PEMBUKTIAN MATEMATIKA
|
|
|
- Liana Kusumo
- 9 tahun lalu
- Tontonan:
Transkripsi
1 PEMBUKTIAN MATEMATIKA PEMBUKTIAN LOGIKA PREDIKAT PEMBUKTIAN LANGSUNG PEMBUKTIAN TAK LANGSUNG Altien Jonathan Rindengan, S.Si, M.Kom
2 Pembuktian Logika Predikat Metode pembuktian pada dasarnya sama dengan pada logika proporsional Menggunakan dalil kesetaraan dan aturan inferensia Ditambah aturan-aturan dalam logika predikat
3 Pembuktian Logika Predikat. Contoh 1 Misalkan ada rangkaian proposisi : Setiap manusia pasti mati. Furlan adalah manusia. Oleh karena itu Furlan pasti mati. Buktikan bahwa kesimpulan ini adalah benar.
4 Pembuktian Logika Predikat. Jawab Buat predikatnya, misal : P(x) : x adalah manusia Q(x): x pasti mati Argumen soal diatas menjadi : P 1 : x [P(x) Q(x)] P 2 : P(Furlan) K : Q(Furlan)
5 Pembuktian Logika Predikat. Untuk x = Furlan, menjadi : P 1 : P(Furlan) Q(Furlan) P 2 : P(Furlan) Q(Furlan) (modus ponens) Karena kesimpulan Q(Furlan), terbukti benar.
6 Pembuktian Logika Predikat. Contoh 2 Tunjukkan bahwa pernyataan : x [P(x) -Q(x)] adalah kesimpulan dari premis-premis : x [-[-Q(x) -R(x)]] x [R(x) P(x)]
7 Pembuktian Logika Predikat. Jawab Argumen soal dapat ditulis : P 1 P 2 K : x [-[-Q(x) -R(x)]] : x [R(x) P(x)] : x [P(x) -Q(x)] Untuk suatu nilai x = e, pada P 1 berlaku : -[-Q(e) -R(e)] = -[Q(e) -R(e)] (tambahan) = -Q(e) R(e) (demorgan)
8 Pembuktian Logika Predikat. Pada P 2 berlaku : R(e) P(e) Dapat ditulis kembali : P 11 P 12 P 21 P 12 : -Q(e) : R(e) : R(e) : P(e)
9 Pembuktian Logika Predikat. Perhatikan P 11 dan P 22, berlaku : -Q(e) P(e) = P(e) -Q(e) Atau ditulis x [P(x) -Q(x)] (komutatif) Terbukti benar
10 Pembuktian Logika Predikat. Contoh 3 Ada pasien yang menyukai semua dokter. Semua pasien tidak menyukai tukang obat. Maka disimpulkan bahwa semua dokter pasti bukan tukang obat Buktikan kebenaran dari argumen ini.
11 Pembuktian Logika Predikat. Jawab P(x) : x adalah pasien Q(y) : y adalah dokter R(y) : y adalah tukang obat S(x,y) : x suka y P 1 : x [P(x) y (Q(y) S(x,y)] P 2 : x [P(x) y (R(y) -S(x,y)] K : y [Q(y) -R(y)]
12 Pembuktian Logika Predikat. Untuk suatu nilai x=e berlaku : P 1 : [P(e) y (Q(y) S(e,y)] P 2 : [P(e) y (R(y) -S(e,y)] Dapat ditulis : P 11 : P(e) P 12 : y (Q(y) S(e,y)) P 21 : P(e) P 22 : y (R(y) -S(e,y)) = y (S(y) -R(e,y)) (kontrapositif)
13 Pembuktian Logika Predikat. Perhatikan P 12 dan P 22 : P 12 : y (Q(y) S(e,y)) P 22 : y (S(e,y) -R(y)) y (Q(y) -R(y)) (silogisme) Terbukti benar karena K : y [Q(y) -R(y)]
14 Pembuktian Logika Predikat. Latihan Tunjukkan bahwa pernyataan : x [F(x) -S(x)] adalah kesimpulan dari premis-premis : x (F(x) S(x)) y (M(y) W(y)) y(m(y) -W(y))
15 Pembuktian Langsung Misalkan p dan q adalah proposisi. Pembuktian langsung p q (p implikasi logik ke q) adalah dengan mengkonstruksi proposisi-proposisi r 1, r 2,, r n, sedemikian sehingga p r 1, r 1 r 2, r 2 r 3,, r n q
16 Pembuktian Langsung. Contoh 4 Buktikan bahwa kuadrat bilangan ganjil adalah juga bilangan ganjil.
17 Pembuktian Langsung. Jawab Misalkan p : n bilangan ganjil q : n 2 bilangan ganjil p : n bilangan ganjil r 1 : n = 2k + 1, k Z r 2 : n 2 = (2k + 1) 2 r 3 : n 2 = 4k 2 + 4k + 1 r 4 : n 2 = 2(2k 2 + 2k) + 1 r 5 : n 2 = 2m + 1, m=(2k 2 + 2k) Z q : n 2 bilangan ganjil.
18 Conditional Proof Conditional proof adalah pembuktiam proposisi yang berbentuk implikasi. Contoh 5 Buktikan, jika m adalah bilangan bulat genap dan n bilangan bulat ganjil maka m + n adalah bilangan bulat ganjil.
19 Conditional Proof. Jawab Misalkan m = 2k, k Z n = 2j + 1, j Z m + n = 2k + 2j + 1 = 2(k +j) + 1 = 2 p +1, p Z
20 Pembuktian Tak Langsung Ada dua jenis pembuktian tak langsung yaitu : (1) Pembuktian Kontrapositif (2) Pembuktian Kontradiksi Kedua jenis pembuktian ini dimulai dengan memisalkan kesimpulan q salah, dengan kata lain memisalkan q benar.
21 Pembuktian Tak Langsung. 1. Pembuktian Kontrapositif Menurut aturan kontrapositif, menunjukkan kebenaran proposisi p q sama dengan menunjukkan - q -p. Contoh 6 Buktikan, jika n 2 genap maka n genap untuk n bilangan bulat.
22 Pembuktian Tak Langsung. Jawab Misalkan p : n 2 genap -p : n 2 ganjil q : n genap -q : n ganjil maka p q : jika n 2 genap maka n genap setara dengan - q -p : jika n ganjil maka n 2 ganjil proposisi ini sudah dibuktikan pada contoh 1 tadi.
23 Pembuktian Tak Langsung. 2. Pembuktian Kontradiksi Pada pembuktian kontradiksi, akan dimulai dengan memisalkan q salah dan selanjutnya ditunjukkan terdapat pernyataan yang kontradiksi sehingga disimpulkan haruslah q benar. Contoh 7 1 Misalkan a bilangan real, jika a > 0 maka a > 0.
24 Pembuktian Tak Langsung. Jawab Anggap pernyataan a > 0 benar dan 1 a > 0 salah. Proposisi ini akan menjadi a > 0 dan 0. Berdasarkan sifat perkalian diperoleh 1 a a( ) Akan kontradiksi dengan kenyataan bahwa 1>0. 1 Jadi haruslah > 0. a 1 a
PEMBUKTIAN MATEMATIKA
PEMBUKTIAN MATEMATIKA LOGIKA INFERENSIA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Kata inferensia digunakan untuk menyatakan sekumpulan premis yang diikuti dengan kesimpulan. Infrensia yang sahih
LOGIKA PREDIKAT. Altien Jonathan Rindengan, S.Si, M.Kom
LOGIKA PREDIKAT Altien Jonathan Rindengan, S.Si, M.Kom Logika Predikat Seringkali kita harus memeriksa argumen yang berisi proposisi-proposisi yang berkenaan dengan kumpulan objek. Misalkan, memeriksa
LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom
LOGIKA MATEMATIKA LOGIKA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Untuk menemukan suatu gagasan baru dari informasi dan gagasan yang telah ada, diperlukan proses berpikir. Proses ini dikenal
Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012
Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya
Contoh : 1..Buktikan bahwa untuk semua bilangan bulat n, jika n adalah bilangan ganjil, maka n 2 adalah bilangan ganjil! Jawab :
PEMBUKTIAN LANGSUNG Untuk menunjukan pernyataan (p=>q) benar dapat dilakukan dengan menggunakan premis p untuk mendapatkan konklusi q. Metode pembuktian yang termasuk bukti langsung antara lain modus ponens,
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 9-10 METODE KONTRADIKSI & METODE KONTRAPOSISI (c) Hendra Gunawan (2015) 2 Metode Pembuktian Lainnya Pada bab-bab sebelumnya kita telah
LOGIKA MATEMATIKA I. PENDAHULUAN
LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan
Pertemuan 5. Proposisi Lanjutan. Dosen Ir. Hasanuddin Sirait, MT STMIK Parna Raya Manado HP :
Pertemuan 5 Proposisi Lanjutan Dosen Ir. Hasanuddin Sirait, MT www.hsirait.wordpress.com STMIK Parna Raya Manado HP : 081356633766 KESETARAAN LOGIS Dua buah pernyataan yang berbeda dikatakan setara/equivalen
BAB 6 LOGIKA MATEMATIKA
A 6 LOGIKA MATEMATIKA A RINGKAAN MATERI 1. Pengertian Logika adalah suatu metode yang diciptakan untuk meneliti ketepatan penalaran (bentuk pemikiran yang masuk akal). Pernyataan adalah kalimat yang hanya
LANDASAN MATEMATIKA Handout 4 (Kuantor)
LANDASAN MATEMATIKA Handout 4 (Kuantor) Tatik Retno Murniasih, S.Si., M.Pd. [email protected] / [email protected] Standar Kompetensi Mahasiswa dapat mengerti dan memahami kuantor sehingga dapat
1. Memahami pengertian proposisi dan predikat. 3. Memahami penggunaan penghubung dan tabel kebenaran
Modul 1 Logika Matematika Pendahuluan Pada Modul ini akan dibahas materi yang berkaitan dengan logika proposisi dan logika predikat, serta berbagai macam manipulasi didalamnya. Tujuan Instruksional Umum
1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi
1.3 Pembuktian 1.3.1 Tautologi dan Kontradiksi Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi yang membentuknya disebut toutologi, sedangkan proposisi yang selalu bernilai salah
KALKULUS PREDIKAT KALIMAT BERKUANTOR
1 KALKULUS PREDIKAT KALIMAT BERKUANTOR A. PREDIKAT DAN KALIMAT BERKUANTOR Dalam tata bahasa, predikat menunjuk pada bagian kalimat yang memberi informasi tentang subjek. Dalam ilmu logika, kalimat-kalimat
LOGIKA MATEMATIKA. MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM. proposisi conjungsi tautologi inferensi
LOGIKA MATEMATIKA MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM Definisi Proposisi adalah suatu kalimat yang bernilai benar atau salah dan tidak keduanya Proposisi Kalimat Deklaratif Proposisi
SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a
SUKU BANYAK A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a b ) 3) F(x) : [(x a)(x b)], maka S(x) = (x a)s 2 + S 1, dengan S 2 adalah sisa pembagian pada
LOGIKA. Arum Handini Primandari
LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian
Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.
Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu
kusnawi.s.kom, M.Eng version
Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.0.0.2009 Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi - Satisfiable(Contingent).
LOGIKA MATEMATIKA (Pendalaman Materi SMA)
LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT
BAB 2 PENGANTAR LOGIKA PROPOSISIONAL
BAB 2 PENGANTAR LOGIKA PROPOSISIONAL 1. Pendahuluan Dilihat dari bentuk struktur kalimatnya, suatu pernyataan akan memiliki bentuk susunan minimal terdiri dari subjek diikuti predikat kemudian dapat diikuti
Logika Pembuktian. Matematika Informatika 3 Onggo
Logika Pembuktian Matematika Informatika 3 Onggo Wr @OnggoWr Metode Pembuktian 1. Metode Pembuktian Langsung (Direct Proof) 2. Metode Pembuktian Tak-Langsung (Indirect Proof) a. Proof by Contrapositive
MATEMATIKA DASAR (Validitas Pembuktian)
MATEMATIKA DASAR (Validitas Pembuktian) Antonius Cahya Prihandoko Universitas Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Validitas Pembuktian Jember, 2015 1 / 22 Outline 1 Premis
LOGIKA MATEMATIKA HIMPUNAN. Altien Jonathan Rindengan, S.Si, M.Kom
LOGIKA MATEMATIKA HIMPUNAN Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Himpunan adalah materi dasar yang sangat penting dalam matematika dan teknik informatika/ilmu komputer. Hampir setiap materi
LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B
LOGIKA MATEMATIKA A. Pernyataan, kalimat terbuka, dan ingkaran pernyataan. 1. Pernyataan Pernyataan adalah kalimat yang mengandung nilai benar atau salah tetapi tidak sekaligus kedua-duanya. a. Hasil kali
ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan
(Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: [email protected]. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang
BAB IV LOGIKA A. Pernyataan B. Operasi uner
BAB IV LOGIKA A. Pernyataan Pernyataan adalah kalimat matematika tertutup yang benar atau yang salah, tetapi tidak kedua-duanya pada saat yang bersamaan. Pernyataan biasa dilambangkan dengan p, q, r,...
Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup.
LOGIKA MATEMATIKA Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup. Beberapa hal yang digunakan dalam logika
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA
PENALARAN INDUKTIF DAN DEDUKTIF
Unit 6 PENALARAN INDUKTIF DAN DEDUKTIF Wahyudi Pendahuluan U nit ini membahas tentang penalaran induktif dan deduktif yang berisi penarikan kesimpulan dan penalaran indukti deduktif. Dalam penalaran induktif
LOGIKA MATEMATIKA SOAL DAN PENYELESAIAN Logika, Himpunan, Relasi, Fungsi JONG JEK SIANG Kita menjalani hidup dari apa yang kita dapatkan Tetapi kita menikmati hidup dari apa yang kita berikan Jong Jek
Teori Dasar Logika (Lanjutan)
Teori Dasar Logika (Lanjutan) Inferensi Logika Logika selalu berhubungan dengan pernyataan-pernyataan yang ditentukan nilai kebenarannya. Untuk menentukan benar tidaknya kesimpulan berdasarkan sejumlah
PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka.
BAB 2 LOGIKA PENGERTIAN Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan Matematika & Analisis Real Matematika berurusan dengan gagasan, yang mungkin merupakan abstraksi atau sari dari sesuatu yang terdapat
Logika Matematika. ILFA STEPHANE, M.Si. September Teknik Sipil dan Geodesi Institut Teknologi Padang
ILFA STEPHANE, M.Si September 2012 Teknik Sipil dan Geodesi Institut Teknologi Padang Definisi 1 Logika adalah usaha dalam memutuskan ya atau tidaknya (whether or not) suatu keputusan yang sah. Oleh karena
Berdasarkan tabel 1 diperoleh bahwa p q = q p.
PEMAHAAN 1. Pengertian Kata LOGIKA mengacu pada suatu metode atau cara yang sistematis dalam berpikir (reasoning), dan terdapat dua sistem khusus yaitu : suatu metode dasar yang disebut dengan Kalkulus
Unit 7 PENALARAN INDUKTIF DAN DEDUKTIF. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar dan tetap bersemangat, semoga Anda sukses.
Unit 7 PENALARAN INDUKTIF DAN DEDUKTIF Pendahuluan Clara Ika Sari Budhayanti U nit penalaran induktif dan deduktif ini akan membahas mengenai penarikan kesimpulan dan penalaran indukti deduktif. Dalam
LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.
LOGIKA MATEMATIKA A. Definisi 1). Pernyataan Pernyataan adalah suatu kalimat yang bernilai benar atau salah, tetapi tidak sekaligus benar dan salah. Air laut rasanya asin, adalah bilangan prima, urabaya
LOGIKA INFORMATIKA PROPOSITION LOGIC. Materi-2. Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta
Materi-2 PROPOSITION LOGIC LOGIKA INFORMATIKA Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta STMIK AMIKOM YOGYAKARTA Jl. Ringroad Utara Condong Catur Yogyakarta. Telp. 0274 884201 Fax 0274-884208 Website:
METODA PEMBUKTIAN DALAM MATEMATIKA
1 1 Program Studi Pend Matematika FKIP UM Ponorogo October 29, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat
1.6 RULES OF INFERENCE
1.6 RULES OF INFERENCE 1 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir
KUANTOR. A. Fungsi Pernyataan
A. Fungsi Pernyataan KUANTOR Definisi : Suatu fungsi pernyataan adalah suatu kalimat terbuka di dalam semesta pembicaraan (semesta pembicaraan diberikan secara eksplisit atau implisit). Fungsi pernyataan
PROPOSITION LOGIC LOGIKA INFORMATIKA. Properties of Sentences Inference Methods Quantifier Sentences. Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta
1 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences LOGIKA INFORMATIKA Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta 2 Properties of Sentences Adalah sifat-sifat yang dimiliki
BAB I LOGIKA MATEMATIKA
BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut
BUKTI DAN PEMBUKTIAN DALAM PENGAJARAN MATEMATIKA DI SEKOLAH MENENGAH. Tedy Machmud Fakultas MIPA Universitas Negeri Gorontalo
BUKTI DAN PEMBUKTIAN DALAM PENGAJARAN MATEMATIKA DI SEKOLAH MENENGAH Tedy Machmud Fakultas MIPA Universitas Negeri Gorontalo Abstrak: Pengajaran matematika pada dasarnya dititikberatkan pada perubahan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 3 DEFINISI DAN PERISTILAHAN MATEMATIKA (c) Hendra Gunawan (2015) 2 Ingat PROPOSISI Ini? Proposisi. Jika segitiga siku-siku XYZ dengan
TEKNIK PEMBUKTIAN. (Yus Mochamad Cholily)
TEKNIK PEMBUKTIAN (Yus Mochamad Cholily) Pembuktian merupakan aktifitas yang tidak bisa dipisahkan dengan Matematika. Hal ini disebabkan produk matematika pada umumnya berbentuk teorema yang harus dibuktikan
PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya.
PEMAHAAN 1. Pengertian Kontradiksi Kontradiksi adalah dua pernyataan yang bernilai salah untuk setiap nilai kebenaran dari setiap komponen-komponennya. 2. Pembuktian dengan Kontradiksi Kontradiksi merupakan
BAB I NOTASI, KONJEKTUR, DAN PRINSIP
BAB I NOTASI, KONJEKTUR, DAN PRINSIP Kompetensi yang akan dicapai setelah mempelajari bab ini adalah sebagai berikut. (1) Dapat memberikan sepuluh contoh notasi dalam teori bilangan dan menjelaskan masing-masing
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan Intro: Apa itu Matematika? Matematika adalah.. 2 Archimedes & Lingkaran Archimedes mempelajari lingkaran. Ia berhasil membuktikan
MATEMATIKA DISKRIT. Logika
MATEMATIKA DISKRIT Logika SILABUS KULIAH 1. Logika 2. Himpunan 3. Matriks, Relasi dan Fungsi 4. Induksi Matematika 5. Algoritma dan Bilangan Bulat 6. Aljabar Boolean 7. Graf 8. Pohon REFERENSI Rinaldi
Modul Matematika X Semester 2 Logika Matematika
Modul Matematika X Semester 2 Logika Matematika Oleh : Markus Yuniarto, S.Si Tahun Pelajaran 2014 2015 SMA Santa Angela Jl. Merdeka No. 24 Bandung LOGIKA MATEMATIKA A. Standar Kompetensi : Menggunakan
Pertemuan 3 METODE PEMBUKTIAN
Pertemuan 3 METODE PEMBUKTIAN Metode Pembuktian Petunjuk umum dalam pembuktian Langkah-langkah untuk melakukan pembuktian adalah sebagai berikut: 1. Tulislah teorema yang akan dibuktikan 2. Tandailah permulaan
BAB III DASAR DASAR LOGIKA
BAB III DASAR DASAR LOGIKA 1. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 2
RENCANA PELAKSANAAN PEMBELAJARAN
RENCANA PELAKSANAAN PEMBELAJARAN Materi Pelajaran : Matematika Kelas/ Semester : X / 2 Pertemuan ke : 1,2 Alokasi Waktu : 5 x 45 menit Standar Kompetensi : Menerapkan logika matematika dalam pemecahan
RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan
RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan Standar Kompetensi Kompetensi Dasar Indikator Alokasi Waktu
RENCANA PEMBELAJARAN
ISO 91 : 28 Disusun Oleh Diperiksa Oleh Disetujui Oleh Tanggal Berlaku 1 September 2015 Diana, M.Kom A.Haidar Mirza, M.Kom M. Izman Hardiansyah, Ph.D Mata Kuliah : Logika Informatika Semester : Kode :
TEKNIK BUKTI: I Drs. C. Jacob, M.Pd
TEKNIK BUKTI: I Drs C Jacob, MPd Email: cjacob@upiedu Dalam dua bagian pertama kita memperkenalkan suatu kata-kata sukar logika dan matematika Tujuannya adalah tentu, agar mampu untuk membaca dan menulis
ARGUMENTASI. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya.
ARGUMENTASI Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 1 + 2 = 3 b. Kuala
Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1)
Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1) Kalkulus 2 Nanang Susyanto Departemen Matematika FMIPA UGM 07 Februari 2017 NS (FMIPA UGM) Teknik pengintegralan 07/02/2017 1 / 8 Pemeran-pemeran
LOGIKA. /Nurain Suryadinata, M.Pd
Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi
SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IX LOGIKA MATEMATIKA
SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IX LOGIKA MATEMATIKA Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara,
MATEMATIKA DISKRIT LOGIKA
MATEMATIKA DISKRIT LOGIKA Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika.
1 INDUKSI MATEMATIKA
1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua
IMPLEMENTASI STRATEGI PERLAWANAN UNTUK PEMBUKTIAN VALIDITAS ARGUMEN DENGAN METODE REDUCTIO AD ABSURDUM
IMPLEMENTASI STRATEGI PERLAWANAN UNTUK PEMBUKTIAN VALIDITAS ARGUMEN DENGAN METODE REDUCTIO AD ABSURDUM Abstrak Pembuktian validitas argumen dengan menggunakan tabel kebenaran memerlukan baris dan kolom
5. 1 Mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka)
Sumber: Art and Gallery Standar Kompetensi 5. Menerapkan logika matematika dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor Kompetensi Dasar 5. 1 Mendeskripsikan
RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN
RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN Updated by Admin of Bahan Belajar Logika matematika merupakan salah satu materi pelajaran matematika dan cabang logika yang mengandung kajian matematis logika.
PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.
PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta
MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi)
MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi) Antonius Cahya Prihandoko Universitas Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Ekivalensi dan Kuantifikasi Jember, 2015 1 / 20
Teorema Faktor. Misalkan P (x) suatu polynomial, (x k) merupakan faktor dari P (x) jika dan hanya jika P (k) = 0
Teorema faktor adalah salah satu teorema pada submateri polynomial. Teorema ini cukup terkenal dan sangat berguna untuk menyelesaikan soal - soal baik level sekolah maupun soal level olimpiade. Berikut
CHAPTER 5 INDUCTION AND RECURSION
CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil
METODA PEMBUKTIAN DALAM MATEMATIKA
1 1 Program Studi Pend Matematika FKIP UM Ponorogo January 12, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat
GARIS-GARIS BESAR PROGRAM PENGAJARAN
Nama Mata Kuliah Kode Mata Kuliah : MAT 101 Bobot SKS : 3 (2-2) : Landasan Matematika GARIS-GARIS BESAR PROGRAM PENGAJARAN Deskripsi : Mata kuliah ini membahas konsep-konsep dasar matematika yang meliputi
Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).
Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai
Silabus. Tugas individu, tugas kelompok, kuis.
Silabus Nama Sekolah : SMK Mata Pelajaran : MATEMATIKA Kelas / Program : X / TEKNOLOGI, KESEHATAN, DAN PERTANIAN Semester : GANJIL Sandar Kompetensi: 1. Memecahkan masalah berkaitan dengan konsep operasi
BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?
BAB I PENDAHULUAN 1.1 LATAR BELAKANG Secara etimologi, istilah Logika berasal dari bahasa Yunani, yaitu logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga ilmu pengetahuan. Dalam arti
DASAR DASAR LOGIKA. Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya.
DASAR DASAR LOGIKA 1. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 2 + 2 = 4
PEMECAHAN MASALAH MATEMATIKA
PEMECAHAN MASALAH MATEMATIKA Oleh: Kusnandi A. Pengantar Masalah dalam matematika adalah suatu persoalan yang siswa sendiri mampu menyelesaikannya tanpa menggunakan cara atau algoritma yang rutin. Maksudnya
LOGIKA MATEMATIKA. Modul Matematika By : Syaiful Hamzah Nasution
LOGIKA MATEMATIKA Logika matematika mempunyai peranan mendasar dalam perkembangan teknologi computer. Karena logika digunakan dalam berbagai aspek di bidang computer seperti pemrograman, ersitektur computer,
Materi-3 PROPOSITION LOGIC. Properties of Sentences Inference Methods Quantifier Sentences
Materi-3 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences 1 Properties of Sentences Adalah sifat-sifat yang dimiliki oleh kalimat logika Ada 3 sifat, yaitu: 1. Valid 2.
Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih
Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint
BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran
BAB 4 PROPOSISI 1. Pernyataan dan Nilai Kebenaran Ilmu logika adalah berhubungan dengan kalimat-kalimat (argumen-argumen) dan hubungan yang ada diantara kalimat-kalimat tersebut. Tujuannya adalah memberikan
LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X
LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi
CHAPTER 5 INDUCTION AND RECURSION
CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil
I. PERNYATAAN DAN NEGASINYA
1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan
Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah.
LOGIKA MATEMATIKA 1. Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. Pernyataan dilambangkan dengan huruf kecil, misalnya p, q, r dan seterusnya.
LOGIKA Matematika Industri I
LOGIKA TIP FTP UB Pokok Bahasan Pengertian Logika Pernyataan Matematika Nilai Kebenaran Operasi Uner Operasi Biner Tabel kebenaran Pernyataan Tautologi, Kontradiksi dan Kontingen Pernyataan-pernyataan
Matematika Industri I
LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai
PERTEMUAN Logika Matematika
3-1 PERTEMUAN 3 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengamu : Dr. Suarman E-mail : [email protected] HP : 0813801198 Judul Pokok Bahasan Tujuan Pembelajaran : 3. Logika Matematika
Proposition Logic. (Logika Proposisional) Bimo Sunarfri Hantono
Proposition Logic (Logika Proposisional) Bimo Sunarfri Hantono [email protected] Proposition (pernyataan) Merupakan komponen penyusun logika dasar yang dilambangkan dengan huruf kecil (p, q, r,...) yang
ARGUMEN DAN METODE PENARIKAN KESIMPULAN
1 RGUMEN DN METODE PENRIKN KESIMPULN rgumen adalah rangkaian pernyataan-pernyataan yang mempunyai ungkapan pernyataan penarikan kesimpulan (inferensi). rgumen terdiri dari pernyataanpernyataan yang terdiri
kusnawi.s.kom, M.Eng version
Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.1.0.2009 Properties of Sentences Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi -
LOGIKA MATEMATIKA. Pernyataan
LOGIKA MATEMATIKA 1 PERNYATAAN DAN UKAN PERNYATAAN A Pengertian logika Matematika Logika adalah ilmu untuk berpikir dan menalar dengan benar. Logika matematika (logika simbolik) adalah ilmu tentang penyimpulan
BAB 3 RING ARMENDARIZ. bahwa jika ab = 0, maka ba = 0 (diketahui ab = 0, maka (ba) 2 = baba = b.0.a = 0
BAB 3 RING ARMENDARIZ 3.1 Ring Terreduksi Suatu ring R disebut ring terreduksi jika tidak mempunyai elemen nilpoten tak nol. Secara ekuivalen, suatu ring dikatakan terreduksi jika tidak mempunyai elemen
BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN
BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN 2.1 Pendahuluan Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi
VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR
98 VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR Elly s Mersina Mursidik Program Studi Pendidikan Guru Sekolah Dasar Fakultas Ilmu Pendidikan IKIP
ATURAN INFERENSI. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 6 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo
Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 6 FONDASI MATEMATIKA Masalah Penarikan Kesimpulan Kesimpulan apa yang dapat diambil dari deskripsi berikut 1 Jika seseorang kuliah di perguruan
Mahdhivan Syafwan. PAM 123 Pengantar Matematika
Mahdhivan Syafwan PAM 123 Pengantar Matematika APAKAH LOGIKA ITU PENTING? http://hukum.kompasiana.com/2012/03/31/dpr-menunda-sementara-kenaikan-bbm-bersubsidi-451248.html Pasal 7 Ayat 6 : Harga jual eceran
Logika Proposisi 1. Definisi 1. (Proposisi) Proposisi adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya sekaligus.
Logika Proposisi 1 I. Logika Proposisi Logika adalah bagian dari matematika, tetapi pada saat yang sama juga merupakan bahasa matematika. Pada akhir abad ke-19 dan awal abad ke-20, ada kepercayaan bahwa
Logika Proposisi. Adri Priadana ilkomadri.com
Logika Proposisi Adri Priadana ilkomadri.com Matematika Diskrit Apa? Cabang matematika yg mempelajari tentang obyek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)? Objek disebut diskrit jika:
BAHAN AJAR LOGIKA MATEMATIKA
1 BAHAN AJAR LOGIKA MATEMATIKA DI SUSUN OLEH : DRS. ABD. SALAM,MM KELAS X BM & PAR SMK NEGERI 1 SURABAYA LOGIKA MATEMATIKA Standar Kompetensi : Menerapkan logika matematika dalam pemecahan masalah yang
