LOGIKA PREDIKAT. Altien Jonathan Rindengan, S.Si, M.Kom
|
|
|
- Suparman Setiawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 LOGIKA PREDIKAT Altien Jonathan Rindengan, S.Si, M.Kom
2 Logika Predikat Seringkali kita harus memeriksa argumen yang berisi proposisi-proposisi yang berkenaan dengan kumpulan objek. Misalkan, memeriksa kebenaran dari proposisi Semua bilangan asli yang habis dibagi 4 adalah habis dibagi 2. Pada proposisi ini mengandung suatu pernyataan yang berkenaan dengan himpunan bilangan asli.
3 Logika Predikat. Misalkan ada rangkaian proposisi : Setiap manusia pasti mati. Karena Furlan adalah manusia maka dia pasti mati. Pada logika proporsional : p q r : setiap manusia pasti mati : Furlan adalah manusia : Furlan pasti mati Karena q anggota dari p maka struktur ini tidak dikenal dalam logika proposisi
4 Logika Predikat. Definisi 2.5 Suatu predikat (proposisi terbuka) adalah suatu pernyataan yang melibatkan peubah yang nilainya tidak ditentukan.
5 Logika Predikat. Misalnya : Predikat : P(x) : bilangan bulat x habis dibagi 3 dan 4. Proposisi : P(24) : 24 habis dibagi 3 dan 4. Peubah dalam predikat hanya bisa diganti oleh nilai yang merupakan anggota semesta pembicaraan.
6 Logika Predikat. Definisi 2.6 Himpunan nilai-nilai yang mungkin menggantikan peubah dalam suatu predikat disebut sebagai semesta bagi peubah tersebut.
7 Logika Predikat. Untuk menyatakan nilai-nilai apa saja yang akan menjadi peubah dalam suatu predikat, digunakan kata: semua, setiap, selalu, dll, disebut suku pengkuatifikasi umum, disimbolkan ada, terdapat, beberapa, minimal satu, dll, disebut suku pengkuatifikasi khusus, disimbolkan
8 Logika Predikat. Misalkan x [P(x)] = untuk setiap x berlaku P(x) x [P(x)] = ada x sehingga P(x) P(x) bisa berupa proposisi tunggal atau majemuk.
9 Logika Predikat. Contoh 1 Nyatakan dalam lambang logika predikat dari proposisi : a. Untuk semua bilangan bulat, jika habis dibagi 4 maka habis dibagi 2 b. Ada bilangan asli yang habis dibagi 3 dan 4. Jawab a. P(x) : x habis dibagi 4 Q(x) : x habis dibagi 2 x Z [P(x) Q(x)] b. P(x) : x habis dibagi 3 Q(x) : x habis dibagi 4 x N [P(x) Q(x)]
10 Logika Predikat. Contoh 2 Jika semesta dinyatakan U = {3,5,17,120}, x adalah peubah dalam U. Buatlah suatu logika predikat dengan menggunakan proposisi, P(x) = x > 2. Jawab x U [P(x)] = semua x di U adalah lebih besar 2 -[ x U (-P(x))] = tidak ada x di U yang tidak lebih besar 2 x U [P(x)] = ada x di U yang lebih besar 2 -[ x U (-P(x))] = tidak semua x di U adalah tidak lebih besar 2.
11 Logika Predikat. Contoh 3 Tidak ada orangtua menginginkan anaknya menjadi penjahat Jawab Kalimat tersebut ekivalen dengan Jika x adalah orang tua maka x tidak ingin anaknya menjadi penjahat P(x) = x adalah orang tua Q(x) = x ingin anaknya menjadi penjahat x U [P(x) U = himpunan orang tua - Q(x)]
12 Negasi Logika Predikat Jika suatu logika predikat dibuat negasi/ingkarannya, maka tanda ingkaran itu akan berlaku pada suku kuantifikasi dan predikatnya. -[ x (P(x))] =(- x )[-P(x)] = x [-P(x)] -[ x (P(x))] =(- x )[-P(x)] = x [-P(x)]
13 Negasi Logika Predikat. Dari bentuk ingkaran ini diperoleh 4 dasar kesetaraan pada logika predikat yaitu : 1. Semua benar sama artinya dengan tidak ada yang salah x [P(x)] = -[ x (-P(x))] 2. Semua salah sama artinya dengan tidak ada yang benar x [-P(x)] = -[ x (P(x))] 3. Tidak semua benar sama artinya dengan ada yang salah -[ x (P(x))] = x [-P(x)] 4. Tidak semua salah sama artinya dengan ada yang benar -[ x (-P(x))] = x [P(x)]
14 Negasi Logika Predikat. Contoh 4 Buatlah ingkaran dari logika predikat berikut : a. x [P(x) Q(x)] b. x [ y [P(y) Q(x,y)] c. x y [ z (P(x) R(y,z)) (P(y) z R(x,z))] Jawab a. -[ x [P(x) Q(x)]] = -( x )(-(P(x) Q(x))) = x [-(-P(x) Q(x))] = x [P(x) -Q(x)]
15 Negasi Logika Predikat. Contoh 5 Buatlah ingkaran dari logika predikat berikut : a. x [P(x) Q(x)] b. x [ y [P(y) Q(x,y)] c. x y [ z (P(x) R(y,z)) (P(y) z R(x,z))] Jawab a. -[ x [P(x) Q(x)]]= -( x )(-(P(x) Q(x))) = x [-(-P(x) Q(x))] = x [P(x) -Q(x)]
16 Negasi Logika Predikat. b. -[ x [ y [P(y) Q(x,y)]] = -( x )[-( y P(y) Q(x,y))] = x [-(- y P(y) Q(x,y))] = x [ y P(y) -Q(x,y)] c. -[ x y [ z (P(x) R(y,z)) (P(y) z R(x,z))]] = -( x y )(-[ z (P(x) R(y,z)) (P(y) z R(x,z))]) = x y [-( z (-P(x) R(y,z))) -(P(y) z R(x,z))] = x y [ z (-(P(x) R(y,z))) (-P(y) -( z R(x,z)))] = x y [ z (P(x) -R(y,z)) (-P(y) z (-R(x,z)))]
17 Kesetaraan Logika Predikat 1. a. x y P(x,y) y x P(x,y) b. x y P(x,y) y x P(x,y) 2. a. x y P(x,y) y x P(x,y) b. x y P(x,y) y x P(x,y) 3. a. - x P(x) x [-P(x,y)] b. - x P(x) x [-P(x,y)] a. x P(x) - x [-P(x,y)] b. x P(x) - x [-P(x,y)]
18 Kesetaraan Logika Predikat. 4. a. x P(x) Q x [P(x) Q] b. x P(x) Q x [P(x) Q] 5. a. x P(x) Q x [P(x) Q] b. x P(x) Q x [P(x) Q]
19 Kesetaraan Logika Predikat. 6. a. x P(x) z Q(z) x z [P(x) Q(z)] b. x P(x) z Q(z) x z [P(x) Q(z)] c. x P(x) z Q(z) x z [P(x) Q(z)] d. x P(x) z Q(z) x z [P(x) Q(z)] 7. a. x P(x) z Q(z) x z [P(x) Q(z)] b. x P(x) z Q(z) x z [P(x) Q(z)] c. x P(x) z Q(z) x z [P(x) Q(z)] d. x P(x) z Q(z) x z [P(x) Q(z)]
20 Bentuk Normal Prenex Definisi Bentuk logika predikat dengan proposisi penyusunnya disebut normal prenex jika dan hanya jika bentuk tersebut hanya mengandung perangkai negasi, konjungsi dan disjungsi. Menggunakan semua aturan kesetaraan dan kesamaan logika proposisi dan logika predikat
21 Bentuk Normal Prenex. Contoh 6 Ubahlah bentuk x P(x) x Q(x) dalam bentuk normal prenex Penyelesaian x P(x) x Q(x) = -( x P(x)) x Q(x) = x (-P(x)) x Q(x) = x (-P(x)) Q(x))
22 Bentuk Normal Prenex. Soal Ubahlah bentuk x y ( z (P(x,z) P(y,z)) u Q(u,x,y)) dalam bentuk normal prenex
LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom
LOGIKA MATEMATIKA LOGIKA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Untuk menemukan suatu gagasan baru dari informasi dan gagasan yang telah ada, diperlukan proses berpikir. Proses ini dikenal
PEMBUKTIAN MATEMATIKA
PEMBUKTIAN MATEMATIKA PEMBUKTIAN LOGIKA PREDIKAT PEMBUKTIAN LANGSUNG PEMBUKTIAN TAK LANGSUNG Altien Jonathan Rindengan, S.Si, M.Kom Pembuktian Logika Predikat Metode pembuktian pada dasarnya sama dengan
PERNYATAAN (PROPOSISI)
Logika Gambaran Umum Logika : - Logika Pernyataan membicarakan tentang pernyataan tunggal dan kata hubungnya sehingga didapat kalimat majemuk yang berupa kalimat deklaratif. - Logika Predikat menelaah
Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup.
LOGIKA MATEMATIKA Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup. Beberapa hal yang digunakan dalam logika
Mahasiswa memahami kuantifikasi dan simbolisme logika. 2) Mahasiswa dapat menyebutkan hubungan antara kuantor eksistensial dan kuantor
BAB II KUANTIFIKASI Tujun Instruksional Umum Mahasiswa memahami kuantifikasi dan simbolisme logika. Tujuan Instruksional Khusus 1) Mahasiswa dapat menggunakan kuantor 2) Mahasiswa dapat menyebutkan hubungan
Logika Predikat. Contoh Soal. Toni Bakhtiar. September Departemen Matematika IPB. Toni Bakhtiar Logika Predikat September / 11
Logika Predikat Contoh Soal Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) Logika Predikat September 2012 1 / 11 Example Diberikan predikat berikut: "Ada makhluk hidup yang
Matematika Industri I
LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai
Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012
Jurusan Informatika FMIPA Unsyiah September 26, 2012 yang diharapkan Dasar: Menggunakan logika matematika. Indikator Esensial: 1 Mengidentifikasi suatu tautologi 2 Menentukan ingkaran suatu pernyataan
PTI 206 Logika. Semester I 2007/2008. Ratna Wardani
PTI 206 Logika Semester I 2007/2008 Ratna Wardani 1 Materi Logika Predikatif Fungsi proposisi Kuantor : Universal dan Eksistensial Kuantor bersusun 2 Logika Predikat Logika Predikat adalah perluasan dari
MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi)
MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi) Antonius Cahya Prihandoko Universitas Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Ekivalensi dan Kuantifikasi Jember, 2015 1 / 20
BAB I LOGIKA MATEMATIKA
BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut
SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IX LOGIKA MATEMATIKA
SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IX LOGIKA MATEMATIKA Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara,
B. Proposisi (Pernyataan) yaitu kalimat yang mempunyai nilai salah atau benar tetapi tidak sekaligus keduanya
A. emesta Pembicaraan yaitu himpunan semua objek yang dibicarakan a. 1 + 1 = 2 Jika semesta pembicaraannya adalah himpunan bilangan bulat, himpunan bilangan cacah, himpunan bilangan asli. b. x 2 1 = 0
A. Pengertian Logika B. Pernyataan C. Nilai Kebenaran
HAND OUT PERKULIAHAN Nama Mata Kuliah : Pengantar Dasar Matematika ub Materi : Pernyataan, Konjungsi, Disjungsi, Implikasi, iimplikasi Pertemuan : 1 URAIAN POKOK PERKULIAHAN LOGIKA A. Pengertian Logika
Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI.
Modul ke: 5 Logika Matematika Proposisi & Kuantor Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Materi Pembelajaran Kalkulus Proposisi Konjungsi Disjungsi
KALKULUS PREDIKAT KALIMAT BERKUANTOR
1 KALKULUS PREDIKAT KALIMAT BERKUANTOR A. PREDIKAT DAN KALIMAT BERKUANTOR Dalam tata bahasa, predikat menunjuk pada bagian kalimat yang memberi informasi tentang subjek. Dalam ilmu logika, kalimat-kalimat
LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.
LOGIKA MATEMATIKA A. Definisi 1). Pernyataan Pernyataan adalah suatu kalimat yang bernilai benar atau salah, tetapi tidak sekaligus benar dan salah. Air laut rasanya asin, adalah bilangan prima, urabaya
KALIMAT BERKUANTOR. Pertemuan 4 Senin, 11 Maret 2013
KALIMAT BERKUANTOR Pertemuan 4 Senin, 11 Maret 2013 Pokok Bahasan 1. Predikat dan kalimat berkuantor 2. Ingkaran kalimat berkuantor 3. Kalimat berkuantor ganda 4. Aplikasi logika matematika dalam ilmu
1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi
1.3 Pembuktian 1.3.1 Tautologi dan Kontradiksi Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi yang membentuknya disebut toutologi, sedangkan proposisi yang selalu bernilai salah
B. Proposisi (Pernyataan) yaitu kalimat yang mempunyai nilai salah atau benar tetapi tidak sekaligus keduanya
A. emesta Pembicaraan yaitu himpunan semua objek yang dibicarakan a. 1 + 1 = 2 Jika semesta pembicaraannya adalah himpunan bilangan bulat, himpunan bilangan cacah, himpunan bilangan asli. b. x 2 1 = 0
RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN
RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN Updated by Admin of Bahan Belajar Logika matematika merupakan salah satu materi pelajaran matematika dan cabang logika yang mengandung kajian matematis logika.
1. Memahami pengertian proposisi dan predikat. 3. Memahami penggunaan penghubung dan tabel kebenaran
Modul 1 Logika Matematika Pendahuluan Pada Modul ini akan dibahas materi yang berkaitan dengan logika proposisi dan logika predikat, serta berbagai macam manipulasi didalamnya. Tujuan Instruksional Umum
Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012
Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya
LOGIKA MATEMATIKA HIMPUNAN. Altien Jonathan Rindengan, S.Si, M.Kom
LOGIKA MATEMATIKA HIMPUNAN Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Himpunan adalah materi dasar yang sangat penting dalam matematika dan teknik informatika/ilmu komputer. Hampir setiap materi
LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1
LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA
NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3)
NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) 1 1 Kata Penghubung Kalimat 1. Konjungsi: menggunakan kata penghubung: dan 2. Disjungsi: menggunakan kata penghubung: atau 3. Implikasi: menggunakan kata
PEMBUKTIAN MATEMATIKA
PEMBUKTIAN MATEMATIKA LOGIKA INFERENSIA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Kata inferensia digunakan untuk menyatakan sekumpulan premis yang diikuti dengan kesimpulan. Infrensia yang sahih
KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA. Disusun Oleh : Dra. Noeryanti, M.Si 31 MODUL LOGIKA MATEMATIKA
KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA Disusun Oleh : Dra. Noeryanti, M.Si 31 DAFTAR ISI Cover pokok bahasan... 31 Daftar isi.... 3 Judul Pokok Bahasan... 33.1. Pengantar... 33.. Kompetensi... 33.3
LOGIKA MATEMATIKA (Pendalaman Materi SMA)
LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT
Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.
Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu
Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan
Unit 5 PENALARAN/LOGIKA MATEMATIKA Wahyudi Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan. Penalaran matematika menjadi pedoman atau tuntunan sah atau tidaknya
PENALARAN DALAM MATEMATIKA
PENALARAN DALAM MATEMATIKA A. PENDAHULUAN Siswa belajar dimulai dari mengamati contoh-contoh atau fenomena Dari informasi-informasi yang diperoleh secara khusus siswa mencoba melakukan generalisasi secara
Logika Proposisi. Pertemuan 2 (Chapter 10 Schaum, Set Theory) (Chapter 3/4 Schaum, Theory Logic)
Logika Proposisi Pertemuan 2 (Chapter 10 Schaum, Set Theory) (Chapter 3/4 Schaum, Theory Logic) Logika Proposisional Tujuan pembicaraan kali ini adalah untuk menampilkan suatu bahasa daripada kalimat abstrak
Mahdhivan Syafwan. PAM 123 Pengantar Matematika
Mahdhivan Syafwan PAM 123 Pengantar Matematika APAKAH LOGIKA ITU PENTING? http://hukum.kompasiana.com/2012/03/31/dpr-menunda-sementara-kenaikan-bbm-bersubsidi-451248.html Pasal 7 Ayat 6 : Harga jual eceran
BAB III KUANTOR kuantor, 1. Kuantor Universal 3. Kuantor Eksistensial
BAB III KUANTOR Untuk mengubah kalimat tebuka menjadi kalimat deklaratif, selain dengan jalan mengganti variabel dengan konstanta, dapat juga dilakukan dengan menggunakan kuantor, yaitu dengan menggunakan
CALCULUS PREDICATE, SENTENCES REPRESENTATION LECTURE 8. DR. Herlina Jayadianti., ST., MT
CALCULUS PREDICATE, SENTENCES REPRESENTATION LECTURE 8 DR. Herlina Jayadianti., ST., MT Materi Apa itu kalkulus predikat Simbol, term, proposisi, kalimat Subterm, subkalimat Representasi kalimat Variabel
BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?
BAB I PENDAHULUAN 1.1 LATAR BELAKANG Secara etimologi, istilah Logika berasal dari bahasa Yunani, yaitu logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga ilmu pengetahuan. Dalam arti
LOGIKA Matematika Industri I
LOGIKA TIP FTP UB Pokok Bahasan Pengertian Logika Pernyataan Matematika Nilai Kebenaran Operasi Uner Operasi Biner Tabel kebenaran Pernyataan Tautologi, Kontradiksi dan Kontingen Pernyataan-pernyataan
LOGIKA. Arum Handini Primandari
LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian
MATEMATIKA DISKRIT. Logika
MATEMATIKA DISKRIT Logika SILABUS KULIAH 1. Logika 2. Himpunan 3. Matriks, Relasi dan Fungsi 4. Induksi Matematika 5. Algoritma dan Bilangan Bulat 6. Aljabar Boolean 7. Graf 8. Pohon REFERENSI Rinaldi
KUANTOR. A. Fungsi Pernyataan
A. Fungsi Pernyataan KUANTOR Definisi : Suatu fungsi pernyataan adalah suatu kalimat terbuka di dalam semesta pembicaraan (semesta pembicaraan diberikan secara eksplisit atau implisit). Fungsi pernyataan
Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1
2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki
Logika & Himpunan 2013 LOGIKA MATEMATIKA. Oleh NUR INSANI, M.SC. Disadur dari BUDIHARTI, S.Si.
LOGIKA MATEMATIKA Oleh NUR INSANI, M.SC Disadur dari BUDIHARTI, S.Si. Logika adalah ilmu yang mempelajari secara sistematis kaidah-kaidah penalaran yang absah/valid. Ada dua macam penalaran, yaitu: penalaran
LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X
LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi
LOGIKA MATEMATIKA I. PENDAHULUAN
LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan
LANDASAN MATEMATIKA Handout 4 (Kuantor)
LANDASAN MATEMATIKA Handout 4 (Kuantor) Tatik Retno Murniasih, S.Si., M.Pd. [email protected] / [email protected] Standar Kompetensi Mahasiswa dapat mengerti dan memahami kuantor sehingga dapat
Teori Dasar Logika (Lanjutan)
Teori Dasar Logika (Lanjutan) Inferensi Logika Logika selalu berhubungan dengan pernyataan-pernyataan yang ditentukan nilai kebenarannya. Untuk menentukan benar tidaknya kesimpulan berdasarkan sejumlah
BAB 6 LOGIKA MATEMATIKA
A 6 LOGIKA MATEMATIKA A RINGKAAN MATERI 1. Pengertian Logika adalah suatu metode yang diciptakan untuk meneliti ketepatan penalaran (bentuk pemikiran yang masuk akal). Pernyataan adalah kalimat yang hanya
LOGIKA. Kegiatan Belajar Mengajar 1
Kegiatan elajar Mengajar 1 LOGIKA Zainuddin Akina Kegiatan belajar mengajar 1 ini akan membahas tentang logika. esuai dengan kebutuhan maka kegiatan belajar mengajar 1 ini mencakup dua pokok bahasan, yaitu
Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi
Selamat datang di Perkuliahan LOGIKA MAEMAIKA Logika Matematika eori Himpunan eori fungsi Dosen : Dr. Julan HERNADI PUSAKA : Kenneth H Rossen, Discrete mathematics and its applications, fifth edition.
Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses.
Unit 6 PENALARAN MATEMATIKA Clara Ika Sari Budhayanti Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan baik di bidang aritmatika, aljabar, geometri dan pengukuran,
Logika Proposisi 1. Definisi 1. (Proposisi) Proposisi adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya sekaligus.
Logika Proposisi 1 I. Logika Proposisi Logika adalah bagian dari matematika, tetapi pada saat yang sama juga merupakan bahasa matematika. Pada akhir abad ke-19 dan awal abad ke-20, ada kepercayaan bahwa
Blaise Pascal logika pernyataan atau proposisi logika penghubung atau predikat
Logika Matematika Dalam setiap kegiatan kita dituntut untuk mempunyai pola pikir yang tepat, akurat, rasional dan kritis agar tidak salah dalam penalaran yang menyebabkan kesalahan dalam mengambil kebijakan.
TAHAP II PENALARAN : PROPOSISI
Pertemuan ke-4 TAHAP II PENALARAN : PROPOSISI Pada tahap kedua, manusia sudah mulai merangkai berbagai pengertian sederhana yang dimilikinya dan diwujudkan dalam kata tersebut menjadi kalimat atau tepatnya
KUANTIFIKASI Nur Insani, M.Sc
KUANTIFIKASI Nur Insani, M.Sc Pada validitas : Banyak argumen valid, namun validitasnya tak dapat diuji dengan alat uji validitas yang ada. 2 Bagaimana Validitas Argumen ini? Semua kucing adalah hewan
Logika Proposisi. Adri Priadana ilkomadri.com
Logika Proposisi Adri Priadana ilkomadri.com Matematika Diskrit Apa? Cabang matematika yg mempelajari tentang obyek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)? Objek disebut diskrit jika:
Selamat Datang. MA 2151 Matematika Diskrit. Semester I, 2012/2013. Rinovia Simanjuntak & Edy Tri Baskoro
Selamat Datang di MA 2151 Matematika Diskrit Semester I, 2012/2013 Rinovia Simanjuntak & Edy Tri Baskoro 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 7 th edition, 2007.
Selamat Datang. MA 2151 Matematika Diskrit. Semester I 2008/2009
Selamat Datang di MA 2151 Matematika Diskrit Semester I 2008/2009 Hilda Assiyatun & Djoko Suprijanto 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 5 th edition. On the
BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran
BAB 4 PROPOSISI 1. Pernyataan dan Nilai Kebenaran Ilmu logika adalah berhubungan dengan kalimat-kalimat (argumen-argumen) dan hubungan yang ada diantara kalimat-kalimat tersebut. Tujuannya adalah memberikan
Mahasiswa memahami kuantifikasi dan simbolisme logika. 2) Mahasiswa dapat menyebutkan hubungan antara kuantor eksistensial dan kuantor
BAB II KUANTIFIKASI Tujun Instruksional Umum Mahasiswa memahami kuantifikasi dan simbolisme logika. Tujuan Instruksional Khusus 1) Mahasiswa dapat menggunakan kuantor 2) Mahasiswa dapat menyebutkan hubungan
MODUL 3 OPERATOR LOGIKA
STMIK STIKOM BALIKPAPAN 1 MODUL 3 OPERATOR LOGIKA 1. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN 1. Tema : Operator Logika 2. Fokus Pembahasan Materi Pokok : 1. Operator Logika Konjungsi 2. Operator Logika Disjungsi
Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah.
LOGIKA MATEMATIKA 1. Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. Pernyataan dilambangkan dengan huruf kecil, misalnya p, q, r dan seterusnya.
Proposition Logic. (Logika Proposisional) Bimo Sunarfri Hantono
Proposition Logic (Logika Proposisional) Bimo Sunarfri Hantono [email protected] Proposition (pernyataan) Merupakan komponen penyusun logika dasar yang dilambangkan dengan huruf kecil (p, q, r,...) yang
LOGIKA MATEMATIKA Menuju TKD 2014
LOGIKA MATEMATIKA Menuju TKD 2014 A. PERNYATAAN MAJEMUK Jenis-jenis pernyataan majemuk: 1. Konjungsi (^ = dan ) A: Hari ini Jowoki kampanye B: Hari ini Jowoki Umroh Konjungsi (A ^ B): Hari ini Jowoki kampanye
KONSEP DASAR LOGIKA MATEMATIKA. Riri Irawati, M.Kom Logika Matematika - 3 sks
KONSEP DASAR LOGIKA MATEMATIKA Riri Irawati, M.Kom Logika Matematika - 3 sks Agenda 2 Pengantar Logika Kalimat pernyataan (deklaratif) Jenis-jenis pernyataan Nilai kebenaran Variabel dan konstanta Kalimat
Logika Matematika. Cece Kustiawan, FPMIPA, UPI
Logika Matematika 1. Pengertian Logika 2. Pernyataan Matematika 3. Nilai Kebenaran 4. Operasi Uner 5. Operasi Biner 6. Tabel kebenaran Pernyataan 7. Tautologi, Kontradiksi dan Kontingen 8. Pernyataan-pernyataan
Bagaimana Cara Guru Matematika Membantu Siswanya Mempelajari Pernyataan Berkuantor
Bagaimana Cara Guru Matematika Membantu Siswanya Mempelajari Pernyataan Berkuantor Fadjar Shadiq, M.App.Sc ([email protected] & fadjarp3g.wordpress.com) Widyaiswara PPPPTK Matematika Kemampuan bernalar
PERNYATAAN MAJEMUK & NILAI KEBENARAN
PERNYATAAN MAJEMUK & NILAI KEBENARAN 1. Pernyataan Majemuk Perhatikan pernyataan hari ini hujan dan aku berjalan-jalan. Pernyataan tersebut terdiri dari dua pernyataan pokok/tunggal (prime sentence), yaitu
MODUL LOGIKA MATEMATIKA
PERENCANAAN PEMBELAJARAN MATEMATIKA MODUL LOGIKA MATEMATIKA AUTHOR: Navel Mangelep UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA & ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA KATA PENGANTAR Salah satu penunjang
PERTEMUAN Logika Matematika
1-1 PERTEMUAN 1 Nama Mata Kuliah : Matematika Diskrit ( 3 SKS) Nama Dosen Pengampu : Dr. Suparman E-mail : [email protected] HP : 081328201198 Judul Pokok Bahasan Tujuan Pembelajaran : 1. Logika Matematika
Logika Matematika. ILFA STEPHANE, M.Si. September Teknik Sipil dan Geodesi Institut Teknologi Padang
ILFA STEPHANE, M.Si September 2012 Teknik Sipil dan Geodesi Institut Teknologi Padang Definisi 1 Logika adalah usaha dalam memutuskan ya atau tidaknya (whether or not) suatu keputusan yang sah. Oleh karena
PROPOSITION LOGIC LOGIKA INFORMATIKA. Properties of Sentences Inference Methods Quantifier Sentences. Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta
1 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences LOGIKA INFORMATIKA Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta 2 Properties of Sentences Adalah sifat-sifat yang dimiliki
5. 1 Mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka)
Sumber: Art and Gallery Standar Kompetensi 5. Menerapkan logika matematika dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor Kompetensi Dasar 5. 1 Mendeskripsikan
MATEMATIKA DISKRIT LOGIKA
MATEMATIKA DISKRIT LOGIKA Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika.
BAB IV LOGIKA A. Pernyataan B. Operasi uner
BAB IV LOGIKA A. Pernyataan Pernyataan adalah kalimat matematika tertutup yang benar atau yang salah, tetapi tidak kedua-duanya pada saat yang bersamaan. Pernyataan biasa dilambangkan dengan p, q, r,...
LANDASAN MATEMATIKA Handout 3 (Kalkulus Proposisi)
LANDASAN MATEMATIKA Handout 3 (Kalkulus Proposisi) Tatik Retno Murniasih, S.Si., M.Pd. [email protected] / Hp. 081320649338 Standar Kompetensi Mahasiswa dapat mengerti dan memahami kalkulus proposisi
1 INDUKSI MATEMATIKA
1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua
KALIMAT DEKLARATIF (Minggu ke-1 dan 2)
KALIMAT DEKLARATIF (Minggu ke-1 dan 2) 1 1 Kalimat Definisi 1.1 Kalimat dikatakan lengkap jika paling sedikit memuat subyek dan predikat. Contoh: 1. Toni makan L 2. Menulis buku TL 3. Setiap hari matahari
Logika Predikat 1. Kita akan memulai bagian ini dengan dua argumen.
Logika Predikat 1 III. Logika Predikat Kita akan memulai bagian ini dengan dua argumen. Premis Konklusi Premis Konklusi A: Semua orang menyukai Ali. B: Budi menyukai Ali. C: Cecep menyukai Ali. D: Seseorang
LOGIKA MATEMATIKA SOAL DAN PENYELESAIAN Logika, Himpunan, Relasi, Fungsi JONG JEK SIANG Kita menjalani hidup dari apa yang kita dapatkan Tetapi kita menikmati hidup dari apa yang kita berikan Jong Jek
Selamat Datang. MA 2251 Matematika Diskrit. Semester II, 2016/2017. Rinovia Simanjuntak & Saladin Uttunggadewa
Selamat Datang di MA 2251 Matematika Diskrit Semester II, 2016/2017 Rinovia Simanjuntak & Saladin Uttunggadewa 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 7 th edition,
BAB I LOGIKA KALIMAT
BAB I LOGIKA KALIMA Dalam suatu pernyataan kalimat, baik verbal maupun dalam bentuk tulisan, sering muncul ketidak mengertian, kesalah tafsiran dan bahkan keslah pahaman oleh karena beberapa aspek yang
PROPOSISI. Novy SetyaYunas. Pertemuan 4
Pertemuan 4 PROPOSISI Novy SetyaYunas Phone: [+62 8564 9967 841] Email: [email protected] Online Course: https://independent.academia.edu/yunaszone KAITAN LOGIKA DAN BAHASA Ada dua aspek penting
Dasar Logika Matematika
Dasar Logika Matematika Pertemuan 1: Brainstorming Perhatikan kedudukan himpunan titik-titik yang berderet kemudian tentukan himpunan titik-titik berikutnya sesuai dengan pola.? Pengantar Dasar Logika
I. PERNYATAAN DAN NEGASINYA
1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan
Arsitektur dan Organisasi Komputer
Arsitektur dan Organisasi Komputer Modul ke: Aritmatika Komputer Fakultas Ilmu Komputer Dian Wirawan, S.Kom, M.Kom Program Studi Teknik Informatika http://www.mercubuana.ac.id Aritmatika Komputer Arsitektur
PERTEMUAN 2 TABEL KEBENARAN DADANG MULYANA. TABEL KEBENARAN (TB) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi.
PEREMUAN 2 ABEL KEBENARAN DADANG MULYANA ABEL KEBENARAN (B) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi. ABEL 1 : B untuk proposisi dan negasinya p p MASALAH LOGIKA 1
BAB III DASAR DASAR LOGIKA
BAB III DASAR DASAR LOGIKA 1. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 2
SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN
SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : LOGIKA HIMPUNAN Kode Mata : DK - 11206 Jurusan / Jenjang : S1 SISTEM INFORMASI Tujuan Instruksional Umum : Agar
LOGIKA MATEMATIKA. Oleh : Siardizal, S.Pd., M.Kom
LOGIKA MATEMATIKA Oleh : iardizal,.pd., M.Kom elamat datang di CD berprogram Menu Utama Info Guru Diskripsi Materi Pelajaran LOGIKA MATEMATIKA Kompetensi Dasar Materi Latihan oal 2 elamat datang di CD
Analisis Instruksional (AI) dan Silabus. MAT100 Pengantar Matematika. Program Studi S-1 Matematika Departemen Matematika Institut Pertanian Bogor
Analisis Instruksional (AI) dan Silabus MAT100 Pengantar Matematika Program Studi S-1 Matematika Departemen Matematika Institut Pertanian Bogor ANALISIS INSTRUKSIONAL (AI) DAN SILABUS MATA KULIAH MAT100
ARGUMENTASI. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya.
ARGUMENTASI Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 1 + 2 = 3 b. Kuala
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Proposisi adalah pernyataan yang dapat ditentukan nilai kebenarannya, bernilai benar atau salah tetapi tidak keduanya. Sedangkan, Kalkulus Proposisi (Propositional
RENCANA PEMBELAJARAN MATEMATIKA (RPP) Nama Sekolah : SMA Negeri 1 Ketapang Mata Pelajaran : Matematika
RENCANA PEMBELAJARAN MATEMATIKA (RPP) Nama Sekolah : SMA Negeri 1 Ketapang Mata Pelajaran : Matematika Kelas : X Semester : 2 Materi Pokok : Logika Matematika Alokasi Waktu : 1 x 40 menit (1 pertemuan)
TABEL KEBENARAN. Liduina Asih Primandari, S.Si.,M.Si. P a g e 8
P a g e 8 TABEL KEBENARAN A. Logika Proposisional dan Predikat Logika proposional adalah logika dasar yang harus dipahami programmer karena logika ini yang menjadi dasar dalam penentuan nilai kebenaran
LOGIKA INFORMATIKA PROPOSITION LOGIC. Materi-2. Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta
Materi-2 PROPOSITION LOGIC LOGIKA INFORMATIKA Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta STMIK AMIKOM YOGYAKARTA Jl. Ringroad Utara Condong Catur Yogyakarta. Telp. 0274 884201 Fax 0274-884208 Website:
BAB I TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN
BAB I TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi juga dapat diterapkan
Logika. Apakah kesimpulan dari argumen di atas valid? Alat bantu untuk memahami argumen tsb adalah Logika
Pengantar Logika 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika. Tetapi,
Materi-3 PROPOSITION LOGIC. Properties of Sentences Inference Methods Quantifier Sentences
Materi-3 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences 1 Properties of Sentences Adalah sifat-sifat yang dimiliki oleh kalimat logika Ada 3 sifat, yaitu: 1. Valid 2.
