KALKULUS PREDIKAT KALIMAT BERKUANTOR
|
|
|
- Sugiarto Darmali
- 9 tahun lalu
- Tontonan:
Transkripsi
1 1 KALKULUS PREDIKAT KALIMAT BERKUANTOR A. PREDIKAT DAN KALIMAT BERKUANTOR Dalam tata bahasa, predikat menunjuk pada bagian kalimat yang memberi informasi tentang subjek. Dalam ilmu logika, kalimat-kalimat yang memerlukan subjek disebut Predikat. Predikat biasanya disimbolkan dengan huruf. Perhatikan contoh berikut.... terbang ke bulan.... lebih tebal dari kamus. Keduanya merupakan kalimat yang tidak lengkap. Agar menjadi kalimat yang lengkap, haruslah disubtitusikan suatu subjek dibagian depan kalimat. Misalnya, jika subjek buku ini disubtitusikan ke kalimat... lebih tebal dari kamus, maka kalimat tersebut menjadi Buku ini lebih tebal dari kamus. Misalkan: p : terbang ke bulan q : lebih tebal dari kamus maka baik p maupun q adalah predikat-predikat. Untuk menyatakan perlunya subtitusi subjek (yang tidak diketahui), maka dituliskan sebagai p(x) dan q(y). Salah satu cara mengubah predikat menjadi kalimat adalah dengan mensubtitusikan variabelnya dengan nilai-nilai tertentu. Misalkan p(x) : x habis dibagi 5 dan x disubtitusikan dengan 35, maka p(x) menjadi kalimat benar karena 35 habis dibagi 5. Cara lain adalah dengan menambahkan kuantor pada kalimat. Kuantor adalah kata- kata seperti beberapa, semua dan kata-kata lain yang menunjukan berapa banyak elemen yang dibutuhkan agar predikat menjadi benar. Ada dua macam kuantor untuk menyatakan jumlah objek, yaitu: 1. Kuantor Universal Kuantor universal menunjukan bahwa setiap objek dalam semestanya mempunyai sifat kalimat yang menyatakanya. Simbol untuk kuantor universal adalah, dibaca untuk semua atau untuk setiap. Misalkan p(x) : x dapat mati. Pernyataan semua manusia dapat mati ditulis dalam symbol: ( x) p(x). Pernyataan ( x) p(x) bernilai benar jika hanya jika p(x) benar untuk semua p(x) dalam semestanya dan bernilai salah jika ada x yang menyebabkan p(x) salah.
2 2 2. Kuantor Eksistensial. Kuantor Eksistensial menunjukkan bahwa diantara objek-objek dalam semestanya, paling sedikit ada satu objek (atau lebih) yang mempunyai sifat kalimat yang menyatakannya. Simbol kuantor eksistensial adalah dibaca terdapat, ada, beberapa. Pernyataan ( x) q(x) bernilai benar jika dan hanya jika ada paling sedikit satu x yang menyebabkan q(x) benar dan bernilai salah jika untuk semua x dalam semestanya, q(x) salah. Variabel x dalam p(x) disebut variabel bebas karena jika x berubah maka nilai p(x) pada umumnya juga berubah. Sebaliknya, variabel x dalam ( x) p(x) merupakan variabel terikat karena nilai ( x) p(x) tidak lagi tergantung dari nilai x. Variabel x terikat oleh kuantor. LATIHAN Tentukan nilai kebenaran pernyataan berikut: 1. ( bilangan real x) x ( bilangan real x) x ( bilangan bulat m) m 2 = m 4. ( bilangan bulat x) x ( bilangan bulat x) x 2 10x + 21 = 0 B. NEGASI KALIMAT BERKUANTOR Perhatikan kalimat : Semua penumpang dalam bis yang bertabrakan selamat. Kalimat diatas bernilai salah jika ada penumpang yang meninggal. Sebaliknya, kalimat Ada penumpang yang selamat dalam kecelakaan bis dikatakan salah jika semua penumpang meninggal dalam kecelakaan bis itu. Secara umum, ingkaran kalimat: semua x bersifat p(x) adalah Ada x yang tidak bersifat p(x), dan ingkaran kalimat: Ada x yang bersifat q(x) adalah Semua x tidak bersifat q(x). Jadi ~ [ ( x) p(x) ] ( x) ~ p(x) ~ [( x) q(x) ] ( x) ~ q(x)
3 3 LATIHAN Tentukan negasi dari pernyataan berikut: 1. Semua bilangan cacah adalah bilangan real. 2. Beberapa bilangan asli adalah bilangan rasional. 3. Tidak ada bilangan prima yang genap. 4. Semua mahasiswa tidak suka belajar. 5. Tidak ada guru yang senang menari. 6. ( x) ( cos x + sin x = 1). 7. ( x) [ (x + 1) 2 = x 2 + 2x + 1]. C. EMPAT PERNYATAAN DALAM LOGIKA TRADISIONAL Logika tradisional menekankan empat tipe pernyataan yang diilustrasikan dalam pernyataan berikut: Semua ikan paus adalah hewan menyusui. Tak ada ikan paus yang termasuk hewan menyusui. Beberapa ikan paus adalah hewan menyusui. Beberapa ikan paus tidak termasuk hewan menyusui. (a). Affirmatif Umum Perhatikan pernyataan: Semua ikan paus adalah hewan menyusui. Pernyataan diatas dapat dinyatakan sebagai: Untuk setiap x, jika x adalah ikan paus, maka x adalah hewan menyusui. Misal: h(x) : x adalah ikan paus. m(x) : x adalah hewan menyusui. maka pernyataan diatas dapat ditulis dengan simbol: ( x) (h(x) m(x)) (b). Negatif Umum Perhatikan pernyataan: Tidak ada ikan paus yang termasuk hewan menyusui. Pernyataan diatas sama artinya dengan: Semua ikan paus tidak termasuk hewan menyusui.
4 4 atau dapat dinyatakan sebagai: Untuk setiap x, jika x adalah ikan paus, maka x bukan hewan menyusui. Jadi, pernyataan diatas dapat ditulis dalam simbol berikut: ( x) (h(x) ~ m(x)) (c). Affirmatif khusus Perhatikan kalimat: Beberapa ikan paus adalah hewan menyusui. Pernyataan ini dapat dinyatakan dalam ungkapan lain, yaitu: Terdapat x, sedemikian sehingga x adalah ikan paus dan x adalah hewan meyusui. Atau dinyatakan dalam simbol berikut: ( x) (h(x) m(x)) (d). Negatif khusus Peryataan: Beberapa ikan paus bukan hewan menyusui adalah contoh dari negatif umum. Pernyataan diatas sama artinya dengan: Terdapat x, sedemikian sehingga x adalah ikan paus dan x bukan hewan meyusui. Atau dinyatakan dalam simbol berikut: ( x) (h(x) ~ m(x)) D. PERNYATAAN YANG MENGANDUNG RELASI Kalimat berkuantor yang telah dibahas dalam bagian sebelumnya dapat diperluas dengan menambah beberapa kuantor sekaligus pada kalimat yang sama. Perhatikan kalimat berikut: (a). Semua pria mencintai wanita Untuk semua x, y, jika x adalah pria dan y adalah wanita, maka x mencintai y. Misal: p(x) : x adalah pria w(y) : y adalah wanita r(x,y) : x mencintai y maka simbol untuk pernyataan diatas adalah: ( x) ( y) [( p(x) w(y) ) r(x,y)]
5 5 (b). Semua wanita mencintai semua pria. ( x) ( y) [( p(x) w(y) ) r(y,x)] (c). Beberapa pria mencintai beberapa wanita. Terdapatlah x dan y sedemikian sehingga x adalah pria dan y adalah wanita dan x mencintai y. Simbol pernyataan diatas adalah: ( x) ( y) [ p(x) w(y) r(x,y)] (d). Semua pria mencintai beberapa wanita Untuk setiap x, jika x adalah pria, maka terdapat y sedemikian sehingga y adalah wanita dan x mencintai y. Simbol pernyataan diatas adalah ( x) [ p(x) ( y) (w(y) r(x,y))] (e). Beberapa pria mencintai semua wanita Terdapatlah x sedemikian sehingga x adalah pria dan untuk setiap y, jika y adalah wanita, maka x mencintai y. Simbol pernyataan diatas adalah ( x) [ p(x) ( y) ( w(y) r(x,y))] Kalimat diatas juga mempunyai arti yang sama dengan kalimat Untuk semua x, jika x adalah wanita, maka terdapatlah y sedemikian sehingga y adalah pria dan y mencintai x. yang mempunyai simbol ( x) [ w(x) ( y) (p(y) r(y,x))] LATIHAN 1. Misalkan P(x) : x adalah bilangan prima E(x) : x adalah bilangan genap A(x) : x adalah bilangan ganjil B(x,y) : x faktor y
6 6 Terjemahkan tiap-tiap simbol berikut kedalam pernyataan: a. P(23) b. E(2) P(2) c. ( x) ( B(2,x) E(x) ) d. ( x) ( E(x) B(x,6) ) e. ( x) ( ~ E(x) ~ B(2,x) ) f. ( x) [P(x) ( y) (E(y) B(x,y))] g. ( x) [ E(x) ( y) (B(x,y) E(y)) ] h. ( x) [A(x) ( y) (P(y) ~ B(x,y))] 2. Nyatakan kalimat berikut dalam bentuk simbol-simbol. a. Semua burung hidup dalam air. b. Hanya direktur yang mempunyai sekretaris pribadi. c. Orang bali tidak semuanya bisa menari. d. Tidak ada sesuatu pun di dalam rumah itu yang lolos dari kebakaran. e. Beberapa obat berbahaya, kecuali jika digunakan dalam dosis yang tepat. f. Setiap manusia akan sehat jika ia makan makanan yang bergizi dan sering berolahraga.
Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup.
LOGIKA MATEMATIKA Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup. Beberapa hal yang digunakan dalam logika
LANDASAN MATEMATIKA Handout 4 (Kuantor)
LANDASAN MATEMATIKA Handout 4 (Kuantor) Tatik Retno Murniasih, S.Si., M.Pd. [email protected] / [email protected] Standar Kompetensi Mahasiswa dapat mengerti dan memahami kuantor sehingga dapat
KALIMAT BERKUANTOR. Pertemuan 4 Senin, 11 Maret 2013
KALIMAT BERKUANTOR Pertemuan 4 Senin, 11 Maret 2013 Pokok Bahasan 1. Predikat dan kalimat berkuantor 2. Ingkaran kalimat berkuantor 3. Kalimat berkuantor ganda 4. Aplikasi logika matematika dalam ilmu
Mahasiswa memahami kuantifikasi dan simbolisme logika. 2) Mahasiswa dapat menyebutkan hubungan antara kuantor eksistensial dan kuantor
BAB II KUANTIFIKASI Tujun Instruksional Umum Mahasiswa memahami kuantifikasi dan simbolisme logika. Tujuan Instruksional Khusus 1) Mahasiswa dapat menggunakan kuantor 2) Mahasiswa dapat menyebutkan hubungan
KUANTIFIKASI Nur Insani, M.Sc
KUANTIFIKASI Nur Insani, M.Sc Pada validitas : Banyak argumen valid, namun validitasnya tak dapat diuji dengan alat uji validitas yang ada. 2 Bagaimana Validitas Argumen ini? Semua kucing adalah hewan
PTI 206 Logika. Semester I 2007/2008. Ratna Wardani
PTI 206 Logika Semester I 2007/2008 Ratna Wardani 1 Materi Logika Predikatif Fungsi proposisi Kuantor : Universal dan Eksistensial Kuantor bersusun 2 Logika Predikat Logika Predikat adalah perluasan dari
SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a
SUKU BANYAK A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a b ) 3) F(x) : [(x a)(x b)], maka S(x) = (x a)s 2 + S 1, dengan S 2 adalah sisa pembagian pada
PENALARAN DALAM MATEMATIKA
PENALARAN DALAM MATEMATIKA A. PENDAHULUAN Siswa belajar dimulai dari mengamati contoh-contoh atau fenomena Dari informasi-informasi yang diperoleh secara khusus siswa mencoba melakukan generalisasi secara
KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA. Disusun Oleh : Dra. Noeryanti, M.Si 31 MODUL LOGIKA MATEMATIKA
KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA Disusun Oleh : Dra. Noeryanti, M.Si 31 DAFTAR ISI Cover pokok bahasan... 31 Daftar isi.... 3 Judul Pokok Bahasan... 33.1. Pengantar... 33.. Kompetensi... 33.3
Logika Predikat 1. Kita akan memulai bagian ini dengan dua argumen.
Logika Predikat 1 III. Logika Predikat Kita akan memulai bagian ini dengan dua argumen. Premis Konklusi Premis Konklusi A: Semua orang menyukai Ali. B: Budi menyukai Ali. C: Cecep menyukai Ali. D: Seseorang
LOGIKA MATEMATIKA (Pendalaman Materi SMA)
LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT
BAB III KUANTOR kuantor, 1. Kuantor Universal 3. Kuantor Eksistensial
BAB III KUANTOR Untuk mengubah kalimat tebuka menjadi kalimat deklaratif, selain dengan jalan mengganti variabel dengan konstanta, dapat juga dilakukan dengan menggunakan kuantor, yaitu dengan menggunakan
Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.
Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu
LOGIKA PREDIKAT. Altien Jonathan Rindengan, S.Si, M.Kom
LOGIKA PREDIKAT Altien Jonathan Rindengan, S.Si, M.Kom Logika Predikat Seringkali kita harus memeriksa argumen yang berisi proposisi-proposisi yang berkenaan dengan kumpulan objek. Misalkan, memeriksa
Mahasiswa memahami kuantifikasi dan simbolisme logika. 2) Mahasiswa dapat menyebutkan hubungan antara kuantor eksistensial dan kuantor
BAB II KUANTIFIKASI Tujun Instruksional Umum Mahasiswa memahami kuantifikasi dan simbolisme logika. Tujuan Instruksional Khusus 1) Mahasiswa dapat menggunakan kuantor 2) Mahasiswa dapat menyebutkan hubungan
Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI.
Modul ke: 5 Logika Matematika Proposisi & Kuantor Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Materi Pembelajaran Kalkulus Proposisi Konjungsi Disjungsi
KUANTOR (Minggu ke-7)
KUANTOR (Minggu ke-7) 1 4 Pendahuluan 1. Kuantor Universal: Untuk semua x berlaku atau Untuk setiap x berlaku. S P : Himpunan semua bilangan asli. 1. x > 1 merupakan kalimat terbuka 2. Untuk semua x berlakulah
Materi-3 PROPOSITION LOGIC. Properties of Sentences Inference Methods Quantifier Sentences
Materi-3 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences 1 Properties of Sentences Adalah sifat-sifat yang dimiliki oleh kalimat logika Ada 3 sifat, yaitu: 1. Valid 2.
NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG
LOGIKA MATEMATIKA A. PERNYATAAN DAN KALIMAT TERBUKA Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenarannya (benar dan salah). 1. Gadis itu cantik. 2. Bersihkan lantai itu. 3. Pernyataan/kalimat
PROPOSITION LOGIC LOGIKA INFORMATIKA. Properties of Sentences Inference Methods Quantifier Sentences. Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta
1 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences LOGIKA INFORMATIKA Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta 2 Properties of Sentences Adalah sifat-sifat yang dimiliki
Logika Predikat. Contoh Soal. Toni Bakhtiar. September Departemen Matematika IPB. Toni Bakhtiar Logika Predikat September / 11
Logika Predikat Contoh Soal Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) Logika Predikat September 2012 1 / 11 Example Diberikan predikat berikut: "Ada makhluk hidup yang
PERTEMUAN Logika Matematika
3-1 PERTEMUAN 3 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengamu : Dr. Suarman E-mail : [email protected] HP : 0813801198 Judul Pokok Bahasan Tujuan Pembelajaran : 3. Logika Matematika
Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :
1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x=38. 38 terdiri dari 3 puluhan
LOGIKA MATEMATIKA I. PENDAHULUAN
LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan
Jadi penting itu baik, tapi jadi baik jauh lebih penting
LOGIKA MATEMATIKA Logika Matematika - Pernyataan, Nilai Kebenaran, dan Kalimat Terbuka - Pernyataan Majemuk - Konvers, Invers, dan Kontraposisi - Kuantor Universal dan Kuantor Eksistensial - Ingkaran dari
LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X
LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping
LOGIKA. Arum Handini Primandari
LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian
LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom
LOGIKA MATEMATIKA LOGIKA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Untuk menemukan suatu gagasan baru dari informasi dan gagasan yang telah ada, diperlukan proses berpikir. Proses ini dikenal
CALCULUS PREDICATE, SENTENCES REPRESENTATION LECTURE 8. DR. Herlina Jayadianti., ST., MT
CALCULUS PREDICATE, SENTENCES REPRESENTATION LECTURE 8 DR. Herlina Jayadianti., ST., MT Materi Apa itu kalkulus predikat Simbol, term, proposisi, kalimat Subterm, subkalimat Representasi kalimat Variabel
http://www.brigidaarie.com 1. Semua gajah mempunyai belalai. 2. Dumbo seekor gajah. 3. Dengan demikian, Dumbo memiliki belalai. VALID?? 1. Semua mahasiswa pasti pandai. 2. Dekisugi seorang mahasiswa. 3.
LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1
LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping
1. Memahami pengertian proposisi dan predikat. 3. Memahami penggunaan penghubung dan tabel kebenaran
Modul 1 Logika Matematika Pendahuluan Pada Modul ini akan dibahas materi yang berkaitan dengan logika proposisi dan logika predikat, serta berbagai macam manipulasi didalamnya. Tujuan Instruksional Umum
BAB III INDUKSI MATEMATIKA
3.1 Pendahuluan BAB III INDUKSI MATEMATIKA Dalam bidang matematika tidak jarang ditemui pola-pola induktif yang melibatkan himpunan indeks berupa himpunan bilangan asli atau bulat seperti barisan atau
Modul ke: Logika Matematika. Himpunan. Fakultas FASILKOM. Bagus Priambodo. Program Studi SISTEM INFORMASI.
Modul ke: 1 Logika Matematika Himpunan Fakultas FASILKOM Bagus Priambodo Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Materi Pembelajaran Berbagai macam bentuk himpunan Diagram Venn Operasi
LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B
LOGIKA MATEMATIKA A. Pernyataan, kalimat terbuka, dan ingkaran pernyataan. 1. Pernyataan Pernyataan adalah kalimat yang mengandung nilai benar atau salah tetapi tidak sekaligus kedua-duanya. a. Hasil kali
Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012
Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya
BAB I LOGIKA MATEMATIKA
BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut
POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.
POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa
kusnawi.s.kom, M.Eng version
Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.0.0.2009 Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi - Satisfiable(Contingent).
Matematika Industri I
LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai
KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA
KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan
Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses.
Unit 6 PENALARAN MATEMATIKA Clara Ika Sari Budhayanti Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan baik di bidang aritmatika, aljabar, geometri dan pengukuran,
BAB III INDUKSI MATEMATIKA
BAB III INDUKSI MATEMATIKA BAB III INDUKSI MATEMATIKA 3.1 Pendahuluan Dalam bidang matematika tidak jarang ditemui pola-pola induktif yang melibatkan himpunan indeks berupa himpunan bilangan asli atau
5. 1 Mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka)
Sumber: Art and Gallery Standar Kompetensi 5. Menerapkan logika matematika dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor Kompetensi Dasar 5. 1 Mendeskripsikan
I. PERNYATAAN DAN NEGASINYA
1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan
B. Proposisi (Pernyataan) yaitu kalimat yang mempunyai nilai salah atau benar tetapi tidak sekaligus keduanya
A. emesta Pembicaraan yaitu himpunan semua objek yang dibicarakan a. 1 + 1 = 2 Jika semesta pembicaraannya adalah himpunan bilangan bulat, himpunan bilangan cacah, himpunan bilangan asli. b. x 2 1 = 0
MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi)
MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi) Antonius Cahya Prihandoko Universitas Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Ekivalensi dan Kuantifikasi Jember, 2015 1 / 20
RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6)
RUMUS-RUMUS TAUTOLOGI (Minggu ke-5 dan 6) 1 1 Rumus-rumus tautologi Rumus 1.1 (Komutatif) 1. p q q p 2. p q q p Bukti: p q p q q p T T T T T F F F F T F F F F F F 2 Rumus 1.2 (Distributif) 1. p (q r) (p
Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2009
Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 9. Bentuk x < setara (ekivalen) dengan A. - < x C. x < E. < x < B. x < D. x > - x < - + x < dibagi - + x < x - < Jawabannya adalah B x bx m. Jika
Catatan Kuliah MA1123 Kalkulus Elementer I
Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):
PEMBUKTIAN MATEMATIKA
PEMBUKTIAN MATEMATIKA PEMBUKTIAN LOGIKA PREDIKAT PEMBUKTIAN LANGSUNG PEMBUKTIAN TAK LANGSUNG Altien Jonathan Rindengan, S.Si, M.Kom Pembuktian Logika Predikat Metode pembuktian pada dasarnya sama dengan
Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan
Unit 5 PENALARAN/LOGIKA MATEMATIKA Wahyudi Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan. Penalaran matematika menjadi pedoman atau tuntunan sah atau tidaknya
KUANTOR. A. Fungsi Pernyataan
A. Fungsi Pernyataan KUANTOR Definisi : Suatu fungsi pernyataan adalah suatu kalimat terbuka di dalam semesta pembicaraan (semesta pembicaraan diberikan secara eksplisit atau implisit). Fungsi pernyataan
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit
LOGIKA INFORMATIKA PROPOSITION LOGIC. Materi-2. Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta
Materi-2 PROPOSITION LOGIC LOGIKA INFORMATIKA Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta STMIK AMIKOM YOGYAKARTA Jl. Ringroad Utara Condong Catur Yogyakarta. Telp. 0274 884201 Fax 0274-884208 Website:
Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1
2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki
B. Proposisi (Pernyataan) yaitu kalimat yang mempunyai nilai salah atau benar tetapi tidak sekaligus keduanya
A. emesta Pembicaraan yaitu himpunan semua objek yang dibicarakan a. 1 + 1 = 2 Jika semesta pembicaraannya adalah himpunan bilangan bulat, himpunan bilangan cacah, himpunan bilangan asli. b. x 2 1 = 0
Teorema Faktor. Misalkan P (x) suatu polynomial, (x k) merupakan faktor dari P (x) jika dan hanya jika P (k) = 0
Teorema faktor adalah salah satu teorema pada submateri polynomial. Teorema ini cukup terkenal dan sangat berguna untuk menyelesaikan soal - soal baik level sekolah maupun soal level olimpiade. Berikut
Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah.
LOGIKA MATEMATIKA 1. Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. Pernyataan dilambangkan dengan huruf kecil, misalnya p, q, r dan seterusnya.
Modul Matematika X Semester 2 Logika Matematika
Modul Matematika X Semester 2 Logika Matematika Oleh : Markus Yuniarto, S.Si Tahun Pelajaran 2014 2015 SMA Santa Angela Jl. Merdeka No. 24 Bandung LOGIKA MATEMATIKA A. Standar Kompetensi : Menggunakan
BAB 2 : KALIMAT BERKUANTOR
BAB 2 : KALIMAT BERKUANTOR 2.1 PENGANTAR LOGIKA PREDIKAT 2.1.1 PENDAHULUAN Seperti yang telah dibahas sebelumnya, dapat ditarik satu kesimpulan bahwa titik berat logika adalah pada pembuktian validitas
BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar
Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian
F U N G S I A R U M H A N D I N I P R I M A N D A R I
F U N G S I A R U M H A N D I N I P R I M A N D A R I DEFINISI Fungsi adalah suatu aturan yang memetakan setiap anggota himpunan A pada tepat satu anggota himpunan B. Dimana: Himpunan A disebut domain
A. Pengertian Logika B. Pernyataan C. Nilai Kebenaran
HAND OUT PERKULIAHAN Nama Mata Kuliah : Pengantar Dasar Matematika ub Materi : Pernyataan, Konjungsi, Disjungsi, Implikasi, iimplikasi Pertemuan : 1 URAIAN POKOK PERKULIAHAN LOGIKA A. Pengertian Logika
STANDAR KOMPETENSI KOMPETENSI DASAR. Menggunakan aturan suku banyak dalam penyelesaian masalah
STANDAR KOMPETENSI Menggunakan aturan suku banyak dalam penyelesaian masalah KOMPETENSI DASAR Menggunakan teorema sisa dan teorema faktor dalam pemecahan masalah INDIKATOR Menentukan faktor, akar-akar
1 INDUKSI MATEMATIKA
1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua
SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IX LOGIKA MATEMATIKA
SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IX LOGIKA MATEMATIKA Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara,
SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA
SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA PETUNJUK UNTUK PESERTA: 1. Tes bagian pertama ini terdiri dari 20 soal. 2. Waktu yang disediakan adalah
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA
LOGIKA MATEMATIKA SOAL DAN PENYELESAIAN Logika, Himpunan, Relasi, Fungsi JONG JEK SIANG Kita menjalani hidup dari apa yang kita dapatkan Tetapi kita menikmati hidup dari apa yang kita berikan Jong Jek
TEOREMA SISA 1. Nilai Sukubanyak Tugas 1
TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk
BAB 6 LOGIKA MATEMATIKA
A 6 LOGIKA MATEMATIKA A RINGKAAN MATERI 1. Pengertian Logika adalah suatu metode yang diciptakan untuk meneliti ketepatan penalaran (bentuk pemikiran yang masuk akal). Pernyataan adalah kalimat yang hanya
Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi
Selamat datang di Perkuliahan LOGIKA MAEMAIKA Logika Matematika eori Himpunan eori fungsi Dosen : Dr. Julan HERNADI PUSAKA : Kenneth H Rossen, Discrete mathematics and its applications, fifth edition.
LOGIKA Matematika Industri I
LOGIKA TIP FTP UB Pokok Bahasan Pengertian Logika Pernyataan Matematika Nilai Kebenaran Operasi Uner Operasi Biner Tabel kebenaran Pernyataan Tautologi, Kontradiksi dan Kontingen Pernyataan-pernyataan
PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.
PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta
LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.
LOGIKA MATEMATIKA A. Definisi 1). Pernyataan Pernyataan adalah suatu kalimat yang bernilai benar atau salah, tetapi tidak sekaligus benar dan salah. Air laut rasanya asin, adalah bilangan prima, urabaya
PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya.
PEMAHAAN 1. Pengertian Kontradiksi Kontradiksi adalah dua pernyataan yang bernilai salah untuk setiap nilai kebenaran dari setiap komponen-komponennya. 2. Pembuktian dengan Kontradiksi Kontradiksi merupakan
Bagaimana Cara Guru Matematika Membantu Siswanya Mempelajari Pernyataan Berkuantor
Bagaimana Cara Guru Matematika Membantu Siswanya Mempelajari Pernyataan Berkuantor Fadjar Shadiq, M.App.Sc ([email protected] & fadjarp3g.wordpress.com) Widyaiswara PPPPTK Matematika Kemampuan bernalar
ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan
(Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: [email protected]. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang
BAHAN AJAR LOGIKA MATEMATIKA
1 BAHAN AJAR LOGIKA MATEMATIKA DI SUSUN OLEH : DRS. ABD. SALAM,MM KELAS X BM & PAR SMK NEGERI 1 SURABAYA LOGIKA MATEMATIKA Standar Kompetensi : Menerapkan logika matematika dalam pemecahan masalah yang
SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011
SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan
Prestasi itu diraih bukan didapat!!! SOLUSI SOAL
"We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang
Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi
Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara
Logika Matematika. Bab 1
Bab 1 Sumber: pkss.co.id Pada bab ini, Anda akan diajak untuk memecahkan masalah yang ber - hubungan dengan konsep, di antaranya mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka), mendeskripsikan
MATEMATIKA. Sekolah Menengah Kejuruan (SMK) Kelas XI. To ali. Kelompok Penjualan dan Akuntansi. Pusat Perbukuan Departemen Pendidikan Nasional
i MATEMATIKA Sekolah Menengah Kejuruan (SMK) Kelas XI Kelompok Penjualan dan Akuntansi To ali Pusat Perbukuan Departemen Pendidikan Nasional ii Hak Cipta pada Departemen Pendidikan Nasional Dilindungi
SUKU BANYAK. Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut:
SUKU BANYAK A. Pengertian Suku Banyak Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut: Dinamakan suku banyak (polinom) dalam yang berderajat dengan bilangan cacah
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 9-10 METODE KONTRADIKSI & METODE KONTRAPOSISI (c) Hendra Gunawan (2015) 2 Metode Pembuktian Lainnya Pada bab-bab sebelumnya kita telah
HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) EvanRamdan
HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) Pengertian Himpunan Himpunan adalah kumpulan dari benda atau objek yang berbeda dan didefiniskan secara jelas Objek di dalam himpunan
Pertemuan 1. Pendahuluan Dasar-Dasar Logika
Pertemuan 1 Pendahuluan Dasar-Dasar Logika Apakah Matematika Diskrit itu? Apa yang dimaksud dengan kata diskrit (discrete)? Objek disebut diskrit jika: - terdiri dari elemen yang berbeda (distinct) dan
KUANTIFIER Drs. C. Jacob, M.Pd Dalam Bagian 1 kita menentukan kalimat. P(x): x 2 5x + 6 = 0. Untuk setiap x, x 2 5x + 6 = 0.
KUANTIFIER Drs. C. Jacob, M.Pd Email: [email protected] Dalam Bagian 1 kita menentukan kalimat x 2 5x + 6 = 0 perlu diperhatikan dalam suatu konteks khusus agar menjadi suatu pernyataan. Apabila suatu kalimat
Logika, Himpunan, dan Fungsi
Logika, Himpunan, dan Fungsi A. Logika Matematika Logika matematika adalah ilmu untuk berpikir dan menalar dengan menggunakan bahasa serta simbol-simbol matematika dengan benar. 1) Kalimat Matematika Kalimat
Pengertian Fungsi. MA 1114 Kalkulus I 2
Fungsi Pengertian Fungsi Relasi : aturan yang mengawankan himpunan Fungsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu ungsi jika setiap elemen di dalam A dihubungkan dengan tepat
A. PERSAMAAN GARIS LURUS
A. PERSAMAAN GARIS LURUS Persamaan garis lurus adalah hubungan nilai x dan nilai y yang terletak pada garis lurus serta dapat di tulis px + qy = r dengan p, q, r bilangan real dan p, q 0. Persamaan dalam
PERNYATAAN (PROPOSISI)
Logika Gambaran Umum Logika : - Logika Pernyataan membicarakan tentang pernyataan tunggal dan kata hubungnya sehingga didapat kalimat majemuk yang berupa kalimat deklaratif. - Logika Predikat menelaah
SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009
SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN
Teori Himpunan Elementer
Teori Himpunan Elementer Kuliah Matematika Diskret Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Himpunan Januari 2016 1 / 72 Acknowledgements
BAB V HIMPUNAN. Himpunan adalah kumpulan benda-benda atau obyek yang mempunyai definisi yang jelas.
BAB V HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan benda-benda atau obyek yang mempunyai definisi yang jelas. Contoh: 1. A adalah himpunan bilangan genap antara 1 sampai dengan 11. Anggota
Proposition Logic. (Logika Proposisional) Bimo Sunarfri Hantono
Proposition Logic (Logika Proposisional) Bimo Sunarfri Hantono [email protected] Proposition (pernyataan) Merupakan komponen penyusun logika dasar yang dilambangkan dengan huruf kecil (p, q, r,...) yang
