BAB 6 LOGIKA MATEMATIKA
|
|
|
- Dewi Tedja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 A 6 LOGIKA MATEMATIKA A RINGKAAN MATERI 1. Pengertian Logika adalah suatu metode yang diciptakan untuk meneliti ketepatan penalaran (bentuk pemikiran yang masuk akal). Pernyataan adalah kalimat yang hanya benar saja atau salah saja, tetapi tidak sekaligus benar dan salah. Kalimat terbuka adalah kalimat yang memuat peubah (variabel, sehingga belum dapat ditentukan benar atau salahnya). 2. Lima Penghubung Matematika Negasi (ingkaran) Notasi : ~ p Konjungsi (dan) Notasi : Disjungsi (atau) Notasi : Implikasi (jika, maka ) Notasi : iimplikasi ( jika dan hanya jika ) Notasi :. Tabel kebenarannya p q ~p p q P q 4. Konvers, Invers, Kontrapositif Implikasi Konvers q p Invers ~p ~q Kontraposisi ~q ~p 5. Tautologi dan Pernyataan Ekuivalen Tautologi adalah pernyataan majemuk yang selalu benar untuk semua kemungkinan nilai kebenaran. Implikasi logis adalah tautologi yang memuat pernyataan implikasi. Kontradiksi adalah pernyataan majemuk yang selalu salah untuk semua kemungkinan nilai kebenaran. Kontingensi adalah pernyataan majemuk yang mengandung nilai salah dan benar pada kemungkinan nilai kebenarannya. Pernyataan yang Ekuivalen ( ) a. q p q p b. p () () (p r) p () () (p r) c. p p p p p p d. p p p e. p p p f. ~() ~ p ~ q ~() ~ p ~ q g. ~ q ~ p ~ h. () (q p) (~ ) (~ q p) 6. Penarikan Kesimpulan Modus Ponens Modus Tollens ilogisme premis 1 premis 1 premis 1 p premis 2 ~ q premis 2 premis 2 q kesimpulan ~ p kesimpulan p r kesimpulan 0 ukses Ujian Nasional Matematika
2 7. Pernyataan erkuantor Universal : = semua, setiap Khusus : = ada, berapa, sebagian Kalimat berkuantor a. (x); P(x) Q(x) b. (x); P(x) Q(x) Negasinya a. (x); P(x) ~ Q(x) b. (x); P(x) ~ Q(x) 8. ukti dalam Matematika ukti tak langsung Menggunakan konsep : ~ q ~ p ukti dengan induksi matematika a. Tunjukkan bahwa rumus P(n) benar untuk n = 1 b. Tunjukkan bahwa jika rumus P(n) benar untuk n = k, maka rumus P(n) juga benar untuk n = k+1. OAL DAN PEMAHAAN 1. Nilai kebenaran dari pernyataan majemuk () (~p ~q) adalah. a. b. c. d. e. Jawaban: b Tabel kebenarannya p q ~p ~q ~p ~q () (~p ~q) Jadi [ () (~p ~q) ] = 2. nilai x agar kalimat 4 x = 2 2 jika dan hanya jika 2 log 1 = 0 menjadi biimplikasi yang bernilai benar adalah.. a. 4 Jawaban: a 4 x = x = 2 2 2x = 2 x = 4 b. 2 c. 2 d. 2 e log 1 = 0 adalah menyatakan benar. Jadi, agar kalimat 4 x = 2 2 jika dan hanya jika 2 log 1 = 0 menjadi biimplikasi yang bernilai benar, maka haruslah x = 4.. Negasi dari pernyataan jika guru matematika hadir, maka semua siswa senang adalah... a. jika guru matematika tidak hadir, maka semua siswa tidak senang b. jika guru matematika tidak hadir, maka ada siswa yang tidak senang c. guru matematika tidak hadir atau semua siswa senang d. guru matematika hadir atau ada siswa yang tidak senang e. guru matematika hadir dan ada siswa yang tidak senang Jawaban: e Misalnya p : guru matematika hadir q : semua siswa senang ~ () ~ (~ ) p ~q Jadi, negasinya adalah guru matematika hadir dan ada siswa yang tidak senang 1 ukses Ujian Nasional Matematika
3 4. Ebtanas 2001 Kontraposisi pernyataan majemuk p (p q) adalah... a. (p q) p c. (p q) p e. (p q) p b. ( ) p d. ( ) p Jawaban: b Kontraposisi dari p (p q) adalah (p q) p ( ) p 5. UAN 200 Penarikan kesimpulan dari I II III p q p q r q r p p r Yang sah adalah a. hanya I c. hanya I dan III e. hanya III b. hanya I dan II d. hanya II dan III Jawaban: c I. ekuivalen dengan ~ p p q q Penarikan kesimpulan I adalah sah. III. p q ekuivalen dengan p q p r p r Penarikan kesimpulan III adalah sah. Jadi, penarikan kesimpulan yang sah adalah I dan III. II. seharusnya q r r p p r (silogisme) Karena r p tidak ekuivalen dengan p r, maka penarikan kesimpulan II tidak sah. 6. UN 2004 Diberikan pernyataan-pernyataan sebagai berikut : 1. Jika penguasaan matematika rendah, maka sulit untuk menguasai IPA. 2. IPA tidak sulit dikuasai atau IPTEK tidak berkembang.. Jika IPTEK tidak berkembang, maka negara akan semakin tertinggal. Dari ketiga pernyataan di atas, dapat disimpulkan. a. Jika penguasaan matematika rendah, maka negara akan semakin tertinggal b. Jika penguasaan matematika rendah, maka IPTEK berkembang c. IPTEK dan IPA berkembang d. IPTEK dan IPA tidak berkembang e. ulit untuk memajukan negara Jawaban: a p : Penguasaan matematika rendah q : ulit menguasai IPA q : IPA tidak sulit dikuasai. r : IPTEK tidak berkembang. s : Negara akan semakin tertinggal. q r r s Ekuivalen dengan q r r s p s Jadi, dari ketiga pernyataan di atas dapat disimpulkan bahwa: Jika penguasaan matematika rendah, maka Negara akan semakin tertinggal 2 ukses Ujian Nasional Matematika
4 C LATIHAN OAL 1. Jika (p q) bernilai benar, maka pernyataan berikut yang bernilai benar adalah a. d. b. e. c. p q 2. Nilai kebenaran dari [() q] q adalah a. d. b. e. c.. Jika x 2 4x + 4 = 0, maka jumlah sudut segitiga adalah 60 o. Agar implikasi dari kalimat diatas salah, maka nilai x adalah... a. x = 4 d. x = 2 b. x = 2 e. x = 4 c. x 2 4. Ebtanas 2001 Diketahui pernyataan (p q) p. Konvers dari pernyataan tersebut adalah a. p ( ) d. p (p q) b. p (p q) e. p ( p q) c. p (p q) 5. Pernyataan yang setara dengan pernyataan ila Ali rajin belajar maka Ali naik kelas adalah. a. ila Ali naik kelas maka Ali rajin belajar b. ila Ali tidak rajin belajar maka Ali tidak naik kelas c. ila Ali tidak naik kelas maka Ali rajin bekajar d. ila Ali tidak rajin belajar maka Ali naik kelas e. Ali tidak rajin belajar atau Ali naik kelas 6. Ingkaran dari () r adalah. a. ~p ~ d. ~p ~ b. (~p ~q) r e. (~p ~q) r c. ~r 7. UN 2008 Ingkaran dari pernyataan. eberapa bilangan prima adalah bilangan genap. adalah... a. emua bilangan prima adalah bilangan genap. b. emua bilangan prima bukan bilangan genap. c. eberapa bilangan prima bukan bilangan genap. d. eberapa bilangan genap bukan bilangan prima. e. eberapa bilangan genap adalah bilangan prima. 8. UAN 2002 Penarikan kesimpulan yang sah dari argumentasi berikut adalah. a. p r d. p r b. p r e. p r c. p r ukses Ujian Nasional Matematika
5 9. Ebtanas 2001 Penarikan kesimpulan dari p q. p r p p q q yang sah adalah... a. 1, 2, dan d. 2 saja b. 1 dan 2 e. saja c. 1 dan 10. UN 2008 Diketahui premis-premis a. Jika adu rajin belajar dan patuh pada orang tua, maka Ayah membelikan bola basket. b. Ayah tidak membelikan bola basket. Kesimpulan yang sah adalah a. adu rajin belajar dan adu patuh pada orang tua. b. adu tidak rajin belajar dan adu tidak patuh pada orang tua. c. adu tidak rajin belajar atau adu tidak patuh pada orang tua. d. adu tidak rajin belajar dan adu patuh pada orang tua. e. adu rajin belajar atau adu tidak patuh pada orang tua. 11. UN 2006 Dari argumentasi berikut : Upik rajin belajar maka naik kelas. Upik tidak dapat hadiah maka tidak naik kelas. Upik rajin belajar. Kesimpulan yang sah adalah. a. Upik naik kelas b. Upik dapat hadiah c. Upik tidak dapat hadiah d. Upik naik kelas dan dapat hadiah e. Upik dapat hadiah atau naik kelas 12. Diketahui pernyataan : 1. Jika hari panas, maka Ani memakai topi. 2. Ani tidak memakai topi atau ia memakai payung.. Ani tidak memakai payung Kesimpulan yang sah adalah. a. Hari panas b. Hari tidak panas c. Ani memakai topi d. Hari panas dan Ani memakai topi e. Hari tidak panas dan Ani memakai topi 1. Dari argumentasi berikut : Jika ibu tidak pergi maka adik senang Jika adik senang maka dia tersenyum Ingkaran dari kesimpulan di atas adalah. a. Ibu tidak pergi atau adik tersenyum b. Ibu pergi dan adik tidak tersenyum c. Ibu pergi atau adik tidak tersenyum d. Ibu tidak pergi dan adik tidak tersenyum e. Ibu pergi atau adik tersenyum 4 ukses Ujian Nasional Matematika
Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.
Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu
LOGIKA. Logika Nilai kebenaran pernyataan majemuk Ingkaran suatu pernyataan Penarikan kesimpulan. A. Pernyataan, Kalimat Terbuka, Ingkaran.
LOGIKA Standar Kompetensi Lulusan (SKL) Memahami pernyataan dalam matematika dan ingkarannya, menentukan nilai kebenaran pernyataan majemuk, serta mampu menggunakan prinsip logika matematika dalam pemecahan
Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah.
LOGIKA MATEMATIKA 1. Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. Pernyataan dilambangkan dengan huruf kecil, misalnya p, q, r dan seterusnya.
6. LOGIKA MATEMATIKA
6. LOGIKA MATEMATIKA A. Negasi (Ingkaran) Negasi adalah pengingkaran terhadap nilai kebenaran suatu pernyataan. ~ p : tidak p p ~ p B S S B B. Operator Logika 1) Konjungsi adalah penggabungan dua pernyataan
Bab 1 LOGIKA MATEMATIKA
LOGIKA MATEMATIKA ab 1 Dalam setiap melakukan kegiatan sering kita dituntut untuk menggunakan akal dan pikiran. Akal dan pikiran yang dibutuhkan harus mempunyai pola pikir yang tepat, akurat, rasional,
NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG
LOGIKA MATEMATIKA A. PERNYATAAN DAN KALIMAT TERBUKA Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenarannya (benar dan salah). 1. Gadis itu cantik. 2. Bersihkan lantai itu. 3. Pernyataan/kalimat
Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012
Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya
4. LOGIKA MATEMATIKA
4. LOGIKA MATEMATIKA A. Negasi (Ingkaran) Negasi adalah pengingkaran terhadap nilai kebenaran suatu pernyataan. ~ p : tidak p p ~ p B S S B B. Operator Logika 1) Konjungsi adalah penggabungan dua pernyataan
LOGIKA. Arum Handini Primandari
LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian
LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B
LOGIKA MATEMATIKA A. Pernyataan, kalimat terbuka, dan ingkaran pernyataan. 1. Pernyataan Pernyataan adalah kalimat yang mengandung nilai benar atau salah tetapi tidak sekaligus kedua-duanya. a. Hasil kali
LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.
LOGIKA MATEMATIKA A. Definisi 1). Pernyataan Pernyataan adalah suatu kalimat yang bernilai benar atau salah, tetapi tidak sekaligus benar dan salah. Air laut rasanya asin, adalah bilangan prima, urabaya
RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN
RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN Updated by Admin of Bahan Belajar Logika matematika merupakan salah satu materi pelajaran matematika dan cabang logika yang mengandung kajian matematis logika.
LOGIKA MATEMATIKA Menuju TKD 2014
LOGIKA MATEMATIKA Menuju TKD 2014 A. PERNYATAAN MAJEMUK Jenis-jenis pernyataan majemuk: 1. Konjungsi (^ = dan ) A: Hari ini Jowoki kampanye B: Hari ini Jowoki Umroh Konjungsi (A ^ B): Hari ini Jowoki kampanye
Pertemuan 2. Proposisi Bersyarat
Pertemuan 2 Proposisi ersyarat Proposisi ersyarat Definisi 4 Misalkan p dan q adalah proposisi. Proposisi majemuk jika p, maka q disebut proposisi bersyarat (implikasi dan dilambangkan dengan p q Proposisi
BAB VI. LOGIKA MATEMATIKA
BAB VI. LOGIKA MATEMATIKA Ingkaran, Disjungsi, Konjungsi, Implikasi, Biimplikasi : Konvers, Invers, Kontraposisi : Tabel Kebenaran : p q ~ p ~ q p q p q p q p q B B S S B B B B B S S B B S S S S B B S
BAB I LOGIKA MATEMATIKA
BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut
LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X
LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi
Jadi penting itu baik, tapi jadi baik jauh lebih penting
LOGIKA MATEMATIKA Logika Matematika - Pernyataan, Nilai Kebenaran, dan Kalimat Terbuka - Pernyataan Majemuk - Konvers, Invers, dan Kontraposisi - Kuantor Universal dan Kuantor Eksistensial - Ingkaran dari
LOGIKA MATEMATIKA (Pendalaman Materi SMA)
LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT
LOGIKA MATEMATIKA. Oleh : Siardizal, S.Pd., M.Kom
LOGIKA MATEMATIKA Oleh : iardizal,.pd., M.Kom elamat datang di CD berprogram Menu Utama Info Guru Diskripsi Materi Pelajaran LOGIKA MATEMATIKA Kompetensi Dasar Materi Latihan oal 2 elamat datang di CD
BAB IV LOGIKA A. Pernyataan B. Operasi uner
BAB IV LOGIKA A. Pernyataan Pernyataan adalah kalimat matematika tertutup yang benar atau yang salah, tetapi tidak kedua-duanya pada saat yang bersamaan. Pernyataan biasa dilambangkan dengan p, q, r,...
Modul Matematika X Semester 2 Logika Matematika
Modul Matematika X Semester 2 Logika Matematika Oleh : Markus Yuniarto, S.Si Tahun Pelajaran 2014 2015 SMA Santa Angela Jl. Merdeka No. 24 Bandung LOGIKA MATEMATIKA A. Standar Kompetensi : Menggunakan
SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IX LOGIKA MATEMATIKA
SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IX LOGIKA MATEMATIKA Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara,
KATA PENGANTAR UCAPAN TERIMA KASIH ABSTRAK DAFTAR ISI DAFTAR TABEL DAFTAR BAGAN
DAFTAR ISI KATA PENGANTAR...i UCAPAN TERIMA KASIH...ii ABSTRAK.iii DAFTAR ISI.iv DAFTAR TABEL.vi DAFTAR BAGAN ix DAFTAR GAMBAR...x DAFTAR LAMPIRAN.xi BAB I PENDAHULUAN... 1 A. Latar Belakang Masalah..
SOAL PILIHAN GANDA Pilihlah salah satu jawaban yang paling benar antara pilihan a, b, c, d, atau e!
OAL PILIHAN GANDA Pilihlah salah satu jawaban yang paling benar antara pilihan a, b, c, d, atau e! 1. Ordo dari matriks A = ( ) adalah. a. 2 x 2 d. 4 b. 2 x 3 e. 6 3 x 2 2. ila ( ) ( ), maka nilai dari
BAHAN AJAR LOGIKA MATEMATIKA
1 BAHAN AJAR LOGIKA MATEMATIKA DI SUSUN OLEH : DRS. ABD. SALAM,MM KELAS X BM & PAR SMK NEGERI 1 SURABAYA LOGIKA MATEMATIKA Standar Kompetensi : Menerapkan logika matematika dalam pemecahan masalah yang
I. PERNYATAAN DAN NEGASINYA
1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan
LOGIKA MATEMATIKA. Pernyataan
LOGIKA MATEMATIKA 1 PERNYATAAN DAN UKAN PERNYATAAN A Pengertian logika Matematika Logika adalah ilmu untuk berpikir dan menalar dengan benar. Logika matematika (logika simbolik) adalah ilmu tentang penyimpulan
Berdasarkan tabel 1 diperoleh bahwa p q = q p.
PEMAHAAN 1. Pengertian Kata LOGIKA mengacu pada suatu metode atau cara yang sistematis dalam berpikir (reasoning), dan terdapat dua sistem khusus yaitu : suatu metode dasar yang disebut dengan Kalkulus
LOGIKA Matematika Industri I
LOGIKA TIP FTP UB Pokok Bahasan Pengertian Logika Pernyataan Matematika Nilai Kebenaran Operasi Uner Operasi Biner Tabel kebenaran Pernyataan Tautologi, Kontradiksi dan Kontingen Pernyataan-pernyataan
Tingkat 2 ; Semester 3 ; Waktu 44 menit
MK Negeri 3 Jakarta tandar Kompetensi H Menerapkan Logika Matematika Dalam Pemecahan Dalam Pemecahan Masalah Yang erkaitan Dengan Pernyataan Majemuk Dan Pernyataan erkuantor. Tingkat 2 ; emester 3 ; Waktu
LOGIKA MATEMATIKA. Materi SMA/SMK/MA. kelas X
LOGIKA MATEMATIKA Materi SMA/SMK/MA kelas X Orang yang paling sempurna bukanlah orang dengan otak yang sempurna, melainkan orang yang dapat mempergunakan sebaiknya-baiknya dari bagian otaknya yang kurang
LOGIKA MATEMATIKA I. PENDAHULUAN
LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan
LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom
LOGIKA MATEMATIKA LOGIKA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Untuk menemukan suatu gagasan baru dari informasi dan gagasan yang telah ada, diperlukan proses berpikir. Proses ini dikenal
RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan
RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan Standar Kompetensi Kompetensi Dasar Indikator Alokasi Waktu
BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?
BAB I PENDAHULUAN 1.1 LATAR BELAKANG Secara etimologi, istilah Logika berasal dari bahasa Yunani, yaitu logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga ilmu pengetahuan. Dalam arti
LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1
LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir
LOGIKA MATEMATIKA. Modul Matematika By : Syaiful Hamzah Nasution
LOGIKA MATEMATIKA Logika matematika mempunyai peranan mendasar dalam perkembangan teknologi computer. Karena logika digunakan dalam berbagai aspek di bidang computer seperti pemrograman, ersitektur computer,
Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012
Jurusan Informatika FMIPA Unsyiah September 26, 2012 yang diharapkan Dasar: Menggunakan logika matematika. Indikator Esensial: 1 Mengidentifikasi suatu tautologi 2 Menentukan ingkaran suatu pernyataan
CBT Psikotes CBT UN SMA IPA SBMPTN. FPM Matematika. Tes Buta Warna
GENTA GROUP in PLAY STORE CBT UN SMA IPA Aplikasi CBT UN SMA IPA android dapat di download di play store dengan kata kunci genta group atau gunakan qr-code di bawah. CBT Psikotes Aplikasi CBT Psikotes
Logika Matematika. Cece Kustiawan, FPMIPA, UPI
Logika Matematika 1. Pengertian Logika 2. Pernyataan Matematika 3. Nilai Kebenaran 4. Operasi Uner 5. Operasi Biner 6. Tabel kebenaran Pernyataan 7. Tautologi, Kontradiksi dan Kontingen 8. Pernyataan-pernyataan
INGKARAN DARI PERNYATAAN
HAND-OUT Student Name : Subject : Matematika Wajib Grade/Class : / Toic : Logika Matematika Date : Teacher(s) : Mr. Daniel Kristanto Semester : 2 Parent s Signature : LOGIKA MATEMATIKA Kalimat logika matematika
RENCANA PELAKSANAAN PEMBELAJARAN (RPP)
Kurikulim MK Negeri 1 urabaya RENCANA PELAKANAAN PEMELAJARAN (RPP) Nama ekolah : MK Negeri 1 urabaya Program Keahlian : Mata Pelajaran : Matematika Kelas / emester : tandar Kompetensi : Menerapkan logika
KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS X ( 1 ) SEMESTER I
KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS X ( 1 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN: MATEMATIKA Sekolah : SMA/MA... Kelas : X Semester : I (SATU) KKM
Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1
2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki
Silabus. Kegiatan Pembelajaran Instrumen
NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : XI STANDAR KOMPETENSI : Menerapkan logika matematka dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor KODE KOMPETENSI
Bab 1 LOGIKA MATEMATIKA
LOGIKA MATEMATIKA ab 1 Dalam setia melakukan kegiatan sering kita dituntut untuk menggunakan akal dan ikiran. Akal dan ikiran yang dibutuhkan harus memunyai ola ikir yang teat, akurat, rasional, logis,
Logika Proposisi 1. Definisi 1. (Proposisi) Proposisi adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya sekaligus.
Logika Proposisi 1 I. Logika Proposisi Logika adalah bagian dari matematika, tetapi pada saat yang sama juga merupakan bahasa matematika. Pada akhir abad ke-19 dan awal abad ke-20, ada kepercayaan bahwa
Logika Matematika. ILFA STEPHANE, M.Si. September Teknik Sipil dan Geodesi Institut Teknologi Padang
ILFA STEPHANE, M.Si September 2012 Teknik Sipil dan Geodesi Institut Teknologi Padang Definisi 1 Logika adalah usaha dalam memutuskan ya atau tidaknya (whether or not) suatu keputusan yang sah. Oleh karena
5. 1 Mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka)
Sumber: Art and Gallery Standar Kompetensi 5. Menerapkan logika matematika dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor Kompetensi Dasar 5. 1 Mendeskripsikan
RENCANA PELAKSANAAN PEMBELAJARAN
RENCANA PELAKSANAAN PEMBELAJARAN Materi Pelajaran : Matematika Kelas/ Semester : X / 2 Pertemuan ke : 1,2 Alokasi Waktu : 5 x 45 menit Standar Kompetensi : Menerapkan logika matematika dalam pemecahan
LOGIKA. /Nurain Suryadinata, M.Pd
Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi
Konvers, Invers dan Kontraposisi
MODUL 5 Konvers, Invers dan Kontraposisi Represented by : Firmansyah,.Kom A. TEMA DAN TUJUAN KEGIATAN PEMELAJARAN 1. Tema Konvers, Invers dan Kontraposisi 2. Fokus Pembahasan Materi Pokok 1. Konvers, invers
PERNYATAAN MAJEMUK & NILAI KEBENARAN
PERNYATAAN MAJEMUK & NILAI KEBENARAN 1. Pernyataan Majemuk Perhatikan pernyataan hari ini hujan dan aku berjalan-jalan. Pernyataan tersebut terdiri dari dua pernyataan pokok/tunggal (prime sentence), yaitu
RENCANA PELAKSANAAN PEMBELAJARAN NO. 05/2
RENCANA PELAKSANAAN PEMBELAJARAN NO. 05/2 Nama Sekolah : SMK Diponegoro Lebaksiu Mata Pelajaran : Matematika Kelas / Semester : X / 2 Alokasi Waktu : 4 x 45 menit (1 x pertemuan) Standar Kompetensi Kompetensi
PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka.
BAB 2 LOGIKA PENGERTIAN Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang
LOGIKA MATEMATIKA. MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM. proposisi conjungsi tautologi inferensi
LOGIKA MATEMATIKA MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM Definisi Proposisi adalah suatu kalimat yang bernilai benar atau salah dan tidak keduanya Proposisi Kalimat Deklaratif Proposisi
LOGIKA MATEMATIKA. A. Negasi/Ingkaran Pernyataan Tunggal ~p p (dibaca negasi/ingkaran dari p) B S S B B S B S
LOGIKA MATEMATIKA A. Negasi/Ingkaran Pernyataan Tunggal ~ (dibaca negasi/ingkaran dari ) ~ ( ), ~ ( ), ~ ( ), ~ ( ) ~ ( ) ~ (~ ) ~ ( ) dibaca negasi/ingkaran dari semua/setia equivalen/sama dengan ada/beberaa
GENTA GROUP in PLAY STORE
GENTA GROUP in PLAY STORE CBT UN SMA IPA Buku ini dilengkapi aplikasi CBT UN SMA IPA android yang dapat di-download di play store dengan kata kunci genta group atau gunakan qr-code di bawah. Kode Aktivasi
MODUL LOGIKA MATEMATIKA
PERENCANAAN PEMBELAJARAN MATEMATIKA MODUL LOGIKA MATEMATIKA AUTHOR: Navel Mangelep UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA & ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA KATA PENGANTAR Salah satu penunjang
RENCANA PEMBELAJARAN MATEMATIKA (RPP) Nama Sekolah : SMA Negeri 1 Ketapang Mata Pelajaran : Matematika
RENCANA PEMBELAJARAN MATEMATIKA (RPP) Nama Sekolah : SMA Negeri 1 Ketapang Mata Pelajaran : Matematika Kelas : X Semester : 2 Materi Pokok : Logika Matematika Alokasi Waktu : 1 x 40 menit (1 pertemuan)
SILABUS. Menyimak pemahaman tentang bentuk pangkat, akar dan logaritma beserta keterkaitannya. Mendefinisikan bentuk pangkat, akar dan logaritma.
SILABUS Nama Sekolah : SMA PGRI 1 AMLAPURA Mata Pelajaran : MATEMATIKA Kelas/Program : X Semester : 1 STANDAR KOMPETENSI: 1. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma.
Matematika Industri I
LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai
50. Mata Pelajaran Matematika Kelompok Akuntansi dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A.
50. Mata Pelajaran Matematika Kelompok Akuntansi dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari
LOGIKA MATEMATIKA. A. Negasi/Ingkaran Pernyataan Tunggal ~p p (dibaca negasi/ingkaran dari p) B S S B B S B S
LOGIKA MATEMATIKA A. Negasi/Ingkaran Pernyataan Tunggal ~ (dibaca negasi/ingkaran dari ) ~ ( ), ~ ( ), ~ ( ), ~ ( ) ~ ( ) ~ (~ ) ~ ( ) dibaca negasi/ingkaran dari semua/setia equivalen/sama dengan ada/beberaa
bab 1 Logika MATEMATIKA
bab 1 Logika MATEMATIKA, RINGKASAN MATERI A. PERNYATAAN DAN INGKARANNYA Pengertian Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah saja. Pernyataan biasanya dinotasikan dengan huruf
KATA PENGANTAR. Assalamu alaikum Wr. Wb.
KATA PENGANTAR Assalamu alaikum Wr. Wb. Matematika tidak dapat terlepas dalam kehidupan manusia sehari-hari, baik saat mempelajari matematika itu sendiri maupun mata kuliah lainnya. Mata kuliah Pengantar
SILABUS. Menyimak pemahaman tentang bentuk pangkat, akar dan logaritma beserta keterkaitannya. Mendefinisikan bentuk pangkat, akar dan logaritma.
SILABUS Nama Sekolah : SMA NEGERI 6 PONTIANAK Mata Pelajaran : MATEMATIKA Kelas/Program : X Semester : 1 STANDAR KOMPETENSI: 1. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma.
SILABUS PEMBELAJARAN
SILABUS PEMBELAJARAN Nama Sekolah :... Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GENAP STANDAR KOMPETENSI: 4. Menggunakan logika matematika dalam pemecahan masalah yang berkaitan
VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR
98 VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR Elly s Mersina Mursidik Program Studi Pendidikan Guru Sekolah Dasar Fakultas Ilmu Pendidikan IKIP
Daftar Isi. Kata Pengantar... 1 Daftar Isi... 2 Kata Motivasi... 3 Tujuan Pembelajaran... 6
Kata Pengantar Puji syukur harus senantiasa Anda panjatkan panjatkan kehadirat Tuhan atas limpahan rahmat-nya kepada kita semua.rasa syukur itu dapat Anda wujudkan dengan cara memlihara lingkungan dan
ULANGAN SEMESTER GENAP TAHUN PELAJARAN 2009/2010. Hari, Tanggal : Senin, 17 Mei 2010 Waktu : WIB (120 menit)
PEMERINTAH KABUPATEN DEMAK DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA SMK NEGERI 1 DEMAK Jalan Sultan Trenggono No. 87 Telp/Fax : (0291) 685519 Demak (Email : [email protected]) ULANGAN SEMESTER GENAP TAHUN
BROTO APRILIYANTO, S.
NASKAH BKS MATEMATIKA KELAS X SEMESTER GENAP LOGIKA MATEMATIKA BROTO APRILIYANTO, S. Pd. (SMA N 1 WURYANTORO) MGMP MATEMATIKA SMA KAB. WONOGIRI 2011 BAB 31 LOGIKA MATEMATIKA STANDAR KOMPETENSI: 4. Menggunakan
BAB I DASAR-DASAR LOGIKA
BAB I DASAR-DASAR LOGIKA 11 Pendahuluan Logika adalah suatu displin yang berhubungan dengan metode berpikir Pada tingkat dasar, logika memberikan aturan-aturan dan teknik-teknik untuk menentukan apakah
Silogisme Hipotesis Ekspresi Jika A maka B. Jika B maka C. Diperoleh, jika A maka C
MSH1B3 Logika Matematika Dosen: Aniq A Rohmawati, M.Si Kalkulus Proposisi [Definisi] Metode yang digunakan untuk meninjau nilai kebenaran suatu proposisi atau kalimat Jika Anda belajar di Tel-U maka Anda
A. Pengertian Logika B. Pernyataan C. Nilai Kebenaran
HAND OUT PERKULIAHAN Nama Mata Kuliah : Pengantar Dasar Matematika ub Materi : Pernyataan, Konjungsi, Disjungsi, Implikasi, iimplikasi Pertemuan : 1 URAIAN POKOK PERKULIAHAN LOGIKA A. Pengertian Logika
Rencana Pelaksaan Pembelajaran (RPP)
Rencana Pelaksaan Pembelajaran (RPP) Nama Sekolah Program Keahlian Mata Pelajaran Kelas/Semester Pertemuan Ke- Alokasi Waktu : SMK Negeri 1 Salatiga : Akuntansi : Matematika : X / 2 (dua) : 1(satu) : 2
Logika. Modul 1 PENDAHULUAN
Modul 1 Logika Drs. Sukirman, M.Pd. L PENDAHULUAN ogika merupakan salah satu bidang ilmu yang mengkaji prinsip-prinsip penalaran yang benar dan penarikan kesimpulan yang absah, baik yang bersifat deduktif
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA
Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).
Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai
Bab 1. Logika Matematika Uji Kompetensi 1
ab. Logika Matematika Uji Kompetensi. Nilai kebenaran dari ~p q adalah. p q. C. E.. Nilai kebenaran dari ~p q adalah. p q. C. E.. Nilai kebenaran dari ~p q adalah. p q. C. E.. Negasi dari pernyataan x
KISI KISI LOMBA KOMPETENSI SISWA SMK TINGKAT PROVINSI JAWA TIMUR 2014
LKS SMK 214 Bidang : Matematika Teknologi KISI KISI LOMBA KOMPETENSI SISWA SMK TINGKAT PROVINSI JAWA TIMUR 214 1 Memecahkan masalah berkaitan dengan konsep aljabar memaham, mengaplikasikan, menganalisai
Logika Matematika. Bab 1
Bab 1 Sumber: pkss.co.id Pada bab ini, Anda akan diajak untuk memecahkan masalah yang ber - hubungan dengan konsep, di antaranya mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka), mendeskripsikan
K13 Revisi Antiremed Kelas 11
K13 Revisi Antiremed Kelas 11 Latihan Soal Logika halaman 1 01. Misalkan p adalah pernyataan yang bernilai benar dan q adalah pernyataan yang benar. Dari tiga pernyataan berikut: (1) yang bernilai benar
MATEMATIKA. Sekolah Menengah Kejuruan (SMK) Kelas XI. To ali. Kelompok Penjualan dan Akuntansi. Pusat Perbukuan Departemen Pendidikan Nasional
i MATEMATIKA Sekolah Menengah Kejuruan (SMK) Kelas XI Kelompok Penjualan dan Akuntansi To ali Pusat Perbukuan Departemen Pendidikan Nasional ii Hak Cipta pada Departemen Pendidikan Nasional Dilindungi
KISI - KISI SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2010/2011
YAYASAN INSAN INDONESIA MANDIRI SEKOLAH MENENGAH KEJURUAN SMK WIJAYA PUTRA Kompetensi Keahlian : Akuntansi, Multimedia, Teknik Kendaraan Ringan STATUS : TERAKREDITASI A Jalan Raya Benowo 1-3, (031) 7413061,
NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3)
NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) 1 1 Kata Penghubung Kalimat 1. Konjungsi: menggunakan kata penghubung: dan 2. Disjungsi: menggunakan kata penghubung: atau 3. Implikasi: menggunakan kata
Kata Pengantar. Terima kasih atas kesediaan Bapak atau Ibu guru yang menggunakan buku Matematika Aplikasi SMA Kelas X XII. Hormat kami, Tim Penyusun
Kata Pengantar Perjalanan panjang proses penilaian buku Matematika SMA oleh Pusat Perbukuan dan Badan Standar Nasional Pendidikan (BSNP) Departemen Pendidikan Nasional telah usai bersamaan dengan diterbitkannya
1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi
1.3 Pembuktian 1.3.1 Tautologi dan Kontradiksi Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi yang membentuknya disebut toutologi, sedangkan proposisi yang selalu bernilai salah
PEMBUKTIAN MATEMATIKA
PEMBUKTIAN MATEMATIKA LOGIKA INFERENSIA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Kata inferensia digunakan untuk menyatakan sekumpulan premis yang diikuti dengan kesimpulan. Infrensia yang sahih
LOGIKA MATEMATIKA Talisadika Maifa
22 BAB II LOGIKA MATEMATIKA Talisadika Maifa A. PENDAHULUAN Pembahasan mengenai logika sudah ada sejak lama bahkan sebelum manusia mengenal istilah logika itu sendiri. Menilik kembali kepada sejarahnya,
PROPOSISI MATEMATIKA SISTEM INFORMASI 1
PROPOSISI MATEMATIKA SISTEM INFORMASI 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat
MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi)
MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi) Antonius Cahya Prihandoko Universitas Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Ekivalensi dan Kuantifikasi Jember, 2015 1 / 20
MATEMATIKA DISKRIT. Logika
MATEMATIKA DISKRIT Logika SILABUS KULIAH 1. Logika 2. Himpunan 3. Matriks, Relasi dan Fungsi 4. Induksi Matematika 5. Algoritma dan Bilangan Bulat 6. Aljabar Boolean 7. Graf 8. Pohon REFERENSI Rinaldi
VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR
64 VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR Elly s Mersina Mursidik * Abstract Logical argumentations are required in communication and interactions
ATURAN INFERENSI. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 6 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo
Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 6 FONDASI MATEMATIKA Masalah Penarikan Kesimpulan Kesimpulan apa yang dapat diambil dari deskripsi berikut 1 Jika seseorang kuliah di perguruan
LOGIKA DAN PEMBUKTIAN
BAB I LOGIKA DAN PEMBUKTIAN A. PENGANTAR Prinsip dari logika matematika memiliki korelasi dengan pembuktian kebenaran yang dilakukan menggunakan tabel kebenaran ataupun tanpa menggunakan tabel kebenaran
UNDANG-UNDANG REPUBLIK INDONESIA NOMOR 19 TAHUN 2002 TENTANG HAK CIPTA PASAL 72 KETENTUAN PIDANA SANKSI PELANGGARAN
Logika Matematika 0 UNDANG-UNDANG REPUBLIK INDONESIA NOMOR 19 TAHUN 2002 TENTANG HAK CIPTA PASAL 72 KETENTUAN PIDANA SANKSI PELANGGARAN 1. Barangsiapa dengan sengaja dan tanpa hak mengumumkan atau memperbanyak
E-learning matematika, GRATIS
E-learning matematika, GRATI 1 A. ahasa Matematika Penyusun : Istijab,.H. M.Hum. ; Lustya Rubiati,.Pd. Editor : Drs. Keto usanto, M.i. M.T. ; Istijab,.H. M.Hum. Imam Indra Gunawan,.i. Logika matematika
KONSEP DASAR LOGIKA MATEMATIKA. Riri Irawati, M.Kom Logika Matematika - 3 sks
KONSEP DASAR LOGIKA MATEMATIKA Riri Irawati, M.Kom Logika Matematika - 3 sks Agenda 2 Pengantar Logika Kalimat pernyataan (deklaratif) Jenis-jenis pernyataan Nilai kebenaran Variabel dan konstanta Kalimat
