MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E)
|
|
|
- Yohanes Setiawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E) Disusun Oleh: 1. ARI SUKA LESMANA 2. YULAIMA SUPRIHATIN 3. HERVI MARDIANA
2 SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP PGRI LUBUKLINGGAU
3 GESERAN (TRANSLASI) Geseran (translasi) adalah suatu transformasi yang memindahkan semua titik pada bidang dengan jarak yang sama dan arah yang sama. Ketentuan dan sifat-sifat Teorema 1: Andaikan g dan h dua garis yang sejajar. Apabila ada dua titik A dan B maka AA = BB dengan A = M h M g (A) dan B = M h M g (B) Bukti: Kita pilih sebuah sistem koordinat dengan misalnya t sebagai sumbu y dan sebuah garis tegak lurus pada g sebagai sumbu x. A (x,y) n A (x,y) A N B 0 B g h Andaikan A = (a 1 a 2 ) dan B=(b 1, b 2 ). Kalau N tengah-tengah ruas garis A B maka harus di buktikan S N (A)=B. Andaikan persamaan h adalah x = k (k 0). Apabila P = (x,y) dan P (M h (P)) maka titik Q (k,y) dengan Q sebagai titik tengah PP memotong h di sebuah PP. Jadi P = M h (P) = (2k x,y) sedangkan M g (P) = (-x,y). Jadi M h M g (P) = M h M g (P) = M h {(-x,y)}= (2k-x,y) Jadi pula A = M h M g (A) = (2x + b 1.a 2 ) B = M h M g (B) = (2x + b 1. b 2 )
4 Oleh karena N titik tengah A B maka: N = ( 2k + a ) 1 + b1 a2 + 2 a2 b 2 2k + a1 + b1 a2 + b2 Sedangkan S N (A)= 2 a1, 2 a2 2 2 S N (A)=(2k+b 1.b 2 )=B Dengan demikian,maka AA = BB Teorema 2: Apabila AB = CD maka G AB = G CD Bukti: Jika X sebarang,maka harus dibuktikan G AB (X)=G CD (X) Andaikan G AB (X)=X 1 dan G CD (X)=X 2 Jadi XX 1 = AB dan XX 2 = CD G AB =G CD. Karena AB = CD maka XX 1 = XX 2 berarti X 1 =X 2 sehingga Teorema 3: Andaikan g dan h dua garis yang sejajar dan CD sebuah garis berarah tegak lurus pada C dan C g dan D h, apabila AB = 2 CD maka G AB = M h M g Bukti: Andaikan P sebuah titik sebarang, jika P=G AB (P) dan P =M h M g (P) maka harus dibuktikan bahwa P=P
5 P h C C = M A M g (C) B C h P g A Menurut ketentuan geseran, PP = AB Oleh karena AB = 2CD, maka PP = 2CD berhubungan C =M h M g (C), C g. Maka C =M h (C). Jadi D adalah titik tengah maka CC sehingga PP =2 CD = P sebarang, maka G AB =M h M g. CC = 2CD. Oleh karena CC = PP (teorema.1). PP ini berarti bahwa P=P Jadi G AB (P)=M h M g (P) karena Teorema 4 : Jika G AB sebuah geseran maka (G AB )=G BA Bukti: Oleh karena himpunan isometri-isometri merupakan grup bagian dari grup transformasi-transformasi. Maka setiap geseran memiliki balikan (G AB ) 1 Dari uraian diatas kita peroleh berturut-turut yaitu: G AB =M h M g =M g M h
6 Sedangkan G AB =M h M g =M g M h Sehingga Jadi (G AB ) 1 =(M g M h ) 1 1 M h M 1 g =M g M h =G BA (G AB )=G BA Hasil Kali Geseran Akan di perlihatkan bahwa setiap geseran dapat di uraikan sebagai hasil kali dua setengah putaran. Teorema 5 : Jika G AB Sebuah geseran sedangkan C dan D adalah dua titik sehingga AB = 2 CD maka G AB = S DSC Bukti : Andaikan G = CD ; K g di C, n g di D. B D A C n k
7 Maka CD ruas garis berarah dari k ke n. Oleh karena AB = 2 CD maka = sedangkan = dan =. Jadi : = ( )( )= ( ) atau : = ( I =. Dengan demikian maka = Teorema 6 : Komposisi suatu geseran dan Suatu setengah putaran adalah Suatu setengah putaran. Bukti : Andaikan suatu geseran dan C sebuah titik sebarang. Andaikan E titik yang tunggal sehingga CE = AB. Andaikan D titik tengah CE maka CE = 2 CD.menurut teorema 5 =.Jadi, = ( ) = ( ) = I = maka = Akibat : andaikan,,dan masing-masing setengah putaran, maka = dengan D sebuah titik sehingga AD = CD Bukti : Kita peroleh berturut turut =. jadi, = A B D C
8 Andaikan = maka 2 BC = 2 AX atau BC = AX.jadi, = sehingga =. Perhatikan dua geseran dan. Maka (A) = B dan (B) = C. sehingga dapat kita tulis bahwa (A) = C. apabila E titik sebarang, maka (E) = dengan = sedangkan G AB (E )=E sehingga E E =. B E Q A P R C E E Maka = E dengan = sehingga G BC (E) = E = (E). Jadi =. Hal ini dapat juga dilihat sebagai berikut dengan menggunakan teorema.6: Andaikan P.Q dua titik sehingga 2 = dan titik R sehingga 2 = maka = dan = Sehingga = ( ) ( ) = Oleh karena 2 = maka = Jadi = Dengan demikian terbukti teorema berikut:
9 Teorema.7 : Hasil kali dua translasi adalah sebuah translasi. Catatan : Apabila = maka = = I. Disini I adalah transformasi identitas. Jadi : kalau = maka kalau I dianggap sebagai translasi. Teorema diatas tetap berlaku. Teorema.8 : Jika sebuah translasi yang ditentukan oleh titik-titik 0 (0,0) dan A (a,b) dan T transformasi yang didefinisikan untuk semua titik p (x,y) sebagai T ( P) = (x+a,y+b) maka T = Bukti : Untuk P = ( x,y),t(p)=(x+a,y+b). andaikan P = (p) maka = sehingga p (x+a-0,y+b-0)=(x+a,y+b).karena T(P) = (x+a,y+b) untuk setiap P = (x,y) maka T (P)= P = G OA (P). jadi, T = G OA Contoh soal : 1. Jika A = (2,-1) dan B = (3,4).Tentukan : a. G AB (P) Jika P = (x,y) Jawab : b. Titik D sehingga G AB (D) = (1,3) a. G AB (P) = (x,y) ={(3-2)+ x, (4+1) + y } =(1 + x, 5 + y) Jika P = (x,y)
10 b. Karena G AB (D) = (1,3) maka D = (1,3).Karena G AB (P) = (-1 + x, -5 + y) jika P =(x,y) Sehingga D = G AB (1,3) = ( , ) = ( 0, -2)D) = (1,3) maka D = (1,3).Karena G AB (P) = (-1 + x, -5 + y) jika P =(x,y) Sehingga D = G AB (1,3) = ( , ) = ( 0, -2) Jawaban : 2. Jika A = (3,-1),B = (1,7) dan C = (4,2) adalah titik titik yang di ketahui, tentukan sebuah titik D sehingga = Andaikan E sebuah titik sehingga = maka E = (4+(1-3),2+(7-(-1)) atau E =(2,10).Apabila D titik tengah CE maka D = (3,6) Sehingga = 2. jadi, = 2 Menurut teorema 5 di peroleh = maka titik D yang di cari adalah (3,6)
GEOMETRI TRANSFORMASI SETENGAH PUTARAN
GEOMETRI TRANSFORMASI SETENGAH PUTARAN Disusun Oleh : Kelompok Empat (V1 A) 1. Purna Irawan (4007178 ) 2. Sudarsono (4007028 p) 3. Mellyza Vemi R. (4007217 ) 4. Kristina Nainggolan (4007013 ) 5. Desi Kartini
ISOMETRI & HASIL KALI TRANSFORMASI
ISOMETRI & HASIL KALI TRANSFORMASI MATA KULIAH : GEOMETRI TRANNSFORMMASI DISUSUN OLEH : 1. ASMERI : 4007118 2. NITA FITRIA.N : 4007501 SEMESTER / KELAS : VI (ENAM). C PRODI : PEND. MATEMATIKA DOSEN PEMBIMBING
Hand-Out Geometri Transformasi. Bab I. Pendahuluan
Hand-Out Geometri Transformasi Bab I. Pendahuluan 1.1 Vektor dalam R 2 Misalkan u = (x 1,y 1 ), v = (x 2,y 2 ) dan w = (x 3,y 3 ) serta k skalar (bilangan real) Definisi 1. : Penjumlahan vektor u + v =
Relasi, Fungsi, dan Transformasi
Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian
TRANSFORMASI DAN PENCERMINAN
TRANSFORMASI DAN PENCERMINAN DISUSUN OLEH: KELOMPOK 1 (SATU) 1.AISYAH (4007005) 2.WIWIN AGUSTINA (4007018) 3.MARTINI (4007024) 4.TUKIJO (4007009) Dosen Pengampu : Fadli, S.Si, M.Pd. SEKOLAH TINGGI KEGURUAN
SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP PGRI LUBUKLINGGAU
MATERI : TRANSFORMASI BALIKAN (VI.C) Disusun Oleh: 1. KARMILA 2. NURMALINA 3. DWINDA JANUARTI 4. YUYUN MARNITA 5. ROVELI 6. MIKA MARDASARI 7. IKA NURSINTA 8. LISA MAYANI SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN
A. PERSAMAAN GARIS LURUS
A. PERSAMAAN GARIS LURUS Persamaan garis lurus adalah hubungan nilai x dan nilai y yang terletak pada garis lurus serta dapat di tulis px + qy = r dengan p, q, r bilangan real dan p, q 0. Persamaan dalam
GESERAN (TRANSLASI) S = M M. Dalam Bab ini akan dibahas. hasil kali dua pencerminan pada dua garis yang sejajar.
GESERN TRNSLSI Ketentuan dan Sifat-sifat Dalam Bab setena putaran, bawa setena putaran dapat ditulis sebaai asil kali dua pencerminan, aitu kalau sebua titik an diketaui dan dan dua aris an teak lurus
PROGRAM STUDI : PENDIDIKAN MATEMATIKA
MAKALAH OLEH KELOMPOK DUA NAMA : GIYATNI ( 40077 ) SEPTI PRATIWI ( 400796 ) 3HARI YADI (400763 ) PROGRAM STUDI : PENDIDIKAN MATEMATIKA MATA KULIAH : GEOMETRI TRANSFORMASI DOSEN PENGAMPU : PADLI MPd SEKOLAH
STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR
STANDAR KOMPETENSI 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR 5.1 Menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks
LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran
LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu
KEGIATAN BELAJAR SISWA
KEGIATAN BELAJAR SISWA Bidang studi : Matematika Satuan Pendidikan: SLTP Kelas: 3 (tiga) Caturwulan: 1 (satu) Pokok Bahasan: Transformasi Subpokok Bahasan: Refleksi Waktu: 150 Menit Endang Mulyana 2003
A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti:
Geometri Netral? Geometri yang dilengkapi dengan sistem aksioma-aksioma insidensi, sistem aksioma-aksioma urutan, sistem aksioma kekongruenan (ruas garis, sudut, segitiga) dan sistem aksioma-aksioma archiemedes
TUGAS GEOMETRI TRANSFORMASI. Tentang. Isometri dan Sifat-sifat Isometri. Oleh : EVI MEGA PUTRI : I. Dosen Pembimbing :
TUGAS GEOMETRI TRANSFORMASI Tentang Isometri dan Sifat-sifat Isometri Oleh : EVI MEGA PUTRI : 412. 35I Dosen Pembimbing : ANDI SUSANTO, S. Si, M.Sc TADRIS MATEMATIKA A FAKULTAS TARBIYAH INSTITUT AGAMA
BAB I PEMBAHASAN 1. PENGERTIAN RELASI
BAB I PEMBAHASAN 1. PENGERTIAN RELASI Misalkan relasi pada himpunan A dan B adalah dua himpunan sebarang, suatu relasi dari A ke B adalah himpunan bagian dari A x B yaitu pasangan terurut (a,b) dimana
1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1
Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi
MAKALAH GEOMETRI TRANSFORMASI
MAKALAH GEOMETRI TRANSFORMASI MATERI SETENGAH PUTARAN DISUSUN OLEH : Nama : Bing Ahmad (4006071) Budi Sutrisno (4006077) Chandra (4007159) Dessi Alsury (4007131) Melia Sartika (4007146) Rahmawati (4006151)
TUGAS MATA KULIAH GEOMETRI TRANSFORMASI
TUGAS MATA KULIAH GEOMETRI TRANSFORMASI Dosen Pengampu HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 3 Nama : NPM : 1. Ahmad Muslim 08030007 2. Ivo ayu Septiana 08030159 3. Elsa Fitriana 08030200 SEKOLAH
MAKALAH OLEH KELOMPOK I NAMA : 1. SHINTA JULIANTY 2. SITI HERLIZA 3. FATMALIZA 4. SUPRA ANTONI 5. JUNIANTY
MAKALAH OLEH KELOMPOK I NAMA : 1. SHINTA JULIANTY 2. SITI HERLIZA 3. FATMALIZA 4. SUPRA ANTONI 5. JUNIANTY PROGRAM STUDI MATA KULIAH DOSEN PENGAMPU : PENDIDIKAN MATEMATIKA : GEOMETRI TRANSFORMASI : FADLI,
TUGAS GEOMETRI TRANSFORMASI GRUP
TUGAS GEOMETRI TRANSFORMASI GRUP KELOMPOK 8 1. I WAYAN AGUS PUTRAWAN (2008.V.1.0093) 2. I KADEK DWIJAYAPUTRA (2008.V.1.0094) 3. I KETUT DIARTA (2008.V.1.0123) 4. AGUS EKA SURYA KENCANA (2008.V.1.0043)
II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis.
5 II. TINJAUAN PUSTAKA 2.1 Geometri Insidensi Suatu geometri dibentuk berdasarkan aksioma yang berlaku dalam geometrigeometri tersebut. Geometri insidensi didasari oleh aksioma insidensi. Di dalam sebuah
TRANSFORMASI. 1) T(A) = A 2) Apabila P A, maka T(P) = Q dengan Q titik tengah garis. Selidiki apakah
TRNSFORMSI Suatu transformasi pada suatu bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. Fungsi yang bijektif adalah sebuah fungsi yang bersifat : juga V.
Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini
PENDAHULUAN Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini membahas tentang transformasi. Modul ini terdiri dari 2 kegiatan belajar. Pada kegiatan belajar 1 akan dibahas mengenai
Tentang. Isometri dan Refleksi
TUGS II GEOMETRI TRNSFORMSI Tentang Isometri dan Refleksi Oleh : EVI MEG PUTRI : 42. 35I Dosen Pembimbing : NDI SUSNTO S. Si M.Sc TDRIS MTEMTIK FKULTS TRBIYH INSTITUT GM ISLM NEGERI (IIN) IMM BONJOLPDNG
PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)
PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan
Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak
4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,
A. Menentukan Letak Titik
Apa yang akan Anda Pelajari? Koordinat Cartesius Mengenal pengertian dan menentukan gradien garis lurus Menentukan persamaan garis lurus Menggambar grafik garis lurus Menentukan Gradien, Persamaan garis
SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar.
SOAL 1. Diketahui bangun persegi panjang berukuran 4 dengan beberapa ruas garis, seperti pada gambar. Dengan menggunakan ruas garis yang sudah ada, tentukan banyak jajar genjang tanpa sudut siku-siku pada
GEOMETRI TRANSFORMASI MATERI
GEOMETRI TRANSFORMASI MATERI TRANSFORMASI BALIKAN DISUSUN OLEH : KELOMPOK IV 1. Retno Fitria Pratiwi ( 2010 121 179 ) 2. Nanda Wahyuni Pritama ( 2010 121 140 ) 3. Verawati (2010 121 173 ) KELAS : 5 D Dosen
Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r.
PERSAMAAN LINGKARAN Pusat Lingkaran (0, 0) Melalui titik (x, y ) pada lingkaran Jika diketahui gradient m xx y mx r yy r m x y r Persamaan Garis singgung Melalui titik (x, y ) diluar lingkaran Jari Jari
TRANSFORMASI GEOMETRI
TRNSFORMSI GEOMETRI. TRNSLSI Minggu lalu, Candra duduk di pojok kanan baris pertama di kelasnya. Minggu ini, ia berpindah ke baris ketiga lajur keempat yang minggu lalu ditempati Dimas. Dimas sendiri berpindah
PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah
PERSAMAAN GARIS. SIMAK UI Matematika Dasar 9, 9 Diketahui adalah garis l yang dinyatakan oleh det( A) dimana A x y, persamaan garis yang sejajar l dan melalui titik (,4) adalah... A. x y 7 C. x y E. x
SIMETRI BAHAN BELAJAR MANDIRI 3
BAHAN BELAJAR MANDIRI 3 SIMETRI PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep simetri lipat dan simetri putar serta penerapannya ke dalam papan geoboard. Setelah mempelajari
BAB 21 TRANSFORMASI GEOMETRI 1. TRANSLASI ( PERGESERAN) Contoh : Latihan 1.
TRANSFORMASI GEOMETRI BAB Suatu transformasi bidang adalah suatu pemetaan dari bidang Kartesius ke bidang yang lain atau T : R R (x,y) ( x', y') Jenis-jenis transformasi antara lain : Transformasi Isometri
1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.
1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik
TRANSFORMASI. Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga.
1 TRANSFORMASI Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. Sebuah fungsi yang bijektif adalah sebuah fungsi yang bersifat: 1.
Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus
Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis
PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear
Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum
MAKALAH GEOMETRI TRANSFORMASI TENTANG GESERAN (TRANSLASI)
MAKALAH EOMETRI TRANSFORMASI TENTAN ESERAN (TRANSLASI) I SUSUN OLEH : KELOMPOK VI (ENAM) 1. IIN MARLINA Npm. 4006082 2. SITI RUSNAWATI Npm. 4006082 3. ARYENTI Npm. 4006087 4. IWA SUSILA Npm. 40066119 5.
Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus
PErSamaan GarIS lurus Untuk SMP Kelas VIII Peta Konsep Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus Kompetensi Dasar Menentukan gradien, persamaan dan grafik garis
BAB IV ISOMETRI. i. Jika p g maka T =p. ii.
IV ISOMETRI Defenisi 1 Misalkan T suatu transformasi,transformasi T ini disebut isometric jika dan hanya jika jika untuk setiap pasangan titik P dan Q anggota dari bidang Euclid V berlaku = di mana =T
MA5032 ANALISIS REAL
(Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: [email protected]. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan
TRANSFORMASI BALIKAN
TRANSFORMASI BALIKAN Disusun Oleh : Nama : Dodi Sunhaji (4007017) Esty Gustina (4007199) Indah Sri (4007015) Warnitik (4007009) Oryza Sativa Kelas : VIA Prodi : Matematika Mata Kuliah : Geometri Transformasi
OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 2006
OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah 4. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat,
Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup
BAB 3 DASAR DASAR GRUP Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup Tujuan Instruksional Khusus : Setelah diberikan
M A K A L A H GEOMETRI TRANFORMASI ( TRANFORMASI BALIKAN )
M A K A L A H GEOMETRI TRANFORMASI ( TRANFORMASI BALIKAN ) D I S U S U N O L E H : 1. NOPITA SARI ( 4007213 ) 2. MULYATI ( 4007152 ) 3. ROHIM ( 4007142 ) 4. RUSMINI ( 4007222 ) 5. MARYANA ( ) 6. ARY WIJAYA
OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006
OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat, maka salah satu
1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... D. -4 E. -5
1. Himpunan penyelesaian adalah {(x, y, z)}. Nilai dari y + z adalah... A. 5 3 2 Kunci : C 3x + y = 5 y - 2z = -7-3x + 2z = 12 2x + 2z = 10 - x = 2-4 -5 x + z = 5 2 + z = 5 z = 3 3x + y = 5 3. 2 + y =
RUAS GARIS BERARAH. Andaikan sekarang ada 2 ruas garis berarah AB dan CD. Dalam
RUAS GARIS BERARAH 9.1 Definisi dan Sifat-sifat ang Sederhana Untuk melajutkan penelidikan tentang isometri diperlukan pengertian tentang ruas garis berarah sebagai berikut: Definisi: Suatu ruas garis
King s Learning Be Smart Without Limits
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA TRANSFORMASI GEOMETRI Gambarkan setiap titik yang ditanyakan pada gambar dibawah untuk translasi yang di berikan!. A. PENGERTIAN TRANSFORMASI GEOMETRI Arti geometri
Pertemuan 2 KOORDINAT CARTESIUS
Kalkulus Pertemuan 2 KOORDINAT CARTESIUS Koordinat Cartesius 1 2 3 Jarak y Hitunglah jarak dari A(3,-5) ke B(4,2) A(3,-5) maka x 1 = 3 dan y 1 = -5 B(4,9) maka x 2 = 4 dan y 2 = 2 sehingga d(a, B) = (x
Bab 1. Irisan Kerucut
Tahun Ajaran 01 01-013/Genap Bab 1. Irisan Kerucut e=0 e 1 A. Lingkaran Persamaan Lingkaran yang berpusat di titik (0,0) Pada segitiga siku-siku, siku, menurut dalil phytagoras berlaku : c =
SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017
SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 06 / 07 MATA PELAJARAN : Matematika KELOMPOK : TEKNIK (RPL, TKJ). Bentuk sederhana dari p q r 0 0 0 0 p q r 8 0 p q r 8 pqr 6 5 5 p q r p q r p q r 5 adalah....
II. TINJAUAN PUSTAKA
II. TINJAUAN PUSTAKA 2.1 Angin Angin adalah gerakan udara dari daerah yang bertekanan tinggi ke daerah yang bertekanan rendah. Kekuatan angin berlebihan dapat dikontrol menggunakan sistem manual atau otomatik.
BAB II KAJIAN PUSTAKA. glide/refleksi geser, grup simetri, frieze group, graphical user interface (GUI) dijelaskan mengenai operasi biner.
BAB II KAJIAN PUSTAKA Secara umum, pada bab ini membahas mengenai kajian teori yang digunakan dalam penelitian yaitu, grup, transformasi, translasi, refleksi, rotasi, glide/refleksi geser, grup simetri,
TRANSFORMASI. Dosen Pengampu Mata Kuliah. HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 1. Hayatun Nupus Rina Ariyani
TRANSFORMASI Makalah ini disusun sebagai tugas mata kuliah Geometri Transformasi Dosen Pengampu Mata Kuliah HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 1 Hayatun Nupus 08030121 Rina Ariyani 08030057
PERSAMAAN GARIS LURUS
PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan
SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI
HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL
Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat
Pembahasan OSN Matematika SMA Tahun 013 Seleksi Tingkat Provinsi Tutur Widodo Bagian Pertama : Soal Isian Singkat 1. Diberikan tiga lingkaran dengan radius r =, yang saling bersinggungan. Total luas dari
Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran
Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran
BAB V GEOMETRI DAN TRANSFORMASI
BAB V GEOMETRI DAN TRANSFORMASI Pernahkah anda mengamati proses pekerjaan pembangunan sebuah rumah? Semua tahap pekerjaan tersebut, mulai dari perancangan hingga finishing, tidak terlepas dari penerapan
ELEMEN PEMBANGUN ( DALAM SEMIGRUP - ( Y.D. Sumanto Jurusan Matematika FMIPA UNDIP. Abstrak
ELEMEN PEMBANGUN ( DALAM SEMIGRUP - ( Y.D. Sumanto Jurusan Matematika FMIPA UNDIP Abstrak Misalkan M himpunan tak kosong dan ( himpunan operasi biner assosiatif pada M. Jika untuk setiap (, ( ( ( dan untuk
A. Menemukan Dalil Pythagoras
A. Menemukan Dalil Pythagoras 1. Menemukan Dalil Pythagoras. Pada setiap segitiga siku-siku, luas daerah persegi pada sisi miring (hipotenusa) sama dengan jumlah luas daerah persegi pada sisi-sisi siku-sikunya
VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain
VEKTOR y PENDAHULUAN PETA KONSEP a Vektor di R 2 Vektor di R 3 Perkalian Skalar Dua Vektor o 45 O x Proyeksi Ortogonal suatu Vektor pada Vektor Lain Soal-Soal PENDAHULUAN Dalam ilmu pengetahuan kita sering
OLEH : PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MATEMATIKA DAN ILMU SEKOLAH TINNGI KEGURUAN DAN ILMU PENDIDIKAN
OLEH : 1. ASRIA HIRDA YANTI ( 4007014 ) 2. ANNIE RACHMAWATI ( 4006116 ) 3. RUPITA FITRIANI ( 4007036 ) 4. PERA HIJA TERISTIANA ( 4007001 ) 5. HARTATI SUSANTI ( 4007166 ) PROGRAM STUDI PENDIDIKAN MATEMATIKA
SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi.
SILABUS Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMA NEGERI 2 LAHAT : MATEMATIKA : XII / IPA : GANJIL STANDAR KOMPETENSI: 3. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan
GARIS SINGGUNG LINGKARAN
GARIS SINGGUNG LINGKARAN Banyak benda-benda di sekitarmu yang tanpa kamu sadari sebenarnya menggunakan konsep lingkaran. Misalnya, rantai sepeda, katrol timba, hingga alat-alat musik seperti drum, banjo,
Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015
PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI YOGYAKARTA TAHUN 2015 Mata Kuliah Dosen Pengampu : : Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas
C. { 0, 1, 2, 3, 4 } D. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
1. Himpunan penyelesaian dari 2x - 3 7, x { bilangan cacah }, adalah... A. { 0, 1, 2 } B. { 0, 1, 2, 3, 4, 5 } 2x - 3 7, x {bilangan cacah} 2x 7 + 3 2x 10 x 5 Hp : { 0, 1, 2, 3, 4, 5 } C. { 0, 1, 2, 3,
LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN
LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN 4 ia nc o3 D.c om Bab r: w be Su m. pa ww ne b Lingkaran Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran
RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA)
NAMA: KELAS: PENGERTIAN IRISAN KERUCUT Bangun Ruang Kerucut yang dipotong oleh sebuah bidang datar. RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) Macam-macam Irisan Kerucut: 1. Parabola 2.
GESERAN atau TRANSLASI
GESERAN atau TRANSLASI Makalah ini disusun untuk memenuhi Tugas Geometri Transformasi Dosen Pembimbing : Havid Risyanto, S.Si., M.Sc. D I S U S U N O L E H 1. AMILIA 1111050031 2. HAIRUDIN 1111050153 3.
( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75
Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran
BAB XI PERSAMAAN GARIS LURUS
BAB XI PERSAMAAN GARIS LURUS A. Pengertian Pesamaan Garis Lurus Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini
MODUL MATEMATIKA SMA IPA Kelas 11
SMA IPA Kelas DEFINISI Transformasi merupakan pemetaan titik, garis atau bidang ke titik, garis atau bidang lain pada bidang yang sama. Misalkan transformasi T memetakan titik P (, y) ke titik P(, y) dan
Materi Aljabar Linear Lanjut
Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: [email protected] JURUSAN PENDIDIKAN MATEMATIKA
SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!
SELEKSI OLIMPIADE MATEMATIKA INDONESIA 006 TINGKAT PROVINSI TAHUN 005 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi
Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili
4.5. RUMUS PERBANDINGAN VEKTOR DAN KOORDINAT A. Pengertian Vektor Posisi dari Suatu Titik Misalnya titik A, B, C Dan D. adalah titik sebarang di bidang atau di ruang. Jika titik O bertindak sebagai titik
II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3
11 II. M A T R I K S Untuk mencari pemecahan sistem persamaan linier dapat digunakan beberapa cara. Salah satu yang paling mudah adalah dengan menggunakan matriks. Dalam matematika istilah matriks digunakan
LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama)
Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR : Garis PQ = garis QR (karena bila diperpanjang akan : mewakili garis yang sama) A. PENGERTIAN TITIK, GARIS DAN BIDANG Titik,
Bilangan Real. Modul 1 PENDAHULUAN
Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah
BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang
Pertemuan 2. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuanku Tambusai Bangkinang 0. Bilangan Real 0. Bilangan Real sebagai bentuk desimal Pada pembahasan berikutnya kita diasumsikan telah mengetahui dengan
Geometri I. Garis m dikatakan sejajar dengan garis k, jika kedua garis terletak pada satu bidang datar dan kedua garis tidak berpotongan
Definisi 1.1 Garis m dikatakan memotong garis k, jika kedua garis terletak pada satu bidang datar dan bertemu satu bidang datar dan bertemu pada satu titik Definisi 1.2 Garis m dikatakan sejajar dengan
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit
1 P E N D A H U L U A N
1 P E N D A H U L U A N Pemetaan (fungsi) f dari himpunan A ke himpunan B adalah suatu hubuungan yang memasangkan setiap unsur di A dengan tepat satu unsur di B. Jika a A dan pasangannya b B, maka ditulis
TELAAH MATEMATIKA SEKOLAH MENENGAH I TRANSFORMASI GEOMETRI
TELAAH MATEMATIKA SEKOLAH MENENGAH I TRANSFORMASI GEOMETRI OLEH: 1. RATMI QORI (06081181320002) 2. FAUZIAH (06081181320015) 3. NYAYU ASTUTI (06081281320018) 4. ISKA WULANDARI (06081281320038) PENDIDIKAN
BAB 3 KONDISI RANK SEHINGGA MATRIKS AB DAN BA SERUPA. Pada bab ini akan diperkenalkan konsep matriks penrose dan grup inverse
BAB 3 KS RAK SEHGGA MATRKS AB A BA SERUPA Pada bab ini akan diperkenalkan konsep matriks penrose dan grup inverse serta akan ditunjukkan syarat cukup, syarat perlu atau keduanya pada rank matriks A dan
HASIL KALI TRANSFORMASI
Definisi : Andaikan F dan G dua transformasi, denan F : V V G : V V HASIL KALI TRANSFORMASI Maka komposisi dari F dan G yan ditulis sebaai Go F didefinisikan sebaai: (Go F) (P) = G[F(P)], P V Teorema :
GAMBAR PROYEKSI ORTOGONAL
GAMBAR PROYEKSI ORTOGONAL Berikut ini akan dibicarakan tentang Gambar Proyeksi Ortogonal secara terinci. Gambar proyeksi ortogonal yang lazim digunakan ada dua cara yaitu cara Eropa dan cara Amerika. Pada
Program Studi Pendidikan Matematika STKIP PGRI SUMBAR
VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,
FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya
FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah
Matematika EBTANAS Tahun 1986
Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010
SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka
KLASIFIKASI NEAR-RING Classifications of Near Ring
Jurnal Barekeng Vol 8 No Hal 33 39 (14) KLASIFIKASI NEAR-RING Classifications of Near Ring ELVINUS RICHARD PERSULESSY Jurusan Matematika Fakultas MIPA Universitas Pattimura Jl Ir M Putuhena, Kampus Unpatti,
MODUL 1 SISTEM KOORDINAT KARTESIUS
MODUL 1 SISTEM KOORDINAT KARTESIUS MODUL 1 SISTEM KOORDINAT KARTESIUS Dalam matematika, sistem koordinat kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang
BAB MATRIKS. Tujuan Pembelajaran. Pengantar
BAB II MATRIKS Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks persegi merupakan invers
Prestasi itu diraih bukan didapat!!! SOLUSI SOAL
SELEKSI OLIMPIADE TINGKAT PROVINSI 202 TIM OLIMPIADE MATEMATIKA INDONESIA 203 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA. Tanpa mengurangi keumuman misalkan
Aljabar Linier. Kuliah
Aljabar Linier Kuliah 13 14 15 Materi Kuliah Transformasi Linier dari F n ke F m Perubahan Matriks Basis Matriks dari Transformasi Linier Perubahan Basis untuk Transformasi Linier Matriks-matriks Ekivalen
Diktat Kuliah. Oleh:
Diktat Kuliah TEORI GRUP Oleh: Dr. Adi Setiawan UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2015 Kata Pengantar Aljabar abstrak atau struktur aljabar merupakan suatu mata kuliah yang menjadi kurikulum nasional
