Pertemuan 9 : Interpolasi 1 (P9) Interpolasi. Metode Newton Metode Spline

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pertemuan 9 : Interpolasi 1 (P9) Interpolasi. Metode Newton Metode Spline"

Transkripsi

1 Pertemuan 9 : Interpolasi 1 (P9) Interpolasi Metode Newton Metode Spline

2 Pertemuan 9 : Interpolasi 2 Interpolasi Newton Polinomial Maclaurin dan polinomial Taylor menggunakan satu titik pusat, x 0 untuk menghampiri suatu fungsi f(x). Bila lebih dari satu titik pusat yang digunakan, misalnya : x 0, x 1,, x n, maka hasilnya disebut polinomial Newton.

3 Pertemuan 9 : Interpolasi 3 Teorema Polinomial Newton : Andaikan dan untuk k = 0, 1,, n mempunyai nilai-nilai yang berbeda, maka dengan adalah polinomial yang dapat dipakai untuk mendekati f(x) :

4 Pertemuan 9 : Interpolasi 4 Polinomial Newton melalui (n+1) titik yaitu untuk k = 0, 1,, n. Sisaan berbentuk : untuk beberapa c yang terletak pada interval [a,b]. Koefisien a i dikonstruksi menggunakan beda bagi (divided difference).

5 Pertemuan 9 : Interpolasi 5 Kurva berikut memberikan ilustrasi suatu polinomial Newton derajat 3.

6 Pertemuan 9 : Interpolasi 6 Beda bagi (Divided Difference) Orde I. Bila diberikan sembarang fungsi f(x) dan 2 titik, x 0 dan x 1, Beda bagi orde pertama dari suatu fungsi f(x) didefinisikan sebagai berikut : Menggunakan teorema nilai antara : untuk nilai c antara x 0 dan x 1,

7 Pertemuan 9 : Interpolasi 7 Lebih jauh dapat ditunjukkan bahwa Beda bagi orde dua untuk tiga titik yang berbeda, x 0, x 1 dan x 2 didefinisikan sebagai :

8 Pertemuan 9 : Interpolasi 8 Dari sini dapat ditunjukkan bahwa untuk nilai c antara x 0 dan x 2, Bila maka

9 Pertemuan 9 : Interpolasi 9 Contoh: Bila x 0 =1.0, x 1 =1.1 dan x 2 =1.2, maka:

10 Pertemuan 9 : Interpolasi 10 Sebagai perbandingan: Contoh: maka tabel beda bagi dapat dikonstruksi sbb:

11 Pertemuan 9 : Interpolasi 11 dengan:

12 Pertemuan 9 : Interpolasi 12 Menggunakan pendekatan polinomial Newton, contoh di atas menghasilkan

13 Pertemuan 9 : Interpolasi 13 Contoh: Buat polinomial Newton derajat n = 1, 2, 3, 4, 5 untuk menghampiri fungsi f(x) = cos(x) pada interval [x 0, x n ] = [0, 1], dengan partisi yang sama. 5 x, y 0, f (0), 0.2, f (0.2), 0.4, f (0.4) k k k 0 0.6, f (0.6), 0.8, f (0.8), 1, f (1),

14 Pertemuan 9 : Interpolasi 14 Jawab: Gunakan {{0, 1},{0.2, }} untuk mengonstruksi polinomial interpolasi Newton derajat 1,

15 Pertemuan 9 : Interpolasi 15 Bila digunakan {{0,1},{0.2, },{0.4, }} pada interval [0, 0.4]. Hasilnya adalah:

16 Pertemuan 9 : Interpolasi 16 Bila digunakan 4 titik, {{0, 1},{0.2, }, {0.4, },{0.6, }} pada interval [0, 0.6] diperoleh polinomial derajat 3 berikut :

17 Pertemuan 9 : Interpolasi 17 Bila digunakan 5 titik, {{0, 1},{0.2, }, {0.4, },{0.6, }, {0.8, } } pada interval [0, 0.8] diperoleh polinomial derajat 4 berikut :

18 Pertemuan 9 : Interpolasi 18

19 Pertemuan 9 : Interpolasi 19 Lagrange vs. Newton (n=5) melibatkan 30 perkalian, dan sampai 35 penjumlahan atau pengurangan melibatkan 15 perkalian, dan sampai 20 penjumlahan atau pengurangan

20 Pertemuan 9 : Interpolasi 20 Secara umum, polinomial Lagrange derajat n memerlukan n(n+1) perkalian serta n(n+2) penjumlahan dan pengurangan, sedangkan polinomial Newton derajat n memerlukan n(n+1)/2 perkalian serta n(n+3)/2 penjumlahan dan pengurangan. Jadi mana yang lebih efisien?

21 Pertemuan 9 : Interpolasi 21 Teorema Batas Kesalahan Andaikan f(x) didefinisikan pada [a, b] yang memuat partisi yang sama Andaikan pula f dan turunan f sampai orde (n+1) kontinyu serta terbatas pada subinterval [x 0, x 1 ], [x 0, x 2 ], [x 0, x 3 ], [x 0, x 4 ], dan [x 0, x 5 ], yaitu f (n+1) (x) M (n+1) untuk x 0 < x < x n dengan n = 1, 2, 3, 4, 5.

22 Pertemuan 9 : Interpolasi 22 Faktor kesalahan yang bersesuaian dengan kasus-kasus tersebut memiliki batas atas berikut utk utk utk

23 Pertemuan 9 : Interpolasi 23 untuk untuk

24 Pertemuan 9 : Interpolasi 24 Contoh: Selidiki kesalahan yang timbul akibat penggunaan metode hampiran Newton orde n = 1, 2, 3, 4, dan 5 pada contoh di atas. Jawab: untuk n=1, gunakan [0,0.2 ] Kesalahan yang terjadi : e 1 (x) = f(x) P 1 (x),

25 Pertemuan 9 : Interpolasi 25

26 Pertemuan 9 : Interpolasi 26 Jawab: untuk n=2, gunakan [0,0.4 ] Kesalahan yang terjadi : e 2 (x) = f(x) P 2 (x),

27 Pertemuan 9 : Interpolasi 27

28 Pertemuan 9 : Interpolasi 28 Jawab: untuk n=3, gunakan [0,0.6 ] Kesalahan yang terjadi : e 3 (x) = f(x) P 3 (x),

29 Pertemuan 9 : Interpolasi 29

30 Pertemuan 9 : Interpolasi 30 Jawab: untuk n=4, gunakan [0,0.8] Kesalahan yang terjadi : e 4 (x) = f(x) P 4 (x),

31 Pertemuan 9 : Interpolasi 31

32 Pertemuan 9 : Interpolasi 32 Jawab: untuk n=5, gunakan [0,1] Kesalahan yang terjadi : e 5 (x) = f(x) P 5 (x),

33 Pertemuan 9 : Interpolasi 33

34 Pertemuan 9 : Interpolasi 34 Interpolasi Spline: Apabila ingin dilakukan interpolasi pada data dalam tabel berikut :

35 Pertemuan 9 : Interpolasi 35 Salah satu cara adalah dengan membuat interpolasi linear pada setiap segmen data seperti berikut : Namun cara ini akan menimbulkan sudut pada setiap segmen garis, yang kurang dikehendaki.

36 Pertemuan 9 : Interpolasi 36 Cara lain adalah dengan pendekatan interpolasi kuadratik pada setiap segmen

37 Pertemuan 9 : Interpolasi 37 Atau dengan menggunakan interpolasi polinomial seperti berikut :

38 Pertemuan 9 : Interpolasi 38 Interpolasi menggunakan Piecewise Polynomial untuk fitting jumlah data yang banyak. untuk menghindari penggunaan polinomial derajat tinggi bermanfaat, al. fitting data dapat dilakukan dengan polinomial derajat rendah. Menggunakan fungsi interpolant berbeda pada setiap sub-interval Titik disebut knots atau breakpoints Contoh: piecewise linear, Hermite interpolation

39 Pertemuan 9 : Interpolasi 39 Contoh: Agar diperoleh solusi yang unik, jumlah parameter harus sama dengan jumlah persamaan. dengan n knots mempunyai 4(n-1) parameter yang harus ditentukan

40 Pertemuan 9 : Interpolasi 40 2(n-1) persamaan dari plot data (n-2) persamaan dari syarat kekontinuan turunan pertama n persamaan lainnya bisa untuk persyaratan tambahan 3(n-4) persamaan spt pada Interpolasi Hermite (n-2) persamaan dari syarat kekontinuan turunan kedua 2 persamaan lainnya bebas

41 Pertemuan 9 : Interpolasi 41 Contoh Tentukan interpolasi cubic spline dari titik Delapan parameter yang akan ditentukan: di di Delapan persamaan yang akan digunakan:

42 Pertemuan 9 : Interpolasi 42

43 Pertemuan 9 : Interpolasi 43 Hermite Cubic mengutamakan kemonotonan

44 Pertemuan 9 : Interpolasi 44 Cubic Spline mengutamakan kemulusan

45 Pertemuan 9 : Interpolasi 45 : Piecewise constant : Piecewise linear : Piecewise quadratic : Piecewise polinomial derajat k

46 Pertemuan 9 : Interpolasi 46

47 Pertemuan 9 : Interpolasi 47

48 Pertemuan 9 : Interpolasi 48

BAB 5 Interpolasi dan Aproksimasi

BAB 5 Interpolasi dan Aproksimasi BAB 5 Interpolasi dan Aproksimasi Interpolasi merupakan proses penentuan dan pengevaluasian suatu fungsi yang grafiknya melalui sejumlah titik tertentu. Sebaliknya, pada aproksimasi grafik fungsi yang

Lebih terperinci

untuk i = 0, 1, 2,..., n

untuk i = 0, 1, 2,..., n RANGKUMAN KULIAH-2 ANALISIS NUMERIK INTERPOLASI POLINOMIAL DAN TURUNAN NUMERIK 1. Interpolasi linear a. Interpolasi Polinomial Lagrange Suatu fungsi f dapat di interpolasikan ke dalam bentuk interpolasi

Lebih terperinci

Contoh Tentukanlah prakiraan nilai f pada titik x 8 dengan menggunakan metode polinomial interpolasi Lagrange dengan ketelitian hingga desimal, jika d

Contoh Tentukanlah prakiraan nilai f pada titik x 8 dengan menggunakan metode polinomial interpolasi Lagrange dengan ketelitian hingga desimal, jika d INTERPOLATION INTERPOLATION Numerical Methods Oleh : Interpolasi mrp cara utk mendapatkan kurva sesuai dgn data yang ada, tanpa menimbulkan kesalahan thp data tsb. Pembahasan interpolasi akan dititikberatkan

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

Tujuan. Interpolasi berguna untuk memperkirakan nilai-nilai tengah antara titik data yang sudah ditentukan dan tepat.

Tujuan. Interpolasi berguna untuk memperkirakan nilai-nilai tengah antara titik data yang sudah ditentukan dan tepat. INTERPOLASI Tujuan Interpolasi berguna untuk memperkirakan nilai-nilai tengah antara titik data yang sudah ditentukan dan tepat. Interpolasi mempunyai orde atau derajat. Macam Interpolasi Interpolasi Linear

Lebih terperinci

Interpolasi Cubic Spline

Interpolasi Cubic Spline Interpolasi Cubic Spline Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com December 13, 2006 Figure 1: Fungsi f(x) dengan

Lebih terperinci

Course Note Numerical Method : Interpolation

Course Note Numerical Method : Interpolation Course Note Numerical Method : Interpolation Pengantar Interpolasi. Kalimat y = f(x), xo x xn adalah kalimat yang mengkorespondensikan setiap nilai x di dalam interval x0 x xn dengan satu atau lebih nilai-nilai

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan BAB I PENDAHULUAN 1.1 Latar Belakang Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan secara numerik. Perhitungan secara analitik dilakukan untuk menyelesaikan integral pada fungsi

Lebih terperinci

Akar-Akar Persamaan. Definisi akar :

Akar-Akar Persamaan. Definisi akar : Akar-Akar Persamaan Definisi akar : Suatu akar dari persamaan f(x) = 0 adalah suatu nilai dari x yang bilamana nilai tersebut dimasukkan dalam persamaan memberikan identitas 0 = 0 pada fungsi f(x) X 1

Lebih terperinci

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini diuraikan beberapa tinjauan pustaka sebagai landasan teori pendukung penulisan penelitian ini. 2.1 Analisis Regresi Suatu pasangan peubah acak seperti (tinggi, berat)

Lebih terperinci

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA Interpolasi Metode Numerik Zulhaydar Fairozal Akbar zfakbar@pens.ac.id 2017 TOPIK Pengenalan

Lebih terperinci

BAB I PENDAHULUAN. dipergunakan untuk menaksir pola hubungan antara variabel prediktor atau

BAB I PENDAHULUAN. dipergunakan untuk menaksir pola hubungan antara variabel prediktor atau BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi merupakan salah satu analisis dalam statistika yang dipergunakan untuk menaksir pola hubungan antara variabel prediktor atau variabel bebas X dengan

Lebih terperinci

Analisis Regresi Spline Kuadratik

Analisis Regresi Spline Kuadratik Analisis Regresi Spline Kuadratik S 2 Oleh: Agustini Tripena Program Studi Matematika, Fakultas Sains dan Teknik, Univesitas Jenderal Soedirman, Purwokerto tripena1960@yahoo.co.id Abstrak Regresi spline

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

BAB II AKAR-AKAR PERSAMAAN

BAB II AKAR-AKAR PERSAMAAN BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau

Lebih terperinci

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan : BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi

Lebih terperinci

BAB I PENDAHULUAN. Analisis regresi merupakan metode analisis data yang telah diterapkan

BAB I PENDAHULUAN. Analisis regresi merupakan metode analisis data yang telah diterapkan BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi merupakan metode analisis data yang telah diterapkan secara luas pada berbagai bidang penelitian, sebagai contoh penelitian-penelitian dalam ilmu pengetahuan

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3. BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.

Lebih terperinci

Komparasi Metode Interpolasi Natural Cubic Spline dengan Clamped Cubic Spline

Komparasi Metode Interpolasi Natural Cubic Spline dengan Clamped Cubic Spline Komparasi Metode Interpolasi Natural Cubic Spline dengan Clamped Cubic Spline Muhammad Indra N. S. - 23515019 Program Magister Informatika Institute Teknologi Bandung Bandung, Indonesia 23515019@std.stei.itb.ac.id

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4.2 Sifat-Sifat Fungsi Kontinu Diberikan f dan g, keduanya terdefinisi pada himpunan A, kita definisikan f + g, f g, fg, f/g secara

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

BAB I PENDAHULUAN. menganalisis hubungan fungsional antara variabel prediktor ( ) dan variabel

BAB I PENDAHULUAN. menganalisis hubungan fungsional antara variabel prediktor ( ) dan variabel BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analisis regresi merupakan suatu metode yang digunakan untuk menganalisis hubungan fungsional antara variabel prediktor ( ) dan variabel respon ( ), dimana

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

INTERPOLASI: METODE LAGRANGE

INTERPOLASI: METODE LAGRANGE 1 INTERPOLASI: METODE LAGRANGE Pertemuan ke-1: 0 Desember 01 Dr.Eng. Agus S. Muntohar Apa Interpolasi? Diberikan data (x 0,y 0 ), (x 1,y 1 ), (x n,y n ), nilai y diperoleh pada x yang tidak diketahui nilainya.

Lebih terperinci

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI Perbandingan Beberapa Metode Numerik dalam Menghitung Nilai Pi Aditya Agung Putra (13510010)1 Program Studi Teknik Informatika Sekolah Teknik

Lebih terperinci

UJIAN AKHIR SEMESTER METODE NUMERIS I

UJIAN AKHIR SEMESTER METODE NUMERIS I PETUNJUK UJIAN AKHIR SEMESTER METODE NUMERIS I DR. IR. ISTIARTO, M.ENG. KAMIS, 8 JUNI 017 OPEN BOOK 150 MENIT 1. Saudara tidak boleh menggunakan komputer untuk mengerjakan soal ujian ini.. Tuliskan urutan/cara/formula

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Interpolasi Polinom dan Applikasi pada Model Autoregresif

Interpolasi Polinom dan Applikasi pada Model Autoregresif Interpolasi Polinom dan Applikasi pada Model Autoregresif Rio Cahya Dwiyanto 13506041 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

5. INTERPOLASI. orde 1 orde 2 orde 3 menghubungkan 2 titik menghubungkan 3 titik menghubungkan 4 titik. Gambar 5.1

5. INTERPOLASI. orde 1 orde 2 orde 3 menghubungkan 2 titik menghubungkan 3 titik menghubungkan 4 titik. Gambar 5.1 5. INTERPOLASI PENDAHULUAN Bentuk umum persamaan polinomial orde n adalah: f() = a + a. + a. +.. + a n. n Untuk n+ titik data, hanya terdapat satu polinomial orde n atau kurang yang melalui semua titik.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

BAB IV DERET FOURIER

BAB IV DERET FOURIER BAB IV DERET FOURIER 4.1 Fungsi Periodik Fungsi f(x) dikatakan periodik dengan perioda P, jika untuk semua harga x berlaku: f (x + P) = f (x) ; P adalah konstanta positif. Harga terkecil dari P > 0 disebut

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE SIMPSON-LIKE TERKOREKSI Ilis Suryani, M. Imran, Asmara Karma Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

ARTIKEL. Bagaimana menentukan rumus pasangan Triple Phytagoras. Markaban Januari 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Bagaimana menentukan rumus pasangan Triple Phytagoras. Markaban Januari 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Bagaimana menentukan rumus pasangan Triple Phytagoras Markaban 19611151988031005 Januari 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

Bab II Konsep Dasar Metode Elemen Batas

Bab II Konsep Dasar Metode Elemen Batas Bab II Konsep Dasar Metode Elemen Batas II.1 II.1.1 Kalkulus Dasar Teorema Gradien Misal menyatakan domain pada ruang dimensi dua dan menyatakan batas i x + j 2 2 x 2 + 2 2 elanjutnya, penentuan integral

Lebih terperinci

ESTIMATOR SPLINE KUBIK

ESTIMATOR SPLINE KUBIK Bimafika, 011, 3, 30-34 ESTIMATOR SPLINE KUBIK Johannis Takaria * Staff Pengajar Fakultas Keguruan Dan Ilmu Pendidikan Universitas Pattimura Ambon Diterima 10-1-010; Terbit 31-06-011 ABSTRACT Consider

Lebih terperinci

DIKTAT KULIAH (3 sks) MX 211: Metode Numerik

DIKTAT KULIAH (3 sks) MX 211: Metode Numerik DIKTAT KULIAH (3 sks) MX : Metode Numerik (Revisi Terakhir: Juni 009 ) Oleh: Didit Budi Nugroho, M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA PENGANTAR

Lebih terperinci

MODEL REGRESI NONPARAMETRIK SPLINE TRUNCATED PADA PRODUK DOMESTIK REGIONAL BRUTO TERHADAP INVESTASI DI KABUPATEN TUBAN

MODEL REGRESI NONPARAMETRIK SPLINE TRUNCATED PADA PRODUK DOMESTIK REGIONAL BRUTO TERHADAP INVESTASI DI KABUPATEN TUBAN MODEL REGRESI NONPARAMETRIK SPLINE TRUNCATED PADA PRODUK DOMESTIK REGIONAL BRUTO TERHADAP INVESTASI DI KABUPATEN TUBAN Amalia Ma rufa, Sri Subanti, Titin Sri Martini Program Studi Matematika FMIPA UNS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin

Lebih terperinci

Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin

Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin Metode Numerik Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat 2 Metode Numerik & Teknik Komputasi - Intro 3 Tujuan Pembelajaran Mahasiswa

Lebih terperinci

Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer

Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer Dewita Sonya Tarabunga - 13515021 Program Studi Tenik Informatika Sekolah Teknik

Lebih terperinci

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL Bila persamaan diferensial linear homogen memiliki koefisien constant maka persamaan tersebut dapat diselesaikan dengan metoda aljabar (seperti yang

Lebih terperinci

10. TEOREMA NILAI RATA-RATA

10. TEOREMA NILAI RATA-RATA 10. TEOREMA NILAI RATA-RATA 10.1 Maksimum dan Minimum Lokal Misalkan f terdefinisi pada suatu interval terbuka (a, b) dan c (a, b). Kita katakan bahwa f mencapai nilai maksimum lokal di c apabila f(x)

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) IKG2E3 KOMPUTASI NUMERIK Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

METODE NEWTON TERMODIFIKASI UNTUK PENCARIAN AKAR PERSAMAAN NONLINEAR

METODE NEWTON TERMODIFIKASI UNTUK PENCARIAN AKAR PERSAMAAN NONLINEAR METODE NEWTON TERMODIFIKASI UNTUK PENCARIAN AKAR PERSAMAAN NONLINEAR Tugas Akhir Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Disusun Oleh: Juliani

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

Metode Numerik & Lab. Muhtadin, ST. MT. Metode Numerik & Komputasi. By : Muhtadin

Metode Numerik & Lab. Muhtadin, ST. MT. Metode Numerik & Komputasi. By : Muhtadin Metode Numerik & Lab Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat Metode Numerik & Lab - Intro 3 Tujuan Pembelajaran Mahasiswa memiliki

Lebih terperinci

BAB I PENDAHULUAN. bisnis, ekonomi, ilmu-ilmu pengetahuan sosial, kesehatan, dan biologi.

BAB I PENDAHULUAN. bisnis, ekonomi, ilmu-ilmu pengetahuan sosial, kesehatan, dan biologi. BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi telah diterapkan pada berbagai bidang, seperti administrasi bisnis, ekonomi, ilmu-ilmu pengetahuan sosial, kesehatan, dan biologi. Keberhasilan dalam

Lebih terperinci

II. TINJAUAN PUSTAKA. Masalah taklinear dalam sains dan teknik dituliskan dalam bentuk

II. TINJAUAN PUSTAKA. Masalah taklinear dalam sains dan teknik dituliskan dalam bentuk 4 II. TINJAUAN PUSTAKA 2.1 Definisi Masalah Taklinear (Urroz, 2001) Masalah taklinear dalam sains dan teknik dituliskan dalam bentuk persamaan taklinear. Persamaan tersebut dituliskan dalam bentuk fungsi

Lebih terperinci

BAB 2 DENGAN MENGGUNAKAN INTERPOLASI INTERPOLASI SPLINE LINIER DAN INTERPOLASI SPLINE

BAB 2 DENGAN MENGGUNAKAN INTERPOLASI INTERPOLASI SPLINE LINIER DAN INTERPOLASI SPLINE 8 BAB 2 PENENTUAN SUDUT PANDANG BAB 2 WAJAH TIGA DIMENSI PENENTUAN DENGAN MENGGUNAKAN SUDUT PANDANG INTERPOLASI WAJAH TIGA LINIER DIMENSI DAN DENGAN MENGGUNAKAN INTERPOLASI INTERPOLASI SPLINE LINIER DAN

Lebih terperinci

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE

INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 148 153 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN

Lebih terperinci

BAB 1 Konsep Dasar 1

BAB 1 Konsep Dasar 1 BAB Konsep Dasar BAB Solusi Persamaan Fungsi Polinomial BAB Interpolasi dan Aproksimasi Polinomial BAB 4 Metoda Numeris untuk Sistem Nonlinier Suatu tekanan p dibutuhkan untuk menancapkan suatu plat sirkuler

Lebih terperinci

Metode Numerik - Interpolasi WILLY KRISWARDHANA

Metode Numerik - Interpolasi WILLY KRISWARDHANA Metode Numerik - Interpolasi WILLY KRISWARDHANA Interpolasi Para rekayasawan dan ahli ilmu alam sering bekerja dengan sejumlah data diskrit (yang umumnya disajikan dalam bentuk tabel). Data di dalam tabel

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn

Lebih terperinci

METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT

METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Neng Ipa Patimatuzzaroh Mahasiswa Program Studi S Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR METODE GRAFIK DAN TABULASI A. Tujuan a. Memahami Metode Grafik dan Tabulasi b. Mampu Menentukan nilai akar persamaan dengan Metode Grafik dan Tabulasi c. Mampu membuat

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

MEMBANGUN MODEL KADAR HEMOGLOBIN (Hb) PENDERITA POLISITEMIA VERA YANG MEMPERTIMBANGKAN MOOD SWINGS DENGAN METODE PENCOCOKAN KURVA

MEMBANGUN MODEL KADAR HEMOGLOBIN (Hb) PENDERITA POLISITEMIA VERA YANG MEMPERTIMBANGKAN MOOD SWINGS DENGAN METODE PENCOCOKAN KURVA JIMT Vol. 10 No. 1 Juni 01 (Hal. 1 19) Jurnal Ilmiah Matematika dan Terapan ISSN : 450 766X MEMBANGUN MODEL KADAR HEMOGLOBIN (Hb) PENDERITA POLISITEMIA VERA YANG MEMPERTIMBANGKAN MOOD SWINGS DENGAN METODE

Lebih terperinci

Hendra Gunawan. 11 April 2014

Hendra Gunawan. 11 April 2014 MA1201 MATEMATIKA 2A Hendra Gunawan emester II, 2013/2014 11 April 2014 Kuliah ang Lalu 12.1 Fungsi dua (atau lebih) peubah 12.2 Turunan Parsial 12.3 Limitdan Kekontinuan 12.4 Turunan fungsi dua peubah

Lebih terperinci

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1.1 Latar Belakang BAB I PENDAHULUAN Demografi merupakan ilmu yang mempelajari tentang penduduk, khususnya pada lima aspek yaitu ukuran, distribusi geografi, komposisi, komponen perubahan (kelahiran, kematian,

Lebih terperinci

METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK

METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Anisa Rizky Apriliana 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1 Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel tak bebas, dan derivatif-derivatif

Lebih terperinci

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR Eka Ceria 1, Agusni, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

PENURUNAN FUNGSI SECARA NUMERIK

PENURUNAN FUNGSI SECARA NUMERIK 6 PENURUNAN FUNGSI SECARA NUMERIK Èada bab ini kita membicarakan metode numerik untuk menaksir nilai turunan suatu fungsi. Suatu fungsi, baik diketahui rumusnya secara eksplisit maupun dalam bentuk data

Lebih terperinci

Interpolasi dan Ekstrapolasi

Interpolasi dan Ekstrapolasi Metode Numerik Bab 1 Interpolasi dan Ekstrapolasi Didalam pengertian matematika dasar, interpolasi adalah perkiran suatu nilai tengah dari satu set nilai yang diketahui. Interpoloasi dalam arti luas merupakan

Lebih terperinci

TINJAUAN SINGKAT KALKULUS

TINJAUAN SINGKAT KALKULUS A TINJAUAN SINGKAT KALKULUS Salah satu syarat yang diperlukan untuk mempelajari komputasi numerik adalah pengetahuan dasar tentang kalkulus, termasuk pengenalan beberapa notasi dalam kalkulus, sifat-sifat

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

Analisis Riil II: Diferensiasi

Analisis Riil II: Diferensiasi Definisi Turunan Definisi dan Teorema Aturan Rantai Fungsi Invers Definisi (Turunan) Misalkan I R sebuah interval, f : I R, dan c I. Bilangan riil L dikatakan turunan dari f di c jika diberikan sebarang

Lebih terperinci

FUNGSI KONTINU. sedemikian sehingga jika x adalah titik dari A (c), maka f (x) berada pada Vg (f (c)). (Lihat Gambar 5.1.1).

FUNGSI KONTINU. sedemikian sehingga jika x adalah titik dari A (c), maka f (x) berada pada Vg (f (c)). (Lihat Gambar 5.1.1). FUNGSI KONTINU 51 FUNGSI KONTINU 511 Definisi A R, f: A R, dan c A Kita mengatakan bahwa f kontinu di c jika, diberi persekitaran Vg (f (c)) dari f (c) terdapat persekitaran (c) dari c sedemikian sehingga

Lebih terperinci

Discrete Time Dynamical Systems

Discrete Time Dynamical Systems Discrete Time Dynamical Systems Sheet 1 and Solution (1) Tentukan titik tetap dari fungsi berikut. (a) f(x) = x x (b) f(x) = 2x + bx (c) f(x) = e (a) Titik tetap f memenuhi persamaan f(x) = x x x = x x

Lebih terperinci

ESTIMASI KURVA REGRESI PADA DATA LONGITUDINAL DENGAN WEIGHTED LEAST SQUARE

ESTIMASI KURVA REGRESI PADA DATA LONGITUDINAL DENGAN WEIGHTED LEAST SQUARE ESTIMASI KURVA REGRESI PADA DATA LONGITUDINAL DENGAN WEIGHTED LEAST SQUARE Dian Ragil P.. Abstrak Model varying-coefficient pada data longitudinal akan dikaji dalam proposal ini. Hubungan antara variabel

Lebih terperinci

BAB III REGRESI SPLINE = + dimana merupakan fungsi pemulus yang tidak spesifik, dengan adalah

BAB III REGRESI SPLINE = + dimana merupakan fungsi pemulus yang tidak spesifik, dengan adalah BAB III REGRESI SPLINE 3.1 Fungsi Pemulus Spline yaitu Fungsi regresi nonparametrik yang telah dituliskan pada bab sebelumnya = + dimana merupakan fungsi pemulus yang tidak spesifik, dengan adalah faktor

Lebih terperinci

Interpolasi Spline Kubik pada Trajektori Manusia

Interpolasi Spline Kubik pada Trajektori Manusia Interpolasi Spline Kubik pada Trajektori Manusia Samsu Sempena (13788) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 1 Bandung 4132,

Lebih terperinci

INTERPOLASI PARAMETRIK SEBAGAI PILIHAN LAIN DI ANTARA INTERPOLASI LAGRANGE, SPLAIN-KUBIK DAN NEWBERY-GARRETT. M. Bunjamin *

INTERPOLASI PARAMETRIK SEBAGAI PILIHAN LAIN DI ANTARA INTERPOLASI LAGRANGE, SPLAIN-KUBIK DAN NEWBERY-GARRETT. M. Bunjamin * INTERPOLASI PARAMETRIK SEBAGAI PILIHAN LAIN DI ANTARA INTERPOLASI LAGRANGE, SPLAIN-KUBIK DAN NEWBERY-GARRETT M. Bunjamin * ABSTRAK INTERPOLASI PARAMETRIK SEBAGAI PILIHAN LAIN DI ANTARA INTERPOLASI LAGRANGE,

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Dalam bab ini dijelaskan metode Adams Bashforth-Moulton multiplikatif (M) orde empat beserta penerapannya. Metode tersebut memuat metode Adams Bashforth multiplikatif orde empat

Lebih terperinci

BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik

BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik BAB 1 Konsep Dasar 1 BAB 2 Solusi Persamaan Fungsi Polinomial Denition 2.0.1 (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik kalkulasi berulang (teknik iterasi)

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Ringkasan Kalkulus 2, Untuk dipakai di ITB Deret Tak Hingga Pada bagian ini akan dibicarakan penjumlahan berbentuk a +a 2 + +a n + dengan a n R Sebelumnya akan dibahas terlebih dahulu pengertian barisan

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 5. Kalkulus Diferensial 5.1 Konsep Turunan Beberapa Definisi yang Setara Kekontinuan dan Keterdiferensialan secara Kontinu 5.2 Sifat-Sifat

Lebih terperinci

PEMODELAN OBYEK DENGAN METODE KURVA PARAMETRIK

PEMODELAN OBYEK DENGAN METODE KURVA PARAMETRIK PEMODELAN OBYEK DENGAN METODE KURVA PARAMETRIK Ina Agustina Jurusan Sistem Informasi, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional Jl. Sawo Manila, Pejaten Pasar Minggu No.61, Jakarta

Lebih terperinci

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan TUGAS KOMPUTASI SISTEM FISIS 2015/2016 Identitas Tugas Program Mencari Titik Nol/Titik Potong Dari Suatu Sistem 27 Oktober 2015 Disusun oleh : Zulfikar Lazuardi Maulana (10212034) Ridho Muhammad Akbar

Lebih terperinci

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner Hendy Sutanto - 13507011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

MASALAH INTERPOLASI 1-D DAN 2-D

MASALAH INTERPOLASI 1-D DAN 2-D MASALAH INTERPOLASI 1-D DAN 2-D Hendra Gunawan ITB Bandung http://personal.fmipa.itb.ac.id/hgunawan/ Analysis and Geometry Group Bandung Institute of Technology Bandung, Indonesia Seminar Nasional Analisis

Lebih terperinci