Tentang. Isometri dan Refleksi

Ukuran: px
Mulai penontonan dengan halaman:

Download "Tentang. Isometri dan Refleksi"

Transkripsi

1 TUGS II GEOMETRI TRNSFORMSI Tentang Isometri dan Refleksi Oleh : EVI MEG PUTRI : I Dosen Pembimbing : NDI SUSNTO S. Si M.Sc TDRIS MTEMTIK FKULTS TRBIYH INSTITUT GM ISLM NEGERI (IIN) IMM BONJOLPDNG 435 H/24 M Page

2 DFTR ISI. Isometri... 3 a. Pengertian isometri... 3 b. Sifat-sifat Isometri Memetakan garis menjadi garis Mempertahankan ukuran besarna sudut antara dua garis Mempertahankan kesejajaran dua garis... 6 B. Refleksi... 6 a. Pengertian Refleksi... 6 b. Sifat-sifat Refleksi... 7 c. Persamaan Refleksi... 8 d. Refleksi (Pencerminan) Sebagai Sebuah Isometri... 9 Page 2

3 . ISOMETRI a. Pengertian Isometri Isometri merupakan suatu transformasi atas Refleksi (pencerminan) Translasi (pergeseran) dan Rotasi (perputaran) pada sebuah garis ang mempertahankan jarak (panjang suatu ruas garis). Secara matematis Isometri didefinisikan sebagai berikut : misalkan T suatu transformasi transformasi T ini disebut isometri jika dan hana jika untuk setiap pasangan titik P dan Q anggota dari bidang Euclid v berlaku bahwa P Q = PQ dimana P = T(P) dan Q = T(Q). b. Sifat-sifat Isometri Suatu isometri memiliki sifat-sifat sebagai berikut :. Memetakan garis menjadi garis 2. Mempertahankan ukuran besarna sudut antara dua garis 3. Mempertahankan kesejajaran dua garis Bukti : I. Memetakan garis menjadi garis ndaikan g sebuah garis dan T suatu isometri. Kita akan membuktikan bahwa T(g) = h adalah suatu garis juga. B B g h Page 3

4 Kemudian ditetapkan T g = {YY = T(X) X g} akibatna B T(g). Untuk membuktika bahwa T(g) merupakan garis lurus. mbil g dan B g. maka = T() h B = T(B) h melalui dan B ada satu garis. Misalna h. Untuk ini akan dibuktikan h h dan h h. Bukti h h mbil X h. oleh karena bidang kita adalah bidang Euclides maka kita andaikan ( X B ) artina X + X B = B. oleh karena T suatu isometric. Jadi suatu transformasi maka ada X sehingga T (X) = X dan oleh karena T suatu isometric maka X = X ; begitu pula XB = X B. Maka X + BX = B Ini berarti bahwa X B segaris pada g Ini berarti lagi bahwa X = T(X) h. Sehingga h h sebab bukti serupa berlaku untuk posisi X dengan (X B ) atau ( B X ). Bukti h h Misalkan Y h Maka ada Y g sehingga T(Y) = Y dengan Y misalna ( Y B) artina Y g dan Y + YB = B. Oleh karena T sebuah isometric. maka Y = YY B = B. Sehingga Y + Y B = B. Ini berarti bahwa Y B segaris aitu garis ang melalui dan B. Oleh karena h satu-satuna garis ang melalui dan B maka Y h. Jadi terbukti h h Page 4

5 Bukti serupa berlaku untuk keadan (Y B) atau ( B Y) sehingga h = h. Jadi kalau g sebuah garis maka h = T(g) adalah sebuah garis juga maka terbuktilah bahwa sifat isometri memetakan garis menjadi garis. II. Mempertahankan ukuran besarna sudut antara dua garis mbil sebuah BC B C B C ndaikan = T()B = T(B)C = T(C) Menurut (a) maka B dan B C adalah garis lurus Oleh karena BC = B BC maka B C = B B C Sedangkan B = BB C = BC C = C Sehingga BC = B C.jadi B C = BC sudut. Sehingga terbuktilah suatu isometri mempertahankan besarna sebuah Page 5

6 III. Mempertahankan kesejajaran dua garis B B Kita harus memperlihatkan bahwa a b ndaikan a memotong b disebuah titik P jadi P a dan P b. oleh karena T sebuah transformasi maka ada P sehingga T(P) = P dengan P a dan P b. Ini berarti bahwa diketahui bahwa a b memotong b di P ; jadi bertentangan dengan ang Maka Pengandaian bahwa a memotong b SLH Jadi haruslah a b. Sehingga terbuktilah suatu isometri mempertahankan kesejajaran dua garis. a. Pengertian Refleksi (Pencerminan) B. REFLEKSI Refleksi adalah suatu transformasi ang memindahkan setiap titik pada bidang dengan menggunakan sifat baangan cermin dari titik-titik ang hendak dipindahkan itu. Refleksi suatu bangun geometri adalah proses mencerminkan setiap titik bangun geometri itu terhadap garis tertentu. Garis tertentu itu dinamakan sebagai sumbu cermin atau sumbu simetri. Jika suatu bangun geometri dicerminkan terhadap garis tertentu maka bangun baangan kongruen dengan bangun semula. Page 6

7 Secara matematis refleksi dapat didefinisikan sebagai berikut : sebuah pencerminan pada garis g adalah fungsi μ g ang ditetapkan untuk setiap titik P pada bidang Euclid v sebagai berikut : ) Jika P g maka μ g (P) = P 2) Jika P g maka μ g P = Q sehingga g merupakan sumbu dari PQ Maka g disebut sumbu refleksi (cermin) μ g. b. Sifat-sifat Refleksi a. Dua refleksi berturut-turut terhadap sebuah garis merupakan suatu identitas artina ang direfleksikan tidak berpindah. b. Pengerjaan dua refleksi terhadap dua sumbu ang sejajar menghasilkan translasi (pergeseran) dengan sifat: i. Jarak bangun asli dengan bangun hasil sama dengan dua kali jarak kedua sumbu pencerminan. ii. rah translasi tegak lurus pada kedua sumbu sejajar dari sumbu pertama ke sumbu kedua. Refleksi terhadap dua sumbu sejajar bersifat tidak komutatif. c. Pengerjaaan dua refleksi terhadap dua sumbu ang saling tegak lurus menghasilkaan rotasi (pemutaran) setengah lingkaran terhadap titik potong dari kedua sumbu pencerminan. Refleksi terhadap dua sumbu ang saling tegak lurus bersifat komutatif. d. Pengerjaan dua refleksi berurutan terhadap dua sumbu ang berpotongan akan menghasilkan rotasi (perputaran) ang bersifat: i. Titik potong kedua sumbu pencerminan merupakan pusat perputaran. ii. Besar sudut perputaran sama dengan dua kali sudut antara kedua sumbu pencerminan. iii. rah perputaran sama dengan arah dari sumbu pertama ke sumbu kedua. Page 7

8 Page 8 c. Persamaan Refleksi Persamaan Transformasi Refleksi pada Bidang : Refleksi Rumus Persamaan Matriks Refleksi terhadap sumbu- sb. Refleksi terhadap sumbu- sb. Refleksi terhadap garis = Refleksi terhadap garis =- Refleksi terhadap garis =k k k 2 Refleksi terhadap garis =k k k 2 Refleksi terhadap titik (pq) q p Sama dengan rotasi pusat (pq) sejauh 8 q p cos8 sin8 sin8 cos8 Refleksi terhadap titik pusat ()

9 Refleksi terhadap garis =mm=tan α m dengan cos2 sin 2 sin 2 cos2 cos2 sin 2 sin 2 cos2 Refleksi terhadap garis =+k Refleksi terhadap garis =-+k k dengan k k k dengan k k k k k k d. Refleksi (Pencerminan) sebagai suatu Isometri Pencerminan dikatakan sebagai suatu Isometri karena setiap pencerminan pada garis merupakan suatu Isometri lawan. Bukti :. Setiap refleksi merupakan transformasi kongruen. Misal r m adalah sebuah refleksi dengan r m = dan r m B = B. Untuk membuktikan bahwa r m adalah sebuah transformasi ang mempertahankan jarak harus ditunjukkan bahwa B = B. Tinjau empat kasus: Kasus I. Titik dan titik B segaris: B = B m = Page 9

10 Misalkan m adalah sebuah garis pada bidang. Titik dan titik B keduana terletak pada garis m. Maka : ) r m = m sehingga = = 2) r m B = B m sehingga BB = B = B Karena = dan B = B maka B = B Dapat disimpulkan refleksi mempertahankan jarak dua titik ang segaris. Kasus II.Titik pada garis dan titik B diluar garis. m r m B = B = C = C B Misalkan m adalah sebuah garis pada bidang. Titik terletak pada garis m dan titik B terletak diluar garis m. Maka ) r m = m sehingga = = 2) r m B = B sehinggam BB dan berpotongan di titik C = C maka BC = B C Karena C = C m CB = m C B dan B C = BC (sisi sudutsisi) maka BC kongruen dengan B C. Dengan menggunakan bersesuaian diperoleh: perbadingan sisi-sisi ang BC B C = B B.Karena BC = B C maka: BC BC = B B = B B B = B Dapat disimpulkan refleksi mempertahankan jarak dua titik ang tidak segari Page

11 Kasus III. Titik dan titik B keduana terletak pada sisi ang sama diluar garis m C = C B D = D B Misalkan m adalah sebuah garis pada bidang. Titik dan titik B terletak pada sisi ang sama diluar garis m. Maka ) r m = sehingga m dan berpotongan di titik C = C maka C = C 2) r m B = B sehingga m BB dan berpotongan di titik D = D maka BD = B D Karena BCB merupakan segitiga sama kaki maka BC = B C. Karena BC = B C m CB = m C B dan C = C (sisi sudutsisi) maka BC kongruen dengan B C dengan menggunakan perbadingan sisi-sisi ang bersesuaian diperoleh: C C = B. Karena C = C maka: B C C = B B = B B B = B Dapat disimpulkan refleksi mempertahankan jarak dua titik ang berada disisi ang sama diluar garis. Page

12 Kasus IV. Titik dan titik B terletak pada sisi ang berlawanan di luar garis m C = C B E = E D = D B Misalkan m adalah sebuah garis pada bidang. Titik dan titik B terletak pada sisi ang berlawanan diluar garis m. Maka ) Jika C D E m maka r m C = C m r m D = D m dan r m E = E m sehingga C = C D = D dan E = E 2) r m = sehingga m dan berpotongan di titik C = C maka C = C 3) r m B = B sehingga m BB dan berpotongan di titik E = E maka BE = B E Karena C = C m CD = m C D dan CD = C D (sisi sudutsisi) maka CD konruen dengan C D dengan menggunakan perbadingan sisi-sisi ang bersesuaian diperoleh: C C = D. Karena C = C maka: D C C = D D = D D D = D ) Karena BE = B E m BED = m B E D dan ED = E D (sisi sudutsisi) maka BED kongruen dengan B E D dengan menggunakan perbadingan sisi-sisi ang bersesuaian diperoleh:: BE B E = DB D B Karena BE = B E maka: BE BE = DB D B = DB D B D B = DB ) Page 2

13 B = D + D B. Dari : D = D dan : D B = DB maka B = D + DB B = B Dapat disimpulkan refleksi mempertahankan jarak dua titik ang terletak diluar garis di sisi ang berlawana.. Keempat kasus di atas menunjukkan bahwa B = B. Dapat disimpulkan bahwa setiap refleksi merupakan transformasi kongruen 2. Dengan suatu refleksi baangan sebuah sudut adalah sebuah sudut dengan ukuran ang sama. B m C C B Misalkan m adalah sebuah garis pada bidang. Titik dan titik B terletak berseberangan dengan titik C pada diluar garis m. Maka berdasarkan sifat pencerminan jika r m = r m B = B dan r m C = C sehingga: B = B dan C = C. Maka; B C = B C = B C = BC Karena B C = BC maka m B C = m BC Jadi baangan sebuah sudut adalah sebuah sudut dengan ukuran ang sama. Page 3

14 DFTR PUSTK Rawuh. Geometri Transformasi. Bandung : Perpustakaan Fakultas Keguruan dan Ilmu Pendidikan 993 Lipschutz Semour Teori dan Soal-soal Geometri(seri buku Schaum) Jakarta : Erlangga 995 Juliartawan I Waan Matematika(contoh soal dan peneleseain) Yogakarta : ndi 24 Rasmedi S me Darhim Geometri transformasi Jakarta :Universitas Terbuka Page 4

TUGAS GEOMETRI TRANSFORMASI. Tentang. Isometri dan Sifat-sifat Isometri. Oleh : EVI MEGA PUTRI : I. Dosen Pembimbing :

TUGAS GEOMETRI TRANSFORMASI. Tentang. Isometri dan Sifat-sifat Isometri. Oleh : EVI MEGA PUTRI : I. Dosen Pembimbing : TUGAS GEOMETRI TRANSFORMASI Tentang Isometri dan Sifat-sifat Isometri Oleh : EVI MEGA PUTRI : 412. 35I Dosen Pembimbing : ANDI SUSANTO, S. Si, M.Sc TADRIS MATEMATIKA A FAKULTAS TARBIYAH INSTITUT AGAMA

Lebih terperinci

TUGAS MATA KULIAH GEOMETRI TRANSFORMASI

TUGAS MATA KULIAH GEOMETRI TRANSFORMASI TUGAS MATA KULIAH GEOMETRI TRANSFORMASI Dosen Pengampu HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 3 Nama : NPM : 1. Ahmad Muslim 08030007 2. Ivo ayu Septiana 08030159 3. Elsa Fitriana 08030200 SEKOLAH

Lebih terperinci

ISOMETRI & HASIL KALI TRANSFORMASI

ISOMETRI & HASIL KALI TRANSFORMASI ISOMETRI & HASIL KALI TRANSFORMASI MATA KULIAH : GEOMETRI TRANNSFORMMASI DISUSUN OLEH : 1. ASMERI : 4007118 2. NITA FITRIA.N : 4007501 SEMESTER / KELAS : VI (ENAM). C PRODI : PEND. MATEMATIKA DOSEN PEMBIMBING

Lebih terperinci

TRANSFORMASI GEOMETRI

TRANSFORMASI GEOMETRI TRNSFORMSI GEOMETRI. TRNSLSI Minggu lalu, Candra duduk di pojok kanan baris pertama di kelasnya. Minggu ini, ia berpindah ke baris ketiga lajur keempat yang minggu lalu ditempati Dimas. Dimas sendiri berpindah

Lebih terperinci

Sumber:

Sumber: Transformasi angun Datar Geometri transformasi adalah teori ang menunjukkan bagaimana bangun-bangun berubah kedudukan dan ukuranna menurut aturan tertentu. Contoh transformasi matematis ang paling umum

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

MODUL MATEMATIKA WAJIB TRANSFORMASI KELAS XI SEMESTER 2

MODUL MATEMATIKA WAJIB TRANSFORMASI KELAS XI SEMESTER 2 MODUL MATEMATIKA WAJIB TRANSFORMASI KELAS XI SEMESTER 2 SMA Santa Angela Tahun Pelajaran 26 27 Transformasi Geometri Matematika Wajib XI BAB I.PENDAHULUAN A. Deskripsi Dalam modul ini, anda akan mempelajari

Lebih terperinci

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1 Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi

Lebih terperinci

TRANSFORMASI. 1) T(A) = A 2) Apabila P A, maka T(P) = Q dengan Q titik tengah garis. Selidiki apakah

TRANSFORMASI. 1) T(A) = A 2) Apabila P A, maka T(P) = Q dengan Q titik tengah garis. Selidiki apakah TRNSFORMSI Suatu transformasi pada suatu bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. Fungsi yang bijektif adalah sebuah fungsi yang bersifat : juga V.

Lebih terperinci

20. TRANSFORMASI. A. Translasi (Pergeseran) ; T = b. a y. a y. x atau. = b. = b

20. TRANSFORMASI. A. Translasi (Pergeseran) ; T = b. a y. a y. x atau. = b. = b . TRANSFORMASI A. Translasi (Pergeseran) ; T b a + b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis, dan garis

Lebih terperinci

BAB 21 TRANSFORMASI GEOMETRI 1. TRANSLASI ( PERGESERAN) Contoh : Latihan 1.

BAB 21 TRANSFORMASI GEOMETRI 1. TRANSLASI ( PERGESERAN) Contoh : Latihan 1. TRANSFORMASI GEOMETRI BAB Suatu transformasi bidang adalah suatu pemetaan dari bidang Kartesius ke bidang yang lain atau T : R R (x,y) ( x', y') Jenis-jenis transformasi antara lain : Transformasi Isometri

Lebih terperinci

TRANSFORMASI. Kegiatan Belajar Mengajar 6

TRANSFORMASI. Kegiatan Belajar Mengajar 6 Kegiatan elajar Mengajar 6 TRNSFORMSI Drs. Zainuddin, M.Pd Tranformasi (perpindahan) ang dipelajari dalam matematika, antara lain translasi (pergeseran), refleksi (pencerminan), rotasi (perputaran), dan

Lebih terperinci

PROGRAM STUDI : PENDIDIKAN MATEMATIKA

PROGRAM STUDI : PENDIDIKAN MATEMATIKA MAKALAH OLEH KELOMPOK DUA NAMA : GIYATNI ( 40077 ) SEPTI PRATIWI ( 400796 ) 3HARI YADI (400763 ) PROGRAM STUDI : PENDIDIKAN MATEMATIKA MATA KULIAH : GEOMETRI TRANSFORMASI DOSEN PENGAMPU : PADLI MPd SEKOLAH

Lebih terperinci

STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR

STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR STANDAR KOMPETENSI 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR 5.1 Menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks

Lebih terperinci

19. TRANSFORMASI A. Translasi (Pergeseran) B. Refleksi (Pencerminan) C. Rotasi (Perputaran)

19. TRANSFORMASI A. Translasi (Pergeseran) B. Refleksi (Pencerminan) C. Rotasi (Perputaran) 9. TRANSFORMASI A. Translasi (Pergeseran) ; T = b a b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis =, dan

Lebih terperinci

MODUL MATEMATIKA SMA IPA Kelas 11

MODUL MATEMATIKA SMA IPA Kelas 11 SMA IPA Kelas DEFINISI Transformasi merupakan pemetaan titik, garis atau bidang ke titik, garis atau bidang lain pada bidang yang sama. Misalkan transformasi T memetakan titik P (, y) ke titik P(, y) dan

Lebih terperinci

MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E)

MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E) MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E) Disusun Oleh: 1. ARI SUKA LESMANA 2. YULAIMA SUPRIHATIN 3. HERVI MARDIANA SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP

Lebih terperinci

TRANSFORMASI DAN PENCERMINAN

TRANSFORMASI DAN PENCERMINAN TRANSFORMASI DAN PENCERMINAN DISUSUN OLEH: KELOMPOK 1 (SATU) 1.AISYAH (4007005) 2.WIWIN AGUSTINA (4007018) 3.MARTINI (4007024) 4.TUKIJO (4007009) Dosen Pengampu : Fadli, S.Si, M.Pd. SEKOLAH TINGGI KEGURUAN

Lebih terperinci

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N Pemetaan (fungsi) f dari himpunan A ke himpunan B adalah suatu hubuungan yang memasangkan setiap unsur di A dengan tepat satu unsur di B. Jika a A dan pasangannya b B, maka ditulis

Lebih terperinci

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN 14 Sesi NGAN TRANSFORMASI A. ROTASI Rotasi adalah memindahkan posisi suatu titik (, y) dengan cara dirotasikan pada titik tertentu sebesar sudut tertentu.

Lebih terperinci

DIKTAT MATEMATIKA II

DIKTAT MATEMATIKA II DIKTT MTEMTIK II (VEKTOR) Drs.. NN PURNWN, M.T JURUSN PENDIDIKN TEKNIK MESIN FKULTS PENDIDIKN TEKNOLOGI DN KEJURUN UNIVERSITS PENDIDIKN INDONESI 004 VEKTOR I. PENDHULUN 1.1. PENGERTIN Sepotong garis berarah

Lebih terperinci

SIMETRI BAHAN BELAJAR MANDIRI 3

SIMETRI BAHAN BELAJAR MANDIRI 3 BAHAN BELAJAR MANDIRI 3 SIMETRI PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep simetri lipat dan simetri putar serta penerapannya ke dalam papan geoboard. Setelah mempelajari

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Angin Angin adalah gerakan udara dari daerah yang bertekanan tinggi ke daerah yang bertekanan rendah. Kekuatan angin berlebihan dapat dikontrol menggunakan sistem manual atau otomatik.

Lebih terperinci

Transformasi Bidang Datar

Transformasi Bidang Datar Bab Transformasi Bidang Datar Sumber: img07.imageshack.us Pada bab ini, nda akan diajak untuk menentukan kedudukan, jarak ang melibatkan titik, garis, dan bidang dalam dimensi dua sehingga nda dapat menerapkan

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti:

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti: Geometri Netral? Geometri yang dilengkapi dengan sistem aksioma-aksioma insidensi, sistem aksioma-aksioma urutan, sistem aksioma kekongruenan (ruas garis, sudut, segitiga) dan sistem aksioma-aksioma archiemedes

Lebih terperinci

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis.

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis. 5 II. TINJAUAN PUSTAKA 2.1 Geometri Insidensi Suatu geometri dibentuk berdasarkan aksioma yang berlaku dalam geometrigeometri tersebut. Geometri insidensi didasari oleh aksioma insidensi. Di dalam sebuah

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Prosiding Semirata FMIPA Universitas Lampung, 2013 ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Damay Lisdiana, Muslim Ansori, Amanto Jurusan Matematika FMIPA Universitas Lampung Email: [email protected]

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 5 Bangun Geometris 5.1. Persamaan Kurva Persamaan suatu kurva secara umum dapat kita tuliskan sebagai F (, )

Lebih terperinci

RUAS GARIS BERARAH. Andaikan sekarang ada 2 ruas garis berarah AB dan CD. Dalam

RUAS GARIS BERARAH. Andaikan sekarang ada 2 ruas garis berarah AB dan CD. Dalam RUAS GARIS BERARAH 9.1 Definisi dan Sifat-sifat ang Sederhana Untuk melajutkan penelidikan tentang isometri diperlukan pengertian tentang ruas garis berarah sebagai berikut: Definisi: Suatu ruas garis

Lebih terperinci

Transformasi Geometri Sederhana

Transformasi Geometri Sederhana Transformasi Geometri Sederhana Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut dengan manipulasi. Perubahan gambar dengan mengubah koordinat

Lebih terperinci

M A T R I K S 4. C. Penerapan Matriks pada Transformasi 11/21/2015. Peta Konsep. C. Penerapan Matriks pada Transformasi. (1) Pergeseran (Translasi)

M A T R I K S 4. C. Penerapan Matriks pada Transformasi 11/21/2015. Peta Konsep. C. Penerapan Matriks pada Transformasi. (1) Pergeseran (Translasi) Peta Konsep Jurnal Peta Konsep Materi MIPA Mengenal Matriks Daftar Hadir MateriC M A T R I K S 4 Kelas XII, Semester 5 Penjumlahan Matriks Pengurangan Matriks Perkalian Matriks C. Penerapan Matriks pada

Lebih terperinci

GESERAN (TRANSLASI) S = M M. Dalam Bab ini akan dibahas. hasil kali dua pencerminan pada dua garis yang sejajar.

GESERAN (TRANSLASI) S = M M. Dalam Bab ini akan dibahas. hasil kali dua pencerminan pada dua garis yang sejajar. GESERN TRNSLSI Ketentuan dan Sifat-sifat Dalam Bab setena putaran, bawa setena putaran dapat ditulis sebaai asil kali dua pencerminan, aitu kalau sebua titik an diketaui dan dan dua aris an teak lurus

Lebih terperinci

King s Learning Be Smart Without Limits

King s Learning Be Smart Without Limits Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA TRANSFORMASI GEOMETRI Gambarkan setiap titik yang ditanyakan pada gambar dibawah untuk translasi yang di berikan!. A. PENGERTIAN TRANSFORMASI GEOMETRI Arti geometri

Lebih terperinci

TRANSFORMASI. Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga.

TRANSFORMASI. Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. 1 TRANSFORMASI Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. Sebuah fungsi yang bijektif adalah sebuah fungsi yang bersifat: 1.

Lebih terperinci

BAB IV ISOMETRI. i. Jika p g maka T =p. ii.

BAB IV ISOMETRI. i. Jika p g maka T =p. ii. IV ISOMETRI Defenisi 1 Misalkan T suatu transformasi,transformasi T ini disebut isometric jika dan hanya jika jika untuk setiap pasangan titik P dan Q anggota dari bidang Euclid V berlaku = di mana =T

Lebih terperinci

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. yang sejajar dengan garis yang diberikan tersebut.

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. yang sejajar dengan garis yang diberikan tersebut. 3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada

Lebih terperinci

C. 9 orang B. 7 orang

C. 9 orang B. 7 orang 1. Dari 42 siswa kelas IA, 24 siswa mengikuti ekstra kurikuler pramuka, 17 siswa mengikuti ekstrakurikuler PMR, dan 8 siswa tidak mengikuti kedua ekstrakurikuler tersebut. Banyak siswa yang mengikuti kedua

Lebih terperinci

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R . Jika dan vektor-vektor tak kolinear dan A = ( x + 4y ) + ( 2x + y + ) dan B = ( y 2x + 2 ) + ( 2x 3y -), maka carilah nilai x dan y sehingga 3A = 2B. Penyelesian: 3A = 2 B 3(x + 4y ) +3 ( 2x + y + )b

Lebih terperinci

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI YOGYAKARTA TAHUN 2015 Mata Kuliah Dosen Pengampu : : Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas

Lebih terperinci

Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang

Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang Pengertian Dan Sifat-Sifat Bangun Segi Empat 1. Jajaran Genjang Jajaran genjang dapat dibentuk dari gabungan suatu segitiga dan bayangannya setelah diputar setengah putaran dengan pusat titik tengah salah

Lebih terperinci

LATIHAN ULANGAN BAB. INTEGRAL

LATIHAN ULANGAN BAB. INTEGRAL LATIHAN ULANGAN BAB. INTEGRAL A. PILIHAN GANDA 4( ). d... A. 4( ) 5 B. 4( ) 4 C. + 8 9 4 + C D. + 8 + C E. 4 5 + C 5. Nilai ( 4 ) d... A. 6 D. B. 4 6 E. C. 8. Hasil dari. cos d... (UAN 4) A. (.sin.cos

Lebih terperinci

Transformasi Bidang Datar

Transformasi Bidang Datar Bab 5 Transformasi Bidang Datar Sumber: img57.imageshack.us Pada bab ini, nda akan diajak untuk menentukan kedudukan, jarak ang melibatkan titik, garis, dan bidang dalam dimensi dua sehingga nda dapat

Lebih terperinci

Komposisi Transformasi

Komposisi Transformasi Komposisi Transformasi Setelah menyaksikan tayangan ini anda dapat Menentukan peta atau bayangan suatu kurva hasil dari suatu komposisi transformasi Transformasi Untuk memindahkan suatu titik atau bangun

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Analisis Penampang. Pertemuan 4, 5, 6

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Analisis Penampang. Pertemuan 4, 5, 6 Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS nalisis Penampang Pertemuan 4, 5, 6 TU : Mahasiswa dapat menghitung properti dasar penampang, seperti luas, momen statis, momen inersia TK : Mahasiswa

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 008/009. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

RINGKASAN MATERI PENCERMINAN

RINGKASAN MATERI PENCERMINAN RINGKSN MTERI PENCERMINN Definisi: Suatu encerminan (reflei) ada sebuah garis s adalah suatu fungsi M s ang didefinisikan untuk setia titik ada bidang V sebagai berikut: a. jika P s maka M s (P) = P b.

Lebih terperinci

KESETIMBANGAN MOMEN GAYA

KESETIMBANGAN MOMEN GAYA 43 MDUL PERTEMUAN KE 5 MATA KULIAH : ( sks) MATERI KULIAH: Momen gaa, sarat kedua kesetimbangan, resultan gaa sejajar, pusat berat, kopel. PKK BAHASAN: KESETIMBANGAN MMEN GAYA 5. PENGERTIAN MMEN GAYA Besar

Lebih terperinci

BAB V TRANSFORMASI 2D

BAB V TRANSFORMASI 2D BAB V TRANSFORMASI 2D OBJEKTIF : Pada Bab ini mahasiswa mempelajari tentang : Transformasi Dasar 2D 1. Translasi 2. Rotasi 3. Scalling Transformasi Lain 1. Refleksi 2. Shear TUJUAN DAN SASARAN: Setelah

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )

Lebih terperinci

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah,

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, 3 II. LANDASAN TEORI Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, definisi-definisi dan teorema-teorema yang berhubungan dengan penelitian ini. 2.1 Geometri Insidensi

Lebih terperinci

GEOMETRI TRANSFORMASI SETENGAH PUTARAN

GEOMETRI TRANSFORMASI SETENGAH PUTARAN GEOMETRI TRANSFORMASI SETENGAH PUTARAN Disusun Oleh : Kelompok Empat (V1 A) 1. Purna Irawan (4007178 ) 2. Sudarsono (4007028 p) 3. Mellyza Vemi R. (4007217 ) 4. Kristina Nainggolan (4007013 ) 5. Desi Kartini

Lebih terperinci

UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) UJIAN NASIONAL SMA/MA Tahun Pelajaran 004/005 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 005 Jam : 08.00 0.00 PELAKSANAAN

Lebih terperinci

GESERAN atau TRANSLASI

GESERAN atau TRANSLASI GESERAN atau TRANSLASI Makalah ini disusun untuk memenuhi Tugas Geometri Transformasi Dosen Pembimbing : Havid Risyanto, S.Si., M.Sc. D I S U S U N O L E H 1. AMILIA 1111050031 2. HAIRUDIN 1111050153 3.

Lebih terperinci

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. 1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00

Lebih terperinci

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan.

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. 3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada

Lebih terperinci

Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini

Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini PENDAHULUAN Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini membahas tentang transformasi. Modul ini terdiri dari 2 kegiatan belajar. Pada kegiatan belajar 1 akan dibahas mengenai

Lebih terperinci

Geometri Ruang (Dimensi 3)

Geometri Ruang (Dimensi 3) Geometri Ruang (Dimensi 3) Beberapa Benda Ruang Yang Beraturan Kubus Tabung volume = a³ luas = 6a² rusuk kubus = a panjang diagonal = a 2 panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume =

Lebih terperinci

BAB IV ANALISA KECEPATAN

BAB IV ANALISA KECEPATAN BAB IV ANALISA KECEPATAN PUSAT SESAAT Pusat sesaat adalah : - sebuah titik dalam suatu benda dimana benda lain berputar terhadapnya. - Sebuah titik sekutu yang terletak pada 2 buah benda yang mempunyai

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010 TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang

Lebih terperinci

KEGIATAN BELAJAR SISWA

KEGIATAN BELAJAR SISWA KEGIATAN BELAJAR SISWA Bidang studi : Matematika Satuan Pendidikan: SLTP Kelas: 3 (tiga) Caturwulan: 1 (satu) Pokok Bahasan: Transformasi Subpokok Bahasan: Refleksi Waktu: 150 Menit Endang Mulyana 2003

Lebih terperinci

Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014

Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014 Transformasi Geometri Sederhana Farah Zakiyah Rahmanti 2014 Grafika Komputer TRANSFORMASI 2D Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut

Lebih terperinci

TE Teknik Numerik Sistem Linear

TE Teknik Numerik Sistem Linear TE 9467 Teknik Numerik Sistem Linear Operator Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E. Objektif.

Lebih terperinci

BAB 2 MENGGAMBAR BENTUK BIDANG

BAB 2 MENGGAMBAR BENTUK BIDANG BAB 2 MENGGAMBAR BENTUK BIDANG 2.1 Menggambar Sudut Memindahkan sudut a. Buat busur lingkaran dengan A sebagian pusat dengan jari-jari sembarang R yang memotong kaki-kaki sudut AB dan AC di n dan m b.

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Matematika

K13 Revisi Antiremed Kelas 12 Matematika K Revisi Antiremed Kelas Matematika Geometri Bidang Ruang - Latihan Soal Doc. Name: RKARMATWJB00 Version : 0-0 halaman 0. Diketahui kubus ABCD,EFGH dengan panjang rusuk. Jika P titik HG,Q titik tengah

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

Matematika IPA (MATEMATIKA TKD SAINTEK)

Matematika IPA (MATEMATIKA TKD SAINTEK) Pembahasan Soal SBMPTN 2016 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA (MATEMATIKA TKD SAINTEK) Kumpulan SMART SOLUTION dan TRIK SUPERKILAT

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

SOAL-SOAL LATIHAN TRANSFORMASI GEOMETRI UJIAN NASIONAL

SOAL-SOAL LATIHAN TRANSFORMASI GEOMETRI UJIAN NASIONAL SOAL-SOAL LATIHAN TRANSFORMASI GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampuan memahami konsep pada topik transformasi geometri. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6 4 ). ( -1 4 ) E. ( 5 4 ) B. ( 6 4) D. ( 1 4 ) BAB

Lebih terperinci

Can be accessed on:

Can be accessed on: Pertemuan 4 Pengukuran Mendatar Can be accessed on: http://haryono_putro.staff.gunadarma.ac.id/ 1 Pengukuran-pengukuran dilakukan untuk mendapatkan bayangan dilapangan, dengan menentukan beberapa titik

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

TELAAH MATEMATIKA SEKOLAH MENENGAH I TRANSFORMASI GEOMETRI

TELAAH MATEMATIKA SEKOLAH MENENGAH I TRANSFORMASI GEOMETRI TELAAH MATEMATIKA SEKOLAH MENENGAH I TRANSFORMASI GEOMETRI OLEH: 1. RATMI QORI (06081181320002) 2. FAUZIAH (06081181320015) 3. NYAYU ASTUTI (06081281320018) 4. ISKA WULANDARI (06081281320038) PENDIDIKAN

Lebih terperinci

UAN MATEMATIKA SMA IPA 2009 P45

UAN MATEMATIKA SMA IPA 2009 P45 1. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut bertanding Ingkaran dari kesimpulan kedua premis di atas adalah.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENN PELKSNN PEMELJRN Mata Pelajaran : Matematika Kelas : XI / 4 Pertemuan ke - :, lokasi Waktu : 4 jam @ 45 menit Standar Kompetensi : Menentukan kedudukan jarak dan besar sudut ang melibatkan titik,

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama

Lebih terperinci

360 putaran. Ukuran sudut yang lebih kecil dari derajat adalah menit ( ) dan detik ( )

360 putaran. Ukuran sudut yang lebih kecil dari derajat adalah menit ( ) dan detik ( ) BB 7 GRIS DN SUDUT. SUDUT 1. Pengertian Sudut Sudut dibentuk dari dua sinar yang titik pangkalnya berimpit. Sinar digambarkan berupa garis lurus yang di ujungnya tanda panah dan di pangkalnya tanda titik.

Lebih terperinci

Hand-Out Geometri Transformasi. Bab I. Pendahuluan

Hand-Out Geometri Transformasi. Bab I. Pendahuluan Hand-Out Geometri Transformasi Bab I. Pendahuluan 1.1 Vektor dalam R 2 Misalkan u = (x 1,y 1 ), v = (x 2,y 2 ) dan w = (x 3,y 3 ) serta k skalar (bilangan real) Definisi 1. : Penjumlahan vektor u + v =

Lebih terperinci

SURVEI POLA GRUP KRISTALOGRAFI BIDANG RAGAM BATIK TRADISIONAL

SURVEI POLA GRUP KRISTALOGRAFI BIDANG RAGAM BATIK TRADISIONAL JMA, VOL. 11, NO. 2, DESEMBER, 2012, -- 1 SURVEI POLA GRUP KRISTALOGRAFI BIDANG RAGAM BATIK TRADISIONAL A.D.GARNADI, S. GURITMAN, A. KUSNANTO, F. HANUM Departemen Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

BAB V GEOMETRI DAN TRANSFORMASI

BAB V GEOMETRI DAN TRANSFORMASI BAB V GEOMETRI DAN TRANSFORMASI Pernahkah anda mengamati proses pekerjaan pembangunan sebuah rumah? Semua tahap pekerjaan tersebut, mulai dari perancangan hingga finishing, tidak terlepas dari penerapan

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian 1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama panjang menggunakan jangka dapat diikuti melalui

Lebih terperinci

B. Rotasi dan Dilatasi

B. Rotasi dan Dilatasi . Rotasi dan ilatasi 1. Rotasi (Perputaran) Pada Gambar 6.19 tampak bahwa diputar dengan pusat 0 sejauh α 0 menjadi. tau dapat dikatakan, pada rotasi dengan pusat 0 sudut putar α 0 membawa ke. Rotasi dengan

Lebih terperinci

Melukis Grafik Irisan Kerucut Tanpa Transformasi Sumbu-sumbu Koordinat

Melukis Grafik Irisan Kerucut Tanpa Transformasi Sumbu-sumbu Koordinat JURNAL PENDIDIKAN MATEMATIKA VOLUME NOMOR JANUARI 0 Melukis Grafik Irisan Kerucut Tanpa Transformasi Sumbu-sumbu Koordinat La Arapu (Lektor pada Program Pendidikan Matematika FKIP Universitas Haluoleo)

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut

Lebih terperinci

TRANSLASI BANGUN RUANG BERSISI DATAR PADA RUANG BERDIMENSI TIGA

TRANSLASI BANGUN RUANG BERSISI DATAR PADA RUANG BERDIMENSI TIGA TRANSLASI BANGUN RUANG BERSISI DATAR PADA RUANG BERDIMENSI TIGA Skripsi disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Mohammad Yusuf Guntari 4111410044

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDY IPA PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 010 1. Perhatikan

Lebih terperinci

matematika K-13 PERSAMAAN GARIS LURUS K e l a s

matematika K-13 PERSAMAAN GARIS LURUS K e l a s K- matematika K e l a s XI PERSAMAAN GARIS LURUS Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami pengertian garis, garis pada koordinat Cartesius,

Lebih terperinci

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA <<

>> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER 1 SMA KELAS XII IPA << >> SOAL-SOAL LATIHAN UJIAN AKHIR SEMESTER SMA KELAS XII IPA

Lebih terperinci

SOAL TO UN SMA MATEMATIKA

SOAL TO UN SMA MATEMATIKA 1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas

Lebih terperinci

VEKTOR II. Tujuan Pembelajaran

VEKTOR II. Tujuan Pembelajaran Kurikulum 03 Kelas X matematika PEMINATAN VEKTOR II Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami tentang pembagian vektor.. Memahami tentang

Lebih terperinci

KESEIMBANGAN BENDA TEGAR

KESEIMBANGAN BENDA TEGAR Dinamika Rotasi, Statika dan Titik Berat 1 KESEIMBANGAN BENDA TEGAR Pendahuluan. Dalam cabang ilmu fisika kita mengenal ME KANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : a. KINE MATI KA = Ilmu

Lebih terperinci

Matematika Dasar : BARISAN DAN DERET

Matematika Dasar : BARISAN DAN DERET Matematika Dasar : BARISAN DAN DERET. Suku ke-n pada barisan, 6, 0,, bisa dinyatakan dengan (A) Un = n (B) Un = 6n (C) Un = n + (D) Un = n (E) Un = n +. Suku ke-5 pada barisan, 0, 7,,.. (A) 65 (B) 59 (C)

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci