TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan

Ukuran: px
Mulai penontonan dengan halaman:

Download "TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan"

Transkripsi

1 TUGAS KOMPUTASI SISTEM FISIS 2015/2016 Identitas Tugas Program Mencari Titik Nol/Titik Potong Dari Suatu Sistem 27 Oktober 2015 Disusun oleh : Zulfikar Lazuardi Maulana ( ) Ridho Muhammad Akbar ( ) Pendahuluan Latar Belakang Mencari titik nol atau titik potong adalah hal yang sangat penting dalam fisika. Banyak persamaan suatu sistem membutuhkan kita untuk mencari titik-titik nol atau titik potong untuk menyelesaikan persamaan tersebut. Dalam fisika kuantum, persamaan Schrodinger untuk kasus sumur potensial harus diselesaikan dengan cara mencari titik potong antara dua buah fungsi. Pada astrofisika, orbit suatu objek benda langit diketahui dengan terlebih dulu mengetahui titik potong antara kurva energi objek dengan kurva potensial efektif objek tersebut. Pada elektrodinamika, banyak pula kasus-kasus yang membutuhkan proses pencarian titik nol atau titik potong. Melanjutkan tugas sebelumnya mengenai gerak partikel bermuatan dalam pengaruh medan listrik karena kehadiran muatan lain, pada tugas kali ini akan ditunjukkan penggunaan metode pencarian titik nol pada kasus elektrostatis sederhana yang melibatkan dua buah muatan. Kasus yang ditinjau pada tugas ini bukanlah kasus yang berasal dari sistem fisis yang ada pada umumnya, melainkan hanya sistem fisis rekaan penulis yang dibuat sedemikian rupa sehingga dapat memberikan pandangan lebih jauh mengenai penggunaan metode pencarian titik nol pada berbagai kasus. Tujuan Diagram skematik dari sistem fisis yang digunakan dalam tugas ini ditunjukkan oleh gambar 1. Misalkan ada dua buah muatan q dan Q yang semula terpisah pada jarak tertentu. Kedua muatan memiliki jenis muatan yang sama sehingga timbul gaya tolak-menolak antar keduanya. Muatan q dapat bergerak bebas dan memiliki kecepatan awal v 0 ke arah sumbu-x positif sementara muatan Q memiliki massa yang jauh lebih besar daripada muatan q sehingga dianggap tidak dapat bergerak relatif terhadap muatan q. Seiring waktu berjalan, muatan q akan semakin dekat dengan muatan Q sehingga gaya tolakan yang dialami oleh muatan q semakin besar sampai pada suatu titik muatan q seolah-olah terpantul dan berubah lintasan (garis merah putus-putus). Lokasi titik dimana muatan q terpantul ditunjukkan oleh tanda panah ungu. Muatan q yang memiliki kecepatan awal lambat (gambar 1a) akan lebih dahulu terpantul dibandingkan yang memiliki kecepatan awal lebih tinggi (gambar 1b). 1

2 Gambar 1: Diagram skematik sistem fisis yang digunakan Gambar 2: Diagram skematik sistem dalam sudut pandang lain Sekarang kita bayangkan bahwa sistem pada gambar 1 seolah-olah sebuah permainan dimana muatan q ingin bergerak dari sisi luar menuju sisi dalam seperti ditunjukkan oleh gambar 2. Gaya tolak elektrostatis yang dialami oleh muatan q akibat kehadiran muatan Q seolah-olah menjadi tembok bayangan berlapis yang menjaga q tetap berada di sisi luar. Setiap lapis tembok bayangan dapat dilewati apabila kecepatan muatan q cukup sehingga satu-satunya cara agar muatan q bisa masuk ke sisi dalam adalah dengan menaikkan nilai v 0. Pada tugas kali ini, akan ditentukan berapa nilai minimum v 0 sehingga muatan q dapat menembus tembok bayangan dan berhasil pindah dari sisi luar ke sisi dalam. 2

3 Gambar 3: Diagram gaya yang dialami muatan q Teori Dasar Gerak Partikel Untuk mengetahui berapa kecepatan minimal yang dibutuhkan muatan q untuk melewati tembok penghalang maka kita perlu mengetahui lokasi titik pantul untuk setiap percobaan kecepatan awal v 0. Anggaplah lokasi tembok bayangan lapisan terakhir adalah x = 0, maka apabila lokasi titik pantul sudah berada pada x pantul > 0, kita bisa katakan v 0 yang diberikan cukup untuk membuat muatan q bergerak ke sisi dalam seperti digambarkan pada gambar 1b. Untuk mengetahui lokasi titik pantul, kita harus mendefinisikan terlebih dahulu apa yang disebut dengan kondisi terpantul. Gambar 3 memperlihatkan diagram gaya yang dialami oleh muatan q. Gaya tolakan ke arah sumbu-x negatif menyebabkan kecepatan arah x semakin mengecil dari waktu ke waktu sementara gaya tolakan ke arah sumbu-y positif menyebabkan kecepatan arah sumbu-y semakin besar dari waktu ke-waktu. Pada kasus ini, kami definisikan kondisi terpantul adalah titik pada sumbu-x dimana pada titik tersebut, besar kecepatan pada arah sumbu-x sama dengan besar kecepatan pada arah sumbu-y. x pantul = {x pantul x v x (x pantul ) = v y (x pantul )} (1) Partikel muatan q dikatakan lolos ke sisi dalam apabila nilai x pantul > 0 Metode Newton-Raphson Dengan menyelesaikan persamaan gerak partikel muatan q berdasarkan Hk. II Newton yang telah dibahas pada tugas sebelumnya, kita bisa mengetahui nilai kecepatan dan posisi partikel sebagai fungsi waktu (v x (t), v y (t), dan x(t)). Untuk mencari lokasi x pantul maka kita terlebih dahulu harus mencari waktu terjadinya titik pantul (t pantul ) dengan mencari titik potong antara 3

4 v x (t) dan v y (t) kemudian mensubstitusi nilai t pantul ke dalam x(t) untuk mendapatkan x pantul. Pada tugas kali ini, titik potong antara v x (t) dan v y (t) ditentukan dengan menggunakan metode Newton-Raphson. Metode Newton-Raphson adalah metode mencari akar dari suatu persamaan dengan masukan satu nilai dugaan. Metode Newton-Raphson membutuhkan masukan lain berupa nilai fungsi pada titik tebakan dan nilai turunan pertama fungsi pada titik tebakan. Metode Newton- Raphson digunakan karena algoritmanya yang sederhana dan waktu iterasi yang dibutuhkan sampai akar ditemukan relatif lebih singkat dibandingkan metode lain (contoh: metode bisection atau metode false position). Metode Newton-Raphson mengupdate nilai dugaan sesuai dengan persamaan (2) dan mengiterasi proses tersebut sampai nilai dugaan konvergen ke satu nilai, nilai akar persamaan. x guess = x guess f(x) f (x) (2) Interpolasi Polinom Karena persamaan gerak partikel diselesaikan secara numerik, maka kecepatan dan posisi partikel setiap waktu berupa data yang diskrit, bukan fungsi yang kontinu. Mencari nilai fungsi dan turunan fungsi di sembarang titik menjadi masalah apabila data yang dimiliki adalah data diskrit sehingga data diskrit yang didapatkan perlu diubah menjadi bentuk fungsi yang kontinu yang terdefinisi di semua titik. Untuk mendapatkan kecepatan dan posisi sebagai fungsi waktu yang kontinu, maka kami melakukan interpolasi polinom terlebih dahulu terhadap data kecepatan dan posisi. Interpolasi dilakukan dengan mencuplik n buah data lalu membuat fungsi polinom berderajat-(n 1) yang mencakup data tersebut. Persamaan (3) adalah persamaan yang mendekati data berjumlah n buah. n 1 f(x) = a 0 + a 1 x + a 2 x a n 1 x n 1 = a 0 + a i x i (3) Dari persamaan (3), maka kita dapat menyatakan turunan dari fungsi f(x) sebagai; i=1 n 1 f(x) = a 1 + 2a 2 x + 3a 3 x (n 1)a n 1 x n 2 = a 1 + ia i x i 1 (4) Nilai koefisien polinom a i dapat dihitung dengan menyelesaikan n buah persamaan linier yang dapat dituliskan dalam bentuk matriks sebagai berikut; 1 x 1 x 2 1 x n x 2 x 2 2 x n x 3 x 2 3 x n x n x 2 n x n 1 n a 0 a 1 a 2. a n 1 i=2 f(x 1 ) f(x 2 ) = f(x 3 ). f(x n ) Setelah interpolasi dilakukan untuk masing-masing besaran x(t), v x (t), dan v y (t), dapat dibuat fungsi selisih, δ(t); δ(t) = v x (t) v y (t) (6) (5) 4

5 Metode Newton-Raphson dilakukan pada fungsi selisih, δ(t) ini untuk mencari titik potong antara v x (t) dengan v y (t) yaitu saat δ(t pantul ) = 0. Algoritma/FlowChart Secara singkat, metode penyelesaian kasus ini terangkum dalam diagram flowchart pada gambar 4. Konvergensi nilai t guess dilakukan dengan melihat selisih antara nilai t guess sebelum dan setelah diupdate yang ditunjukkan oleh pseudocode sebagai berikut; e r r = 1E 6; while ( abs ( d)> e r r ){ t n e x t = t g u e s s f ( x )/ f ( x ) ; d = t n e x t t g u e s s ; t g u e s s = t n e x t ; } t p a n t u l = t g u e s s ; Flowchart tersebut dilakukan untuk 12 variasi nilai kecepatan awal dari 1.0 sampai 2.2 (satuan non-dimensional). Setelah itu, dibuat grafik antara v 0 dengan x pantul untuk mengetahui hubungan keduanya. Dari grafik tersebut dapat dihitung nilai kecepatan minimal partikel muatan q untuk dapat melewati tembok bayangan dan lolos ke sisi dalam. Gambar 4: Flowchart penghitungan titik potong antara v x dengan v y 5

6 Hasil dan Diskusi Hasil Pada kasus ini, data posisi dan kecepatan yang dihasilkan dari menyelesaikan persamaan gerak partikel diinterpolasi dengan polinomial berderajat 14. Sampling dengan interval konstan dilakukan untuk mendapatkan 15 buah data yang akan digunakan dalam proses interpolasi. Gambar 5 menunjukkan hasil interpolasi untuk x(t), v x (t), dan v y (t) untuk nilai kecepatan awal 1.1. Gambar 5: Hasil interpolasi polinom-14 untuk x(t) (hitam), v x (t) (merah) dan v y (t) (biru), v 0 = 1.2 Titik berwarna ungu menunjukkan waktu pantul yang ditentukan berdasarkan waktu terjadinya perpotongan antara kurva v x (t) dengan v y (t) serta titik pantul yang ditentukan berdasarkan proyeksi waktu pantul pada kurva x(t). Metode Newton-Raphson untuk menghitung titik potong antara kurva v x (t) dengan v y (t) dilakukan dengan memberikan tebakan awal t guess = 3.5. Proses iterasi menemukan titik potong ditunjukkan pada tabel konvergensi pada tabel 1. Grafik antara nilai v 0 dan x pantul untuk kecepatan awal dari 1.0 sampai 1.8 ditunjukkan oleh gambar 6 yang hanya memplot pada rentang x pantul = 3.6 sampai 0.0 (dari v 0 = 1.0 sampai 1.8). Gambar 7 menunjukkan hubungan antara nilai v 0 dan x pantul untuk semua kecepatan awal yang diuji dan nilai x pantul yang dihasilkan 6

7 Table 1: Tabel Konvergensi pencarian titik potong untuk v 0 = 1.1 dan v 0 = 1.6. v 0 = 1.1 v 0 = 1.6 iterasi ke- t guess δ(t guess ) iterasi ke- t guess δ(t guess ) e e-08 Gambar 6: Grafik hubungan antara v 0 dengan x pantul, diplot dengan batas v 0 = 1 : 1.8 dan x pantul = 3.6 : 0.0 Diskusi Pada gambar 5, hasil interpolasi polinom orde 14 terlihat memberikan gambaran secara keseluruhan yang baik mengenai fungsi yang diinterpolasi. Tabel 1 yang berisi tabel konvergensi pencarian akar persamaan menunjukkan bahwa metode interpolasi ditambah dengan metode Newton-Raphson sangat baik dalam mencari titik potong dua buah fungsi dengan ketelitian mencapai 10 6 dan hanya membutuhkan 3 iterasi. Dari grafik pada gambar 6 terlihat bahwa antara kedua variabel menunjukkan hubungan yang linier dengan persamaan; y = 3.701x (7) Dari persamaan regresi linier tersebut, dapat diketahui nilai kecepatan awal minimal agar par- 7

8 Gambar 7: Grafik hubungan antara v 0 dengan x pantul, diplot dengan batas v 0 = 1 : 1.8 dan x pantul = 3.6 : 0.0 tikel muatan q dapat menembus tembok bayangan dan lolos ke sisi dalam yaitu sebesar; v 0,min = = (8) Hal yang menarik ditunjukkan oleh gambar 7 dimana saat nilai x pantul > 0, hubungan antara x pantul dan v 0 tidak lagi linier tetapi meningkat drastis secara exponensial hingga di sekitar titik v 0 = 2.05 x pantul bernilai sangat tinggi menuju tak hingga. Pada kondisi ini, artinya kecepatan partikal muatan q dalam arah sumbu-x tidak pernah sama dengan kecepatan dalam arah sumbuy. Hal ini terjadi karena saat partikel sudah melewati batas tembok bayangan (x = 0) maka gaya elektrostatik yang diberikan oleh muatan Q justru mempercepat q dalam arah x dan y. Kecepatan ke arah sumbu-x dan sumbu-y sama-sama semakin tinggi dan tidak ada perpotongan antar kedua kurva. Keadaan tidak ada perpotongan antara kurva v x (t) dan v y (t) yang terjadi saat v menunjukkan bahwa apabila kecepatan awal yang diberikan lebih dari 2.05 maka partikel muatan q tidak lagi merasakan pengaruh dari muatan Q. Nilai v 0 = 2.05 ini kita sebut sebagai escape velocity atau kecepatan minimum yang dibutuhkan oleh muatan q untuk tidak lagi merasakan pengaruh dari muatan Q. Frase tidak lagi merasakan pengaruh bukan berarti gaya elektrostatik antara kedua muatan hilang melainkan pengaruhnya tidak signifikan dirasakan oleh muatan q Simpulan Tugas ini telah menujukkan bahwa metode pencarian titik nol atau titik potong dapat diaplikasikan dalam suatu sistem fisis. Pada kesempatan ini, kasus yang ditinjau adalah kasus partikel 8

9 bermuatan di dalam pengaruh medan listrik akibat kehadiran muatan lain. Metode pencarian titik potong dapat menentukan nilai kecepatan minimum untuk lolos dan nilai escape velocity untuk sistem seperti yang ditunjukkan oleh gambar 1 dan 2. Metode iterasi Newton-Raphson terbukti sangat efektif untuk menyelesaikan kasus ini. Dengan metode Newton-Raphson, hanya dibutuhkan 3 iterasi untuk memperoleh akar-akar persamaan (titik potong) dari kedua fungsi. Referensi 1. Steven C. Chapra dan Raymond P. Canale. Numerical Methods for Engineers Ch.18 - Interpolation. Slide presentasi materi Fisika Komputasi Topik 3, Departemen Fisika ITB Th.2015) 2. Suprijadi. Newton.s Method for Root Finding. Slide presentasi materi Fisika Komputasi Topik 1, Departemen Fisika ITB Th.2015) 9

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

Kata Pengantar. Medan, 11 April Penulis

Kata Pengantar. Medan, 11 April Penulis Kata Pengantar Puji syukur penulis panjatkan kepada Tuhan YME, bahwa penulis telah menyelesaikan tugas mata kuliah Matematika dengan membahas Numerical Optimization atau Optimasi Numerik dalam bentuk makalah.

Lebih terperinci

Akar-Akar Persamaan. Definisi akar :

Akar-Akar Persamaan. Definisi akar : Akar-Akar Persamaan Definisi akar : Suatu akar dari persamaan f(x) = 0 adalah suatu nilai dari x yang bilamana nilai tersebut dimasukkan dalam persamaan memberikan identitas 0 = 0 pada fungsi f(x) X 1

Lebih terperinci

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 4 Akar Persamaan (2) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk = g() Metode

Lebih terperinci

Course Note Numerical Method : Interpolation

Course Note Numerical Method : Interpolation Course Note Numerical Method : Interpolation Pengantar Interpolasi. Kalimat y = f(x), xo x xn adalah kalimat yang mengkorespondensikan setiap nilai x di dalam interval x0 x xn dengan satu atau lebih nilai-nilai

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN : 3 & 4 PENYELESAIAN PERSAMAAN NON LINIER METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen

Lebih terperinci

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner Hendy Sutanto - 13507011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

Menemukan Akar-akar Persamaan Non-Linear

Menemukan Akar-akar Persamaan Non-Linear Menemukan Akar-akar Persamaan Non-Linear Muhtadin, ST. MT. Agenda Metode Tertutup Biseksi Regula Falsi Metode Terbuka Newton Method 3 Solusi untuk Persamaan Non Linear Akar-akar dari persamaan (y = f())

Lebih terperinci

Bab 2. Penyelesaian Persamaan Non Linier

Bab 2. Penyelesaian Persamaan Non Linier Bab 2. Penyelesaian Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier penentuan

Lebih terperinci

Penyelesaian Secara Numerik? Penyelesaian Secara Numerik Selesaikanlah persamaan nonlinier f(x) = x x -8 Solve : Misal f(x) = 0 x x 8 = 0 (x 4)(x + )

Penyelesaian Secara Numerik? Penyelesaian Secara Numerik Selesaikanlah persamaan nonlinier f(x) = x x -8 Solve : Misal f(x) = 0 x x 8 = 0 (x 4)(x + ) Fungsi Polinomial METODE BISEKSI Solusi Persamaan Non Linier Universitas Budi Luhur Bentuk Umum : f (x) = a + = a + 0 1 3 n 0x + a1x + a x + a 3x +... a nx 3 n 0 + a1x + ax + a3x +... anx Dengan n = derajat

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen Mulai dengan terkaan awal yang mengurung atau memuat akar

Lebih terperinci

Metode Numerik - Interpolasi WILLY KRISWARDHANA

Metode Numerik - Interpolasi WILLY KRISWARDHANA Metode Numerik - Interpolasi WILLY KRISWARDHANA Interpolasi Para rekayasawan dan ahli ilmu alam sering bekerja dengan sejumlah data diskrit (yang umumnya disajikan dalam bentuk tabel). Data di dalam tabel

Lebih terperinci

PERSAMAAN NON LINIER

PERSAMAAN NON LINIER PERSAMAAN NON LINIER Obyektif : 1. Mengerti penggunaan solusi persamaan non linier 2. Mengerti metode biseksi dan regulafalsi 3. Mampu menggunakan metode biseksi dan regula falsi untuk mencari solusi PENGANTAR

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier MK: METODE NUMERIK Oleh: Dr. I GL Bagus Eratodi FTI Undiknas University Denpasar Persamaan Non Linier Metode Tabulasi Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode

Lebih terperinci

Metode Numerik. Persamaan Non Linier

Metode Numerik. Persamaan Non Linier Metode Numerik Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar

Lebih terperinci

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA PROJEK PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA A. PENDAHULUAN Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi terikat (bonding

Lebih terperinci

BAB 5 Interpolasi dan Aproksimasi

BAB 5 Interpolasi dan Aproksimasi BAB 5 Interpolasi dan Aproksimasi Interpolasi merupakan proses penentuan dan pengevaluasian suatu fungsi yang grafiknya melalui sejumlah titik tertentu. Sebaliknya, pada aproksimasi grafik fungsi yang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar persamaan

Lebih terperinci

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA Interpolasi Metode Numerik Zulhaydar Fairozal Akbar zfakbar@pens.ac.id 2017 TOPIK Pengenalan

Lebih terperinci

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Program Studi : Fisika Nama Mata Kuliah : ANALISIS NUMERIK Kode : FIS6236

Lebih terperinci

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2 ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK-031248 /2 Ming gu Pokok Bahasan & TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajara n Media Tugas Referensi

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54812 / Metode Numerik 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

TOPIK 8. Medan Magnetik. Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si.

TOPIK 8. Medan Magnetik. Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si. TOPIK 8 Medan Magnetik Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si. ikhsan_s@ugm.ac.id Pencetak sidik jari magnetik. Medan Magnetik Medan dan Gaya Megnetik Gaya Magnetik pada Konduktor Berarus

Lebih terperinci

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR Metode Biseksi Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari

Lebih terperinci

Langkah Penyelesaian Example 1) Tentukan nilai awal x 0 2) Hitung f(x 0 ) kemudian cek konvergensi f(x 0 ) 3) Tentukan fungsi f (x), kemudian hitung f

Langkah Penyelesaian Example 1) Tentukan nilai awal x 0 2) Hitung f(x 0 ) kemudian cek konvergensi f(x 0 ) 3) Tentukan fungsi f (x), kemudian hitung f METODE NEWTON RAPHSON (1) METODE NEWTON RAPHSON Solusi Persamaan Non Linier Oleh : Metode Newton-Raphson merupakan salah satu metode terbuka untuk menentukan solusi akar dari persamaan non linier, dengan

Lebih terperinci

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK oleh Tim Dosen Mata Kuliah Metode Numerik Fakultas Teknik Universitas Indonesia Maret 2016 1 DAFTAR ISI hlm. PENGANTAR BAB 1 BAB 2 INFORMASI UMUM KOMPETENSI

Lebih terperinci

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : MAtematika Lanjut 2 Kode / SKS : IT012220 / 2 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 Pendahuluan Metode Numerik Pengertian Metode Numerik Mahasiswa

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata Kuliah : Metode Numerik Bobot Mata Kuliah : 3 Sks Deskripsi Mata Kuliah : Unified Modelling Language; Use Case Diagram; Class Diagram dan Object Diagram;

Lebih terperinci

BAB II AKAR-AKAR PERSAMAAN

BAB II AKAR-AKAR PERSAMAAN BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau

Lebih terperinci

Oleh : Anna Nur Nazilah Chamim

Oleh : Anna Nur Nazilah Chamim Oleh : Anna Nur Nazilah Chamim 1. Silabus 2. Referensi 3. Kriteria Penilaian 4. Tata Tertib Perkuliahan 5. Pembentukan Kelompok 6. Materi 1 : pengantar Analisa Numerik Setelah mengikuti mata kuliah metode

Lebih terperinci

PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024

PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 UNIVERSITAS GADJAH MADA PROGRAM STUDI FISIKA FMIPA Bahan Ajar 5: Permasalahan Akar Suatu Fungsi (Minggu ke-9 dan ke-10) PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 Oleh Dr. Fahrudin Nugroho

Lebih terperinci

CONTOH SOLUSI UTS ANUM

CONTOH SOLUSI UTS ANUM CONTOH SOLUSI UTS ANUM 0 Propagasi eror adalah kejadian di mana eror dari operan suatu komputasi sederhana memberikan eror yang lebih besar pada hasil komputasi tersebut. Misalnya, eror awal suatu representasi

Lebih terperinci

Contoh Tentukanlah prakiraan nilai f pada titik x 8 dengan menggunakan metode polinomial interpolasi Lagrange dengan ketelitian hingga desimal, jika d

Contoh Tentukanlah prakiraan nilai f pada titik x 8 dengan menggunakan metode polinomial interpolasi Lagrange dengan ketelitian hingga desimal, jika d INTERPOLATION INTERPOLATION Numerical Methods Oleh : Interpolasi mrp cara utk mendapatkan kurva sesuai dgn data yang ada, tanpa menimbulkan kesalahan thp data tsb. Pembahasan interpolasi akan dititikberatkan

Lebih terperinci

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) IKG2E3 KOMPUTASI NUMERIK Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP METODE NUMERIK Disusun oleh Ir. Sudiadi, M.M.A.E. Ir. Rizani Teguh, MT SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 2015 Metode Numerik i KATA PENGANTAR Pertama-tama penulis

Lebih terperinci

Persamaan Non Linier 1

Persamaan Non Linier 1 Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier Penentuan akar-akar persamaan

Lebih terperinci

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42 Jurnal Matematika Integratif ISSN 1412-6184 Volume 12 No 1, April 2016, pp 35 42 Perbandingan Tingkat Kecepatan Konvergensi dari Newton Raphson dan Secant Setelah Mengaplikasikan Aiken s dalam Perhitungan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Dalam bab ini dijelaskan metode Adams Bashforth-Moulton multiplikatif (M) orde empat beserta penerapannya. Metode tersebut memuat metode Adams Bashforth multiplikatif orde empat

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) Nama Mata Kuliah : Metode Numerik Kode Mata Kuliah : TI 016 Bobot Kredit : 3 SKS Semester Penempatan : III Kedudukan Mata Kuliah : Mata Kuliah Keilmuan Keterampilan Mata

Lebih terperinci

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN JURUSAN INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SYIAH KUALA BANDA ACEH 2012 DAFTAR ISI DAFTAR ISI... 1 KATA PENGANTAR... 2 PENDAHULUAN...

Lebih terperinci

PERMODELAN MATEMATIS LINTASAN BOLA YANG BERGERAK DENGAN TOP SPIN PADA OLAH RAGA SEPAK BOLA

PERMODELAN MATEMATIS LINTASAN BOLA YANG BERGERAK DENGAN TOP SPIN PADA OLAH RAGA SEPAK BOLA 1 PERMODELAN MATEMATIS LINTASAN BOLA YANG BERGERAK DENGAN TOP SPIN PADA OLAH RAGA SEPAK BOLA Ridho Muhammad Akbar Jurusan Fisika, Institut Teknologi Bandung, Bandung, Indonesia (15 Juli 2013) Tujuan dari

Lebih terperinci

Prasyarat : - Status Matakuliah. Deskripsi Singkat Matakuliah :

Prasyarat : - Status Matakuliah. Deskripsi Singkat Matakuliah : Nama Matakuliah Kode / SKS : Fisika Komputasi : MAP4113 / 2 SKS Prasyarat : - Status Matakuliah : Wajib Deskripsi Singkat Matakuliah : Matakuliah Fisika Komputasi mempelajari bagaimana menggunakan komputer

Lebih terperinci

Pendahuluan

Pendahuluan Pendahuluan Pendahuluan Numerik dengan Matlab KOMPUTASI NUMERIK dengan MATLAB Oleh : Ardi Pujiyanta Edisi Pertama Cetakan Pertama, 2007 Hak Cipta 2007 pada penulis, Hak Cipta dilindungi undang-undang.

Lebih terperinci

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara BAB I PENDAHULUAN Latar Belakang Masalah Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara metode-metode

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Tommy Gunardi / 13507109 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya METODE NUMERIK AKAR-AKAR PERSAMAAN Eka Maulana Dept. of Electrcal Engineering University of Brawijaya Pendekatan Pencarian Akar-akar Persamaan Metode Pencarian Akar Persamaan > Metode Pengurung - metode

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER 3.. Permasalahan Persamaan Non Linier Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier.dimana akar sebuah persamaan f(x =0 adalah

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3 8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro

Lebih terperinci

Optimisasi Injeksi Daya Aktif dan Reaktif Dalam Penempatan Distributed Generator (DG) Menggunakan Fuzzy - Particle Swarm Optimization (FPSO)

Optimisasi Injeksi Daya Aktif dan Reaktif Dalam Penempatan Distributed Generator (DG) Menggunakan Fuzzy - Particle Swarm Optimization (FPSO) TESIS Optimisasi Injeksi Daya Aktif dan Reaktif Dalam Penempatan Distributed Generator (DG) Menggunakan Fuzzy - Particle Swarm Optimization (FPSO) Dosen Pembimbing : Prof. Ir. Mochamad Ashari, M.Eng. Ph.D

Lebih terperinci

1-x. dimana dan dihubungkan oleh teorema Pythagoras.

1-x. dimana dan dihubungkan oleh teorema Pythagoras. `2. Menyelesaikan persamaan dengan satu variabel Contoh: Berdasarkan Hukum Archimedes, suatu benda padat yang lebih ringan daripada air dimasukkan ke dalam air, maka benda tersebut akan mengapung. Berat

Lebih terperinci

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1.

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menentukan solusi persamaan gerak jatuh bebas berdasarkan pendekatan

Lebih terperinci

Implementasi Teknik Bisection Untuk Penyelesaian Masalah Nonlinear Break Even Point

Implementasi Teknik Bisection Untuk Penyelesaian Masalah Nonlinear Break Even Point SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Implementasi Teknik Bisection Untuk Penyelesaian Masalah Nonlinear Break Even Point Khairina Natsir Fakultas Ekonomi, Universitas Tarumanagara

Lebih terperinci

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 68 75 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA ELSA JUMIASRI, SUSILA BAHRI, BUKTI GINTING

Lebih terperinci

KATA PENGANTAR. FisikaKomputasi i -FST Undana

KATA PENGANTAR. FisikaKomputasi i -FST Undana Disertai Flowchart, Algoritma, Script Program dalam Pascal, Matlab5 dan Mathematica5 Ali Warsito, S.Si, M.Si Jurusan Fisika, Fakultas Sains & Teknik Universitas Nusa Cendana 2009 KATA PENGANTAR Buku ajar

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 27 HASIL DAN PEMBAHASAN Titik Fokus Letak Pemasakan Titik fokus pemasakan pada oven surya berdasarkan model yang dibuat merupakan suatu bidang. Pada posisi oven surya tegak lurus dengan sinar surya, lokasi

Lebih terperinci

PETUNJUK PRAKTIKUM MATLAB LANJUT

PETUNJUK PRAKTIKUM MATLAB LANJUT PRAKTIKUM KE-1 Materi : Solusi Persamaan Non Linier Tujuan : Mahasiswa dapat menyelesaikan masalah yang berkaitan dengan persamaan non linier 1.1 Rasionalisasi Misalkan dimiliki model permasalahan sebagai

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 1. Terhadap koordinat x horizontal dan y vertikal, sebuah benda yang bergerak mengikuti gerak peluru mempunyai komponen-komponen

Lebih terperinci

LAPORAN AKHIR MATA KULIAH FISIKA KOMPUTASI

LAPORAN AKHIR MATA KULIAH FISIKA KOMPUTASI LAPORAN AKHIR MATA KULIAH FISIKA KOMPUTASI PRAKTIKUM UJIAN AKHIR TAKE HOME RATRI BERLIANA 1112100114 Dosen : Sungkono, M.Si. JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI

Lebih terperinci

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1 METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI 1 + Lely Jusnita 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 3 Akar Persamaan (1) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk x = g(x)

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

MOMENTUM DAN IMPULS FISIKA 2 SKS PERTEMUAN KE-3

MOMENTUM DAN IMPULS FISIKA 2 SKS PERTEMUAN KE-3 MOMENTUM DAN IMPULS FISIKA 2 SKS PERTEMUAN KE-3 By: Ira Puspasari BESARAN-BESARAN PADA BENDA BERGERAK: Posisi Jarak Kecepatan Percepatan Waktu tempuh Energi kinetik Perpindahan Laju Gaya total besaran

Lebih terperinci

Xpedia Fisika DP SNMPTN 05

Xpedia Fisika DP SNMPTN 05 Xpedia Fisika DP SNMPTN 05 Doc. Name: XPFIS9910 Version: 2012-06 halaman 1 Sebuah bola bermassa m terikat pada ujung sebuah tali diputar searah jarum jam dalam sebuah lingkaran mendatar dengan jari-jari

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR METODE GRAFIK DAN TABULASI A. Tujuan a. Memahami Metode Grafik dan Tabulasi b. Mampu Menentukan nilai akar persamaan dengan Metode Grafik dan Tabulasi c. Mampu membuat

Lebih terperinci

OLEH : Riana Ekawati ( ) Dosen Pembimbing : Dra. Farida Agustini W, M.S

OLEH : Riana Ekawati ( ) Dosen Pembimbing : Dra. Farida Agustini W, M.S OLEH : Riana Ekawati (1205 100 014) Dosen Pembimbing : Dra. Farida Agustini W, M.S Salah satu bagian penting dari statistika inferensia adalah estimasi titik. Estimasi titik mendasari terbentuknya inferensi

Lebih terperinci

BANK SOAL METODE KOMPUTASI

BANK SOAL METODE KOMPUTASI BANK SOAL METODE KOMPUTASI 006 iv DAFTAR ISI Halaman Bio Data Singkat Penulis.. Kata Pengantar Daftar Isi i iii iv Pengantar... Kesalahan Bilangan Pendekatan... 6 Akar-akar Persamaan Tidak Linier.....

Lebih terperinci

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 5 METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Persamaan Aljabar Non-Linier Tunggal atau PANLT merupakan sembarang fungsi atau persamaan aljabar

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54812 / Metode Numerik Revisi - Satuan Kredit Semester : 3 SKS Tgl revisi : - Jml Jam kuliah dalam seminggu : 3 x 50

Lebih terperinci

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Bernardino Madaharsa Dito Adiwidya - 13507089 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya

Lebih terperinci

Keep running VEKTOR. 3/8/2007 Fisika I 1

Keep running VEKTOR. 3/8/2007 Fisika I 1 VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor

Lebih terperinci

I. Hukum lintasan : Semua planet bergerak dalarn lintasan berupa elips, dengan matahari pada salah satu titik fokusnya.

I. Hukum lintasan : Semua planet bergerak dalarn lintasan berupa elips, dengan matahari pada salah satu titik fokusnya. RENCANA PEMBELAJARAN 10. POKOK BAHASAN: GAYA SENTRAL Gaya sentral adalah gaya bekerja pada benda, di mana garis kerjanya selalu melalui titik tetap, disebut pusat gaya. Arah gaya sentral mungkin menuju

Lebih terperinci

2 Akar Persamaan NonLinear

2 Akar Persamaan NonLinear 2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan

Lebih terperinci

Jurnal MIPA 36 (2): (2013) Jurnal MIPA.

Jurnal MIPA 36 (2): (2013) Jurnal MIPA. Jurnal MIPA 36 (2): 193-200 (2013) Jurnal MIPA http://journalunnesacid/nju/indexphp/jm APLIKASI METODE NEWTON-RAPHSON UNTUK MENGHAMPIRI SOLUSI PERSAMAAN NON LINEAR Rochmad Jurusan Matematika, FMIPA, Universitas

Lebih terperinci

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan Modul 8 METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Pada modul 7 terdahulu, telah dijelaskan tentang keunggulan komparatif Metode Newton-Raphson dibanding metode-metode

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

Home» fisika» Momentum dan Impuls - Materi Fisika Dasar MOMENTUM DAN IMPULS - MATERI FISIKA DASAR

Home» fisika» Momentum dan Impuls - Materi Fisika Dasar MOMENTUM DAN IMPULS - MATERI FISIKA DASAR Home Biologi Fisika Kimia Geografi Matematika Makalah Berita Ilmuan Home» fisika» Momentum dan Impuls - Materi Fisika Dasar MOMENTUM DAN IMPULS - MATERI FISIKA DASAR faisal 2 Comments fisika Rabu, 26 Agustus

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

ANALISIS SIMULASI GEJALA CHAOS PADA GERAK PENDULUM NONLINIER. Oleh: Supardi. Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta

ANALISIS SIMULASI GEJALA CHAOS PADA GERAK PENDULUM NONLINIER. Oleh: Supardi. Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta ANALISIS SIMULASI GEJALA CHAOS PADA GERAK PENDULUM NONLINIER Oleh: Supardi Jurusan Pendidikan Fisika Universitas Negeri Yogyakarta Penelitian tentang gejala chaos pada pendulum nonlinier telah dilakukan.

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

KOMPUTASI NUMERIK GERAK PROYEKTIL DUA DIMENSI MEMPERHITUNGKAN GAYA HAMBATAN UDARA DENGAN METODE RUNGE-KUTTA4 DAN DIVISUALISASIKAN DI GUI MATLAB

KOMPUTASI NUMERIK GERAK PROYEKTIL DUA DIMENSI MEMPERHITUNGKAN GAYA HAMBATAN UDARA DENGAN METODE RUNGE-KUTTA4 DAN DIVISUALISASIKAN DI GUI MATLAB KOMPUTASI NUMERIK GERAK PROYEKTIL DUA DIMENSI MEMPERHITUNGKAN GAYA HAMBATAN UDARA DENGAN METODE RUNGE-KUTTA4 DAN DIVISUALISASIKAN DI GUI MATLAB Tatik Juwariyah Fakultas Teknik Universitas Pembangunan Nasional

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Tidak semua permasalahan matematis atau perhitungan dapat diselesaikan dengan mudah. Bahkan dalam prinsip matematik, dalam memandang permasalahan, terlebih dahulu

Lebih terperinci

[ 1 1 PENDAHULUAN SCILAB. Modul Praktikum Metode Numerik. 1. Struktur Scilab

[ 1 1 PENDAHULUAN SCILAB. Modul Praktikum Metode Numerik. 1. Struktur Scilab PENDAHULUAN SCILAB 1. Struktur Scilab Program Scilab sudah memiliki text editor di dalamnya. Perintah/kode program Scilab dapat dituliskan di dalam window Scilab Execution (Scilex) ataupun di window Scipad

Lebih terperinci