGGUNAKAN REGRESI NONPARAMETRIK METODE B-SPLINE

RENCANA PEMBELAJARAN SEMESTER (RPS)

3.2 Teorema-Teorema Limit Fungsi

Modul Statistika Kelas XII SMKN 1 Stabat. Lingkaran. Elips

INTERPOLASI: METODE LAGRANGE

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI

= F (x)= f(x)untuk semua x dalam I. Misalnya F(x) =

Pendahuluan Metode Numerik Secara Umum

Bab 1 PENDAHULUAN. USU memiliki visi menjadi University for Industry (UfI), dengan misi:

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

Course Note Numerical Method Akar Persamaan Tak Liniear.

Transkripsi:

INTERPOLASI PARAMETRIK SEBAGAI PILIHAN LAIN DI ANTARA INTERPOLASI LAGRANGE, SPLAIN-KUBIK DAN NEWBERY-GARRETT M. Bunjamin * ABSTRAK INTERPOLASI PARAMETRIK SEBAGAI PILIHAN LAIN DI ANTARA INTERPOLASI LAGRANGE, SPLAIN-KUBIK DAN NEWBERY-GARRETT. Berikut akan dibahas tentang interpolasi parametrik di antara beberapa titik yang diketahui di bidang datar, serta akan ditunjukkan beberapa kebaikan sifatnya dibandingkan dengan interpolasi Lagrange, Splain-Kubik dan Newbery- Garrett. ASBTRACT PARAMETRIC INTERPOLATION AS NOTHER ALTERNATIVE AMONG LAGRANGE, CUBIC-SPLINE, AND NEWBERY-GARRETT INTERPOLATIONS. We will discuss how to obtain parametric interpolation between several given points in a plane, and show some of their advantages as compared to the Lagrange, Cubic-spline, and Newbery-Garrett interpolations. PENDAHULUAN Penulis dalam makalahnya pada tahun 1992 [1] pernah melaporkan tentang kelemahan interpolasi Lagrange jika jumlah titik datanya banyak, misalnya 5, yang menghasilkan polinom interpolasi derajat 5 dengan goncangan vertikal demikian besar hingga hasil interpolasi Lagrange dengan interpolasi splain-kubik, yaitu interpolasi orde-tinggi berupa polinom kubik sepotong-sepotong yang di titik-titik data dapat didiferensialkan dua kali secara kontinu, dengan goncangan vertikal sangat minim, meskipun masih ada, sehingga jauh lebih berguna daripada interpolasi Lagrange. Penulis selanjutnya membandingkan kedua interpolasi ini dengan interpolasi orde tinggi yang diusulkan Newbery & Garrett [2], yaitu interpolasi polinom kuintik sepotong-sepotong dengan kelengkungan minimum, yang ternyata bersifat lebih baik lagi daripada interpolasi splain-kubik, karena tidak ada goncangan sama sekali. Namun untuk berbagai aplikasi yang memerlukan kecepatan tinggi, interpolasi splain-kubik dan Newbery & Garrett dianggap terlalu banyak melibatkan komputasi rumit hingga lambat. Karena itu orang masih mencoba mencari metode * Pensiunan Widyaiswara Utama - BATAN

interpolasi lain yang penampilannya cukup baik, namun komputasinya relatif mudah dan cepat. Backstrom [3] mengusulkan interpolasi Lagrange sepotong-sepotong, yaitu polinom kuadratik untuk setiap tiga titik yang bersebelahan. Meskipun tampilan interpolasi ini cukup baik, dan komputasinya juga cepat, namun derivatif di titik-titik sambungan tidak kontinu, suatu cacat yang untuk banyak aplikasi tidak dapat diterima. Untuk mengatasi hal ini, Akyildiz [4] mengusulkan interpolasi parametrik, yaitu interpolasi polinom kubik sepotong-sepotong yang derivatif pertamanya kontinu di titik-titik data dan komputasinya relatif mudah dan cepat. INTERPOLASI PARAMETRIK: PEMAHAMAN DASAR Andaikan diketahui N buah titik data berurutan P i = (x i, u i ), i = 1,2,..., N yang akan diinterpolasikan. Untuk menentukan fungsi interpolasi di antara dua titik data sembarang yang bersebelahan, misalnya P i = (x i, u i ) dan P i+1 = (x i+1, u i+1 ), ditentukan: a) parabola p(t) yang harus lewat P i dan P i+1 dan satu titik sebelumnya, yaitu P i-1 = (x i-1, u i-1 ), b) parabola q(t) yang harus lewat P i dan P i+1 dan satu titik sesudahnya, yaitu P i+2 = (x i+2, u i+2 ), dan c) Kurva interpolasi yang sebenarnya lewat P i dan P i+1 ialah polinom kubik hasil kombinasi konvex dari kedua bagian parabola yang berada di interval (x i, x i+1 ). Persamaan kedua parabola, dan juga persamaan fungsi interpolasi yang sebenarnya, dinyatakan dalam bentuk parametrik dengan parameter t, dan fungsi interpolasi di interval (x i, x i+1 ) dinyatakan sebagai : r(t) = (1-t)p(t) + tq(t), 0 t 1. Dari uraian di atas tampak bahwa fungsi interpolasi parametrik di antara setiap dua titik yang bersebelahan didapat dari empat titik yang bersebelahan, yaitu dua titik tersebut ditambah satu titik sebelumnya dan satu titik sesudahnya. Jika N buah titik yang diinterpolasikan membentuk sebuah kurva tertutup (lihat gambar 5 s/d 8), maka metode ini akan menghubungkan semua titik dan membentuk kurva tertutup. Jika N buah titik ini membentuk sebuah kurva terbuka, maka kita harus menambahkan dua titik fiktif untuk melakukan interpolasi parametrik, yaitu satu di posisi sebelum P 1 dan yang lain di posisi sebuah P N. Kedua titik fiktif ini dipilih demikian hingga hasil akhir kurva interpolasi di titik awal P 1 dan titik akhir P N mempunyai derivatif kedua = 0, seperti yang biasanya disyaratkan pada interpolasi splain-kubik atau Newberry & Garrett. Sebagai contoh, perhatikan lima titik data sebagai berikut: P 1 = (-8,8), P 2 = (-1, -1), P 3 = (10, 6), P 4 = (8, -6), dan P 5 = (20, 10), dan bagaimana cara menemukan persamaan parametrik polinom kubik (r(t) yang menghubungkan P 2 dan P 3 (lihat gambar 1 s/d 3).

Pertama, dicari persamaan parametrik dari parabola yang lewat P 1, P 2 dan P 3, dengan syarat bahwa titik P 1 harus sesuai dengan nilai parameter t = -1, titik P 2 sesuai dengan nilai t = 0, dan titik P 3 sesuai dengan nilai t = 1. Persamaan parabola p(t) yang harus lewat tiga titik tersebut dapat diuraikan dalam komponen P x (t) dan P u (t), dengan persamaan P x (t) = -1 + 9t + 2t 2 dan P u (t) = -1 t + 8t 2 Kedua, dicari persamaan parametrik dari parabola yang lewat P 2, P 3 dan P 4, dengan syarat bahwa titik P 2 harus sesuai dengan nilai parameter t = 0, P 3 sesuai dengan t = 1, dan P 4 sesuai dengan t = 2. Persamaan parabola q(t) yang harus lewat tiga titik tersebut diuraikan dalam komponen q x (t) dan q u (t), yaitu q x (t) = -1 + 17.5t 6.5t 2 dan q u (t) = -1 + 16.5t 9.5t 2 Jadi intinya ialah, bagi titik P 2 dan P 3 yang dilalui oleh parabola p(t) dan q(t), daerah (range) nilai parameter t bagi kedua parabola di antara kedua titik ini harus sama, yaitu 0 t t 1. Ketiga, dicari persamaan parametrik dari fungsi interpolasi di antara titik P 2 dan P 3, yaitu r(t) = (1 t) p(t) + tq(t), terdiri dari dan r x (t) = (1 t) p x (t) + tq x (t) = -1 + 9t + 10.5t 2 8.5t 3, r u (t) = (1 t) p u (t) + tq u (t) = -1 t + 25.5t 2 17.5t 3 INTERPOLASI PARAMETRIK: RUMUSAN SECARA RINCI Untuk menentukan fungsi interpolasi di antara dua titik data sebarang yang bersebelahan, misalnya P i dan P i+1, pertama-tama perlu kita cari persamaan parametrik umum dari parabola yang lewat titik P i-1, P i, dan P i+1, dengan syarat bahwa P i-1 sesuai nilai t = -1, P i sesuai dengan nilai t = 0, dan P i+1, sesuai dengan nilai t = 1. Jika persamaan parabola ini mempunyai komponen p x (t) = a x + b x t + c x t 2 dan p u (t) = a u + b u t + c u t 2, maka kita memiliki enam persamaan berikut untuk menentukan koefisien kedua parabola ini, yaitu: t = -1 p x (-1) = x i 1 = a x + b x + c x dan p u (-1) = u i 1 = a u + b u + c u

t = 0 p x (0) = x i = a x dan P u (0) = u i = a u t = 1 p x (1) = x i + 1 = a x + b x + c x dan p u (1) = u i + 1 = a u + b u + c u dari persamaan untuk t = 0 didapat a x = x i dan a u = u i, dan jika hasil ini dimasukkan ke persamaan pertama dan ketiga akan memberikan b x = (x i + 1 - x i - 1 ) /2, dan b u = (u i + 1 - u i - 1 ) /2, c x = (x i + 1 - x i - 1 2x i ) /2, dan c u = (u i + 1 - u i - 1 2u i ) /2. Rumus-rumus di atas dapat disingkat sebagai berikut: a = P i, b = (P i + 1 - P i - 1 ) /2, c = (P i + 1 + P i - 1 2P i ) /2. Selanjutnya kita cari persamaan parametrik parabola yang lewat titik P i, P i + 1, dan P i + 2, dengan syarat bahwa P i sesuai dengan nilai t = 0, P i + 1 sesuai dengan t = 1, dan P i + 2 sesuai dengan t = 2. Jika persamaan parabola ini memiliki komponen q x (t) = A x + B x t + C x t 2 dan q u (t) = A U + B u t + C u t 2, maka ada enam persamaan berikut untuk menentukan koefisien kedua parabola ini, yaitu: t = 0 q x (0) = x i = A x dan q u (0) = u i = A u t = 1 q x (1) = x i + 1 = A x + B x + C x dan q u (1) = u i + 1 = A u + B u + C u, t = 2 q x (2) = x i + 2 = A x + 2B x + 4C x dan q u (2) = u i + 2 = A u + 2B u + 4C u. Dari persamaan untuk t = 0 didapat A x = x i dan A u = u i, Dan jika hasil ini dimasukkan ke persamaan ke-2 dan ke-3 akan memberikan: B x = (-3x i + 4x i+1 x i+2 )/2, B u = (-3u i + 4u i+1 u i+2 )/2, C x = (x i - 2 x i+1 + x i+2 ) / 2, C u = (u i - 2 u i+1 + u i+2 ) / 2, atau disingkat

A = P1, B = (-3P i + 4P i+1 P i+2 )/2, C = (P i 2P i+1 + P i+2 ) / 2 Akhirnya kita cari persamaan fungsi interpolasi r(t) di antara titik P 1 = (x i, u i ) dan P i+1 = (x i+1, u i+1 ) dari persamaan r(t) = (1 t) p(t) + tq(t) = (1 t)(a + bt + ct 2 ) + t(a + Bt + Ct 2 ), atau r(t) = a + (b a + A)t + (c b + B)t 2 + (C c)t 3 = P i + 0.5(P i+1 P i-1 )t + 0.5(2P i-1-5p i + 4P i+1 P i+2 )t 2 + 0.5(-P i-1 + 3P i - 3P i+1 + P i-2 )t 3 Ini berarti bahwa fungsi r(t) mempunyai komponen: r x (t) = a x + (b x a x + A x )t + (c x b x + B x )t 2 + (C x c x )t 3 = x i + 0.5(x i+1 x i-1 )t + 0.5(2x i-1 5x i + 4x i+1 x i+2 )t 2 + 0.5(-x i-1 + 3u i 3u i+1 + u i-2 )t 3 untuk nilai r dalam interval 0 t 1. MENENTUKAN KOORDINAT TITIK-TITIK FIKTIF Seperti telah disebutkan di atas, jika N buah titik P i = (x i, u i ) membentuk sebuah kurva terbuka, maka kita harus menambahkan dua titik fiktif, yaitu P 0 = (x 0, u 0 ) di posisi sebelum P i, dan yang lain P N+1 = (x N+1, u N+1 ) di posisi sesudah P N. Kedua titik fiktif ini dipilih demikian hingga hasil akhir kurva interpolasi u(t) di titik awal P i dan titik akhir P N mempunyai u" = 0, seperti yang biasanya disyaratkan pada interpolasi splain-kubik atau Newbery & Garrett (lihat gambar 4). Dari persamaan umum kurva interpolasi u(t) = a + (b a + A)t + (c b + B)t 2 + (C c)t 3, didapat u'(t) = (b a + A) + 2(c b + B)t + 3(C c)t 2, dan u''(t) = 2(c b + B) + 6(C c)t

Untuk interval (x i,,x 2 ), di titik P i = (x i, u i ) nilai t = 0 sehingga syarat u" = 0 berarti c b + B = 0. Untuk 4 titik pertama (termasuk titik fiktif) P 0 = (x 0, u 0 ), P i = (x i, u i ), P 2 = (x 2, u 2 ) dan P 3 = (x 3, u 3 ), kita mempunyai rumus b = (P 2 P 0 )/ 2, c = (P 2 + P 0 2P 1 )/2, dan B = (-3P 1 + 4P 2 P 3 )/2, sehingga c b + B = 0, berarti atau P 2 + P 0 2P 1 - P 2 + P 0 3P 1 + 4P 2 P 3 = 2P 0-5P 1 + 4P 2 P3 = 0 atau P 0 = 5P 1-4P 2 + P 3 )/2, Ini berarti bahwa koordinat titik fiktif P 0 = (x 0, u 0 ) dapat ditentukan dari koordinat tiga titik sesudahnya seperti berikut: x 0 = (5x 1 4x 2 + x 3 )/ 2, dan u 0 = (5u 1 4u 2 + u 3 )/2, Untuk interval (x N-1, x N ), di titik P N = (x N, u N ) nilai t = 1, sehingga syarat u" = 0 berarti c b + B + 3(C c) = -b 2c + B + 3C = 0 Untuk empat titik terakhir (termasuk titik fiktif) P N-2,= (x N-2, u N-2 ), P N-1,= (x N-1, u N-1 ), P N, = (x N, u N ) dan P N+1,= (x N+1, u N+1 ), kita memiliki b = (P N - P N-2 ) / 2, c = (P N + P N-2-2P N-1 )/2, B = (-3P N-1 +P N-2 )/2 dan C = (P N-1-2P N + P N+1 )/2, sehingga b 2c + B + 3C = 0, berarti -P N /2 + P N-2 /2 - P N - P N-2 + 2P N-1-3P N-1 /2 + 2P N - P N+1 /2 + 3P N-1 /2-3P N + 3P N+1 /2 = 0, atau P N+1 = (5P N - 4P N-1 + P N-2 )/2 Ini berarti bahwa koordinat titik fiktif P N+1 = (x N+1, u N+1 ) dapat ditentukan dari koordinat tiga titik sebelumnya sebagai berikut:

x N+1 = (5x N - 4x N-1 + x N-2 )/2 dan u N+1 = (5u N - 4u N-1 + u N-2 )/2 Sebagai contoh, andaikan digunakan lima titik berikut: P 1 = (-8, 8), P 2 = (-1, -1), P 3 = (10, 6), P 4 = (8, -6), dan P 5 = (20, 10), maka titik fiktif awal adalah P 0 = (-13, 25) dan titik fiktif akhir adalah P 6 = (39, 40). KONTINUITAS DI TITIK-TITIK DATA Dari uraian di atas telah diketahui bahwa persamaan fungsi interpolasi di antara titik P i = (x i, u i ), dan P i+1 = (x i+1, u i+1 ) ialah r(t) = P i + 0.5(P i+1 P i-1 )t + 0.5(2P i-1 5P i + 4P i+1 P i-2 )t 2 + 0.5(-P i-1 + 3P i - 3P i+1 + P i-2 )t 3, sehingga derivatif pertamanya adalah: r (t) = 0.5(P i+1 P i-1 )t + (2P i-1 5P i + 4P i+1 P i-2 )t 2 + 1.5(-P i-1 + 3P i - 3P i+1 + P i-2 )t 2, yang berarti bahwa r (0) = 0.5(P i+1 P i-1 ). Ini adalah limit kanan. Jika sekarang kita perhatikan interval di antara P i-1 = (x i-1, u i-1 ) dan P i = (x i, u i ), maka r (t) = 0.5(P i P i-2 ) + (2P i-2 5P I-1 + 4P i P i+1 )t + 1.5(-P i-2 + 3P i-1-3p i + P i-1 )t 2, sehingga r (1) = 0.5(P i+1 P i-1 ). Ini adalah limit kiri dari r (t) di titik P i, yang ternyata sama dengan limit kanannya, sehingga interpolasi parametrik mempunyai derivatif pertama yang kontinu di titik-titik data, suatu sifat yang cukup ideal untuk suatu fungsi interpolasi. Nilai derivatif di titik P i = (x i-, u i ) adalah ui+ 1 ui 1 r'( Pi = xi+ 1 xi 1 Hal lain yang dapat disimpulkan dari sifat ini ialah bahwa garis singgung pada fungsi r(t) di titik P i sejajar dengan garis yang menghubungkan P i-1 dengan P i+1. MEMBANDINGKAN INTERPOLASI PARAMETRIK DENGAN INTERPOLASI LAIN Pada gambar 9 s/d 12 ditampilkan empat macam interpolasi yang diterapkan pada tigabelas titik yang sama, yaitu interpolasi Lagrange, splain-kubik, Newbery-

Garrett, dan parametrik. Ke-tigabelas titik ini digunakan Newbery-Garrett untuk membandingkan metode interpolasi mereka dengan splain-kubik. Tidak dapat disangkal bahwa hasil interpolasi Lagrange sama sekali tidak dapat diterima, karena goncangan vertikalnya yang demikian besar. Interpolasi splain-kubik menunjukkan ciri jauh lebih baik dari pada lagrange, tetapi masih ada cacat, yaitu adanya goncangan kecil di antara titik-titik 2 dan 3, 3 dan 4, 6 dan 7, 7 dan 8 serta 9 dan 10. Hasil interpolasi Newbery-Garrett jelas paling superior, apalagi jika digunakan algoritma yang baik untuk meminimalkan kelengkungannya. Namun di luar dugaan, hasil interpolasi parametrik yang komputasinya jauh lebih sederhana daripada splain-kubik dan Newbery-Garrett, menunjukkan ciri yang sangat dekat dengan hasil Newbery- Garrett, dan jelas lebih baik dari hasil interpolasi splain-kubik. Hal ini sekali lagi tampak dari gambar 13 s/d 15 yang menunjukkan gambar mobil dari hasil interpolasi Newbery-Garrett, interpolasi splain-kubik, dan interpolasi parametrik yang diterapkan pada kumpulan 18 titik yang sama, dengan hasil yang juga cukup mencengangkan, yaitu hasil interpolasi parametrik yang lebih baik dari hasil interpolasi splain-kubik dan tidak jauh berbeda dari hasil interpolasi Newbery-garrett. Sekedar sebagai contoh tambahan, gambar 16 menunjukkan wajah orang yang penulis buat dengan bantuan interpolasi parametrik, suatu hal yang di masa lalu sulit penulis coba lakukan dengan sistem interpolasi yang lain. KESIMPULAN DAN SARAN Dari pembahasan di atas tampak betapa interpolasi parametrik yang algoritmanya demikian sederhana jika dibandingkan dengan interpolasi splain-kubik, apalagi dibandingkan interpolasi Newbery-Garrett yang algoritmanya demikian kompleks, ternyata mampu memberi hasil tampilan yang mengalahkan hasil splainkubik dan sangat dekat dengan hasil Newbery-Garrett. Dengan kata lain, algoritma interpolasi parametrik adalah sangat efisien dan efektif. Kelebihan lain dari interpolasi parametrik terhadap interpolasi splain-kubik dan Newbery-Garrett ialah sebagai berikut. Jika kedua interpolasi terakhir ini bersifat global, yaitu perubahan satu titik data berakibat berubahnya seluruh komputasi N titik, maka interpolasi parametrik bersifat lokal, yaitu perubahan satu titik data tidak mempengaruhi komputasi data lain, dan hanya titik tetangga terdekatnya yang terpengaruh. Dengan berbagai kelebihan seperti tercantum di atas, penulis menyarankan kepada rekan-rekan peneliti, khususnya di bidang kimia, biologi, kedokteran, pertanian dan sebagainya. Yang biasanya kurang akrab dengan berbagai algoritma komputasi, untuk memanfaatkan interpolasi ini, antara lain untuk membantu proses

pengolahan dan pemodelan data dari hasil eksperimen laboratorium atau kebun percobaan atau rumah sakit. UCAPAN TERIMA KASIH Penulis mengucapkan terima kasih sebesar-besarnya kepada rekan-rekan dosen di jurusan Fisika FMIPA-UI di Depok, karena telah membantu penulis dengan fasilitas jurnal komputasi, khususnya jurnal Computers in Physics dari American Institute of Physics. DAFTAR PUSTAKA 1. BUNJAMIN, M., Interpolasi dengan Kelengkungan Minimum, Prosiding Lokakarya Komputasi dalam Sains dan Teknologi Nuklir II, Jakarta, Februari (1992) 9-23. 2. NEWBERY, A.C.R. & GARRETT, T.S., Comput. Math. Appl., 22, 37 (1997). 3. BACKSTROM, G., Computers in Physics, 7, 213 (1993) 4. AKYILDIZ, Y., Computers in Physics, 8, 722 (1994)

DISKUSI HAYET LAGGOUNE Bagaimana perbandingan hasil antara interpolasi parametrik dengan metode lain ditinjau dari segi hasil akhir dan kompleksitas algoritma? M. BUNJAMIN 1. Dari segi efisiensi komputasi/kompleksitas algoritma, interpolasi parametrik unggul karena komputasinya hanya ±10% dari komputasi Spline-cubic interpolation, apalagi terhadap metode Newbery-Garrett. 2. Dari segi hasil akhir/efektivitas, interpolasi parametrik setingkat dengan interpolasi Newbery-Garrett, berarti setingkat dengan interpolasi orde tinggi. M. SYAMSA ARDISASMITA Kalau titik-titik kontrol membentuk suatu kontour (keliling tertutup), dapatkah titiktitik tersebut dihubungkan dengan satu tarikan kurva garis atau harus dilakukan oleh dua kurva garis yang berbeda? M. BUNJAMIN Interpolasi itu sifatnya sepotong-sepotong (piecewise), jadi keliling tertutup tidak dapat dihubungkan dengan satu tarikan kurva garis sehingga harus dilakukan oleh dua (atau lebih) kurva garis yang berbeda.

DAFTAR RIWAYAT HIDUP 1. Nama : M. BUNJAMIN 2. Tempat/Tanggal Lahir : Kediri, 13 Mei 1933 3. Instansi : - 4. Pekerjaan / Jabatan : Pensiunan Widyaiswara Utama BATAN 5. Riwayat Pendidikan : (setelah SMA sampai sekarang) FMIPA-UGM, Jurusan Matematika (S1) 6. Pengalaman Kerja : 1986 1992 : Kepala PPI - BATAN 1992-1998 : Widyaiswara Utama BATAN 7. Organisasi Professional : -