PENALARAN DALAM MATEMATIKA
|
|
|
- Vera Sudirman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 PENALARAN DALAM MATEMATIKA A. PENDAHULUAN Siswa belajar dimulai dari mengamati contoh-contoh atau fenomena Dari informasi-informasi yang diperoleh secara khusus siswa mencoba melakukan generalisasi secara umum. Kegiatan tersebut dikatakan menggunakan penalaran induktif Di pihak lain, siswa belajar matematika dimulai dari hal-hal umum. Siswa menyimpulkan sesuatu yang khusus berdasarkan pada hal-hal yang bersifat umum. Kegiatan tersebut dikatakan menggunakan penalaran deduktif. Penalaran matematika sesungguhnya adalah penalaran deduktif. Namun matematika lebih mudah dipahami secara induktif. B. PENALARAN INDUKTIF Penyimpulan secara induktif dapat dimulai dari: mengenal pola, menduga-duga, dilanjutkan dengan membentuk generalisasi U(1) = 2 U(2) = 4 U(3) = 6 U(4) = 8 U(100) =. Bagaimana aturan penentuan U(n)? C. PENALARAN DEDUKTIF Penyimpulan secara deduktif harus mendasarkan pada pernyataan-pernyataan yang sebelumnya telah diakui kebenarannya. Pernyataan awal (pernyataan pangkal) diterima kebenarannya tanpa melalui pembuktian, tetapi melalui kesepakatan saja. Pernyataan pangkal ini dinamakan aksioma atau postulat
2 Pengertian awal (pengertian pangkal, unsur primitif) merupakan unsur yang tidak didefinisikan, tetapi disepakati saja maknanya. Contoh: titik, garis, bidang, bilangan, himpunan, matriks. Berdasarkan pengertian pangkal disusunlah pengertian yang didefinisikan. Contoh: segitiga, persegipanjang, bilangan prima, bilangan komposit. Berdasarkan pengertian pangkal, pengertian yang didefinisikan, dan aksioma dapat disusun dalil (teorema) yang kebenarannya harus dapat dibuktikan secara deduktif. D. SISTEM MATEMATIKA Sistem matematika adalah himpunan yang tidak kosong bersama dengan sebuah relasi, dan sebuah operasi. Contoh himpunan: (a) Himpunan bilangan asli (b) Himpunan bilangan cacah (c) Himpunan bilangan bulat (d) Himpunan bilangan real (e) Koleksi himpunan (f ) Himpunan vektor dalam ruang Berkaitan dengan relasi, pada bilangan asli terdapat relasi kurang dari, lebih dari, dan sama dengan. Setiap dua bilangan asli selalu dapat dikaitkan dengan salah satu dari ketiga relasi tersebut. Pada himpunan terdapat relasi saling lepas, berpotongan dan ekivalen. Berkaitan dengan operasi, Pada himpunan bilangan asli terdapat operasi penjumlahan dan perkalian. Pada himpunan bilangan asli tidak terdapat operasi pengurangan dan pembagian. Pada himpunan terdapat operasi gabung, irisan, pengurangan, dan lain-lain. Pada vektor terdapat operasi cross dan dot. Ada operasi baku dan ada operasi tidak baku. Operasi baku (standar) berlaku secara umum di manamana (mis. +,,, dan ), sedngkan operasi tidak baku didefinisikan sesuai dengan yang dikehendaki. Contoh: (1) x y = 3y 2x.
3 (2) a b = 6a + b. Jika x y = 3y 2x, maka 4 5 = = 15 8 = = = = 2. JIka a b = 6a + b maka 4 5 = = = = = = 34 Sistem matematika terdiri dari sebuah himpunan tidak kosong, sebuah relasi, dan sebuah operasi. Contoh: Dimisalkan ada himpunan A : {1,2,3,4, }, relasi <, dan operasi +. {A, <, +} disebut sistem matematika. Setiap ada dua anggota A yang berbeda, anggaplah a,b A, maka selalu berlaku a< b atau b<a. Apakah jumlah setiap dua anggota A selalu menjadi anggota A? Jawab: Ya. Perhatikan bahwa {A, >, } bukan sistem matematika sebab ada a,b A dan (a b) bukan anggota A. E. LOGIKA Matematika umumnya disajikan secara aksiomatik dengan logika deduktif. (Logika berperan dalam matematika). Pernyataan (proposisi) merupakan pengertian pangkal. Suatu pernyataan (proposisi) bernilai salah satu dari BENAR atau SALAH. (bernilai benar saja atau salah saja, tidak keduanya). Ada pernyataan tunggal (proposisi sederhana) dan ada pernyataan majemuk.
4 Dua pernyataan tunggal dapat dirangkai menjadi sebuah pernyataan majemuk menggunakan penghubung: dan, atau, Jika maka., atau jika dan hanya jika p dan q disebut Konjungsi p atau q disebut Disjungsi Jika p maka q disebut Implikasi/kondisional p jika dan hanya jika q disebut Ekuivalensi Contoh pernyataan majemuk: a) Selviana gemar matematika dan IPA b) Ferdinand pandai menari atau menyanyi c) Jika m bilangan ganjil maka 2m adalah bilangan genap. d) Empat habis dibagi dua jika dan hanya jika empat bilangan genap 1. Negasi Negasi dari pernyataan p merupakan ingkaran terhadap pernyataan p, ditulis p. Jika pernyataan p bernilai benar maka p bernilai salah, dan jika pernyataan p bernilai salah maka p bernilai benar. Contoh: p : Dua adalah bilangan genap p : Dua adalah bukan bilangan genap 2. Konjungsi q : Susanti membeli pensil p q : Susanti membeli buku dan pensil d s : Dua dan tiga adalah bilangan prima. 3. Disjungsi
5 q : Susanti membeli pensil p q : Susanti membeli buku atau pensil d s : Dua atau tiga adalah bilangan prima. 4. Kondisional (Implikasi) q : Susanti membeli pensil p q : Jika Susanti membeli buku maka Susanti membeli pensil d s : Jika dua bilangan prima maka tiga bilangan prima. 5. Bikondisional (Biimplikasi) q : Susanti membeli pensil p q : Susanti membeli buku jika dan hanya jika Susanti membeli pensil d s : Dua adalah bilangan prima jika dan hanya jika tiga bilangan prima. F. KUANTIFIKASI Kuantor meliputi dua hal, yaitu:kuantor umum dan kuantor khusus. Kuantor umum (kuantor universal/universum quantifier) : semua, setiap. Kuantor khusus (kuantor eksistensial): beberapa, terdapat, ada. Contoh pernyataan berkuantor umum: a) Semua penerbang adalah pria b) Setiap katak mempunyai ekor c) Tidak ada bilangan prima genap
6 d) Tiada hari tanpa olah raga e) Setiap motor yang diparkir dipasang kunci pengaman f) Semua burung bernyanyi Contoh pernyataan berkuantor khusus: a) Beberapa penerbang adalah wanita b) Ada katak mempunyai ekor c) Sedikitnya sebuah bilangan prima adalah genap d) Terdapat motor yang diparkir tanpa dipasang kunci pengaman e) Sekurang-kurangnya seekor burung bernyanyi Untuk menyusun negasi dari pernyataan berkuantor dapat dipedomani sebagai beikut: p : Semua A adalah B p : Beberapa A bukan B p : Beberapa A adalah B p : Semua A bukan B
Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan
Unit 5 PENALARAN/LOGIKA MATEMATIKA Wahyudi Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan. Penalaran matematika menjadi pedoman atau tuntunan sah atau tidaknya
Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses.
Unit 6 PENALARAN MATEMATIKA Clara Ika Sari Budhayanti Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan baik di bidang aritmatika, aljabar, geometri dan pengukuran,
NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3)
NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) 1 1 Kata Penghubung Kalimat 1. Konjungsi: menggunakan kata penghubung: dan 2. Disjungsi: menggunakan kata penghubung: atau 3. Implikasi: menggunakan kata
MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi)
MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi) Antonius Cahya Prihandoko Universitas Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Ekivalensi dan Kuantifikasi Jember, 2015 1 / 20
I. PERNYATAAN DAN NEGASINYA
1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan
NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG
LOGIKA MATEMATIKA A. PERNYATAAN DAN KALIMAT TERBUKA Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenarannya (benar dan salah). 1. Gadis itu cantik. 2. Bersihkan lantai itu. 3. Pernyataan/kalimat
PENALARAN DEDUKTIF. Pernyataan generalisasi (premis mayor) : Seseorang boleh mengendarai kendaraan bermotor jika ia mempunyai SIM.
PENALARAN DEDUKTIF Berbeda dengan penalaran induktif, penalaran deduktif berlangsung dari hal yang umum dan diturunkan pada hal-hal yang khusus. Dalam penalaran deduktif tidak menerima generalisasi dari
Matematika Industri I
LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai
Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012
Jurusan Informatika FMIPA Unsyiah September 26, 2012 yang diharapkan Dasar: Menggunakan logika matematika. Indikator Esensial: 1 Mengidentifikasi suatu tautologi 2 Menentukan ingkaran suatu pernyataan
A. Pengertian Logika B. Pernyataan C. Nilai Kebenaran
HAND OUT PERKULIAHAN Nama Mata Kuliah : Pengantar Dasar Matematika ub Materi : Pernyataan, Konjungsi, Disjungsi, Implikasi, iimplikasi Pertemuan : 1 URAIAN POKOK PERKULIAHAN LOGIKA A. Pengertian Logika
LOGIKA MATEMATIKA (Pendalaman Materi SMA)
LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT
B. Proposisi (Pernyataan) yaitu kalimat yang mempunyai nilai salah atau benar tetapi tidak sekaligus keduanya
A. emesta Pembicaraan yaitu himpunan semua objek yang dibicarakan a. 1 + 1 = 2 Jika semesta pembicaraannya adalah himpunan bilangan bulat, himpunan bilangan cacah, himpunan bilangan asli. b. x 2 1 = 0
Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup.
LOGIKA MATEMATIKA Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup. Beberapa hal yang digunakan dalam logika
B. Proposisi (Pernyataan) yaitu kalimat yang mempunyai nilai salah atau benar tetapi tidak sekaligus keduanya
A. emesta Pembicaraan yaitu himpunan semua objek yang dibicarakan a. 1 + 1 = 2 Jika semesta pembicaraannya adalah himpunan bilangan bulat, himpunan bilangan cacah, himpunan bilangan asli. b. x 2 1 = 0
Logika & Himpunan 2013 LOGIKA MATEMATIKA. Oleh NUR INSANI, M.SC. Disadur dari BUDIHARTI, S.Si.
LOGIKA MATEMATIKA Oleh NUR INSANI, M.SC Disadur dari BUDIHARTI, S.Si. Logika adalah ilmu yang mempelajari secara sistematis kaidah-kaidah penalaran yang absah/valid. Ada dua macam penalaran, yaitu: penalaran
Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.
Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu
Drs. Slamin, M.Comp.Sc., Ph.D. Program Studi Sistem Informasi Universitas Jember
Penalaran Dalam Matematika Drs. Slamin, M.Comp.Sc., Ph.D Program Studi Sistem Informasi Universitas Jember Outline Berpikir Kritis 1 p 2 Penalaran Induktif 3 Bekerja dengan Pola Pola Bilangan Pola Geometri
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 3 DEFINISI DAN PERISTILAHAN MATEMATIKA (c) Hendra Gunawan (2015) 2 Ingat PROPOSISI Ini? Proposisi. Jika segitiga siku-siku XYZ dengan
METODA PEMBUKTIAN DALAM MATEMATIKA
METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan HERNADI & Uki Suhendar, S.Pd (Asrul dan Enggar) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 8 FONDASI MATEMATIKA Matematika Bukan Sekedar
PENALARAN INDUKTIF DAN DEDUKTIF
Unit 6 PENALARAN INDUKTIF DAN DEDUKTIF Wahyudi Pendahuluan U nit ini membahas tentang penalaran induktif dan deduktif yang berisi penarikan kesimpulan dan penalaran indukti deduktif. Dalam penalaran induktif
LOGIKA MATEMATIKA. (Pembelajaran Matematika SMA) Oleh: H. Karso
LOGIKA MATEMATIKA (Pembelajaran Matematika MA) Oleh: H. Karso A. Kalimat Pernyataan Pengertian logika matematika termasuk logika modern dan logika tradisional dengan pentingnya belajar logika secara panjang
KALKULUS PREDIKAT KALIMAT BERKUANTOR
1 KALKULUS PREDIKAT KALIMAT BERKUANTOR A. PREDIKAT DAN KALIMAT BERKUANTOR Dalam tata bahasa, predikat menunjuk pada bagian kalimat yang memberi informasi tentang subjek. Dalam ilmu logika, kalimat-kalimat
BAB I LOGIKA MATEMATIKA
BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut
LOGIKA MATEMATIKA I. PENDAHULUAN
LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan
PERNYATAAN (PROPOSISI)
Logika Gambaran Umum Logika : - Logika Pernyataan membicarakan tentang pernyataan tunggal dan kata hubungnya sehingga didapat kalimat majemuk yang berupa kalimat deklaratif. - Logika Predikat menelaah
LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B
LOGIKA MATEMATIKA A. Pernyataan, kalimat terbuka, dan ingkaran pernyataan. 1. Pernyataan Pernyataan adalah kalimat yang mengandung nilai benar atau salah tetapi tidak sekaligus kedua-duanya. a. Hasil kali
LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X
LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi
ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan
(Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: [email protected]. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang
6. LOGIKA MATEMATIKA
6. LOGIKA MATEMATIKA A. Negasi (Ingkaran) Negasi adalah pengingkaran terhadap nilai kebenaran suatu pernyataan. ~ p : tidak p p ~ p B S S B B. Operator Logika 1) Konjungsi adalah penggabungan dua pernyataan
5. 1 Mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka)
Sumber: Art and Gallery Standar Kompetensi 5. Menerapkan logika matematika dalam pemecahan masalah yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor Kompetensi Dasar 5. 1 Mendeskripsikan
LOGIKA Matematika Industri I
LOGIKA TIP FTP UB Pokok Bahasan Pengertian Logika Pernyataan Matematika Nilai Kebenaran Operasi Uner Operasi Biner Tabel kebenaran Pernyataan Tautologi, Kontradiksi dan Kontingen Pernyataan-pernyataan
KATA PENGANTAR. Assalamu alaikum Wr. Wb.
KATA PENGANTAR Assalamu alaikum Wr. Wb. Matematika tidak dapat terlepas dalam kehidupan manusia sehari-hari, baik saat mempelajari matematika itu sendiri maupun mata kuliah lainnya. Mata kuliah Pengantar
MODUL LOGIKA MATEMATIKA
PERENCANAAN PEMBELAJARAN MATEMATIKA MODUL LOGIKA MATEMATIKA AUTHOR: Navel Mangelep UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA & ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA KATA PENGANTAR Salah satu penunjang
METODA PEMBUKTIAN DALAM MATEMATIKA
METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan HERNADI & Uki Suhendar, S.Pd (Asrul dan Enggar) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 8 FONDASI MATEMATIKA Matematika Bukan Sekedar
BAB 6 LOGIKA MATEMATIKA
A 6 LOGIKA MATEMATIKA A RINGKAAN MATERI 1. Pengertian Logika adalah suatu metode yang diciptakan untuk meneliti ketepatan penalaran (bentuk pemikiran yang masuk akal). Pernyataan adalah kalimat yang hanya
BAHAN AJAR LOGIKA MATEMATIKA
1 BAHAN AJAR LOGIKA MATEMATIKA DI SUSUN OLEH : DRS. ABD. SALAM,MM KELAS X BM & PAR SMK NEGERI 1 SURABAYA LOGIKA MATEMATIKA Standar Kompetensi : Menerapkan logika matematika dalam pemecahan masalah yang
LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom
LOGIKA MATEMATIKA LOGIKA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Untuk menemukan suatu gagasan baru dari informasi dan gagasan yang telah ada, diperlukan proses berpikir. Proses ini dikenal
Jadi penting itu baik, tapi jadi baik jauh lebih penting
LOGIKA MATEMATIKA Logika Matematika - Pernyataan, Nilai Kebenaran, dan Kalimat Terbuka - Pernyataan Majemuk - Konvers, Invers, dan Kontraposisi - Kuantor Universal dan Kuantor Eksistensial - Ingkaran dari
Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah.
LOGIKA MATEMATIKA 1. Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. Pernyataan dilambangkan dengan huruf kecil, misalnya p, q, r dan seterusnya.
MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi
MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN Dosen : Fitri Yulianti, SP. MSi Skema Himpunan Kompleks Real Rasional Bulat Cacah Asli Genap Ganjil Prima Komposit Nol Bulat Negatif Pecahan Irasional Imajiner Pengertian
KISI KISI LOMBA KOMPETENSI SISWA SMK TINGKAT PROVINSI JAWA TIMUR 2014
LKS SMK 214 Bidang : Matematika Teknologi KISI KISI LOMBA KOMPETENSI SISWA SMK TINGKAT PROVINSI JAWA TIMUR 214 1 Memecahkan masalah berkaitan dengan konsep aljabar memaham, mengaplikasikan, menganalisai
Modul Matematika X Semester 2 Logika Matematika
Modul Matematika X Semester 2 Logika Matematika Oleh : Markus Yuniarto, S.Si Tahun Pelajaran 2014 2015 SMA Santa Angela Jl. Merdeka No. 24 Bandung LOGIKA MATEMATIKA A. Standar Kompetensi : Menggunakan
Logika Matematika. Cece Kustiawan, FPMIPA, UPI
Logika Matematika 1. Pengertian Logika 2. Pernyataan Matematika 3. Nilai Kebenaran 4. Operasi Uner 5. Operasi Biner 6. Tabel kebenaran Pernyataan 7. Tautologi, Kontradiksi dan Kontingen 8. Pernyataan-pernyataan
Logika. Modul 1 PENDAHULUAN
Modul 1 Logika Drs. Sukirman, M.Pd. L PENDAHULUAN ogika merupakan salah satu bidang ilmu yang mengkaji prinsip-prinsip penalaran yang benar dan penarikan kesimpulan yang absah, baik yang bersifat deduktif
Mahdhivan Syafwan. PAM 123 Pengantar Matematika
Mahdhivan Syafwan PAM 123 Pengantar Matematika APAKAH LOGIKA ITU PENTING? http://hukum.kompasiana.com/2012/03/31/dpr-menunda-sementara-kenaikan-bbm-bersubsidi-451248.html Pasal 7 Ayat 6 : Harga jual eceran
LOGIKA. Arum Handini Primandari
LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian
MATEMATIKA DISKRIT. Logika
MATEMATIKA DISKRIT Logika SILABUS KULIAH 1. Logika 2. Himpunan 3. Matriks, Relasi dan Fungsi 4. Induksi Matematika 5. Algoritma dan Bilangan Bulat 6. Aljabar Boolean 7. Graf 8. Pohon REFERENSI Rinaldi
1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi
1.3 Pembuktian 1.3.1 Tautologi dan Kontradiksi Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi yang membentuknya disebut toutologi, sedangkan proposisi yang selalu bernilai salah
PTI 206 Logika. Semester I 2007/2008. Ratna Wardani
PTI 206 Logika Semester I 2007/2008 Ratna Wardani 1 Materi Logika Predikatif Fungsi proposisi Kuantor : Universal dan Eksistensial Kuantor bersusun 2 Logika Predikat Logika Predikat adalah perluasan dari
CBT Psikotes CBT UN SMA IPA SBMPTN. FPM Matematika. Tes Buta Warna
GENTA GROUP in PLAY STORE CBT UN SMA IPA Aplikasi CBT UN SMA IPA android dapat di download di play store dengan kata kunci genta group atau gunakan qr-code di bawah. CBT Psikotes Aplikasi CBT Psikotes
RENCANA PELAKSANAAN PEMBELAJARAN
RENCANA PELAKSANAAN PEMBELAJARAN Materi Pelajaran : Matematika Kelas/ Semester : X / 2 Pertemuan ke : 1,2 Alokasi Waktu : 5 x 45 menit Standar Kompetensi : Menerapkan logika matematika dalam pemecahan
KONSEP DASAR LOGIKA MATEMATIKA. Riri Irawati, M.Kom Logika Matematika - 3 sks
KONSEP DASAR LOGIKA MATEMATIKA Riri Irawati, M.Kom Logika Matematika - 3 sks Agenda 2 Pengantar Logika Kalimat pernyataan (deklaratif) Jenis-jenis pernyataan Nilai kebenaran Variabel dan konstanta Kalimat
Pokok Bahasan. Daftar Pustaka 1 Mahasiswa memahami pernyataan dan yang 1 KB 1 Pernyataan dan negasinya PAT UT1 5 Modul 1
RANCANGAN AKTIVITAS TUTORIAL (RAT) Matakuliah : PDGK48 Matematika Deskripsi Singkat Matakuliah Matakuliah Matematika (PDGK 48) dengan bobot 4 sks merupakan matakuliah yang berisi bahasan tentang konsep-konsep
Logika Matematika. Bab 1
Bab 1 Sumber: pkss.co.id Pada bab ini, Anda akan diajak untuk memecahkan masalah yang ber - hubungan dengan konsep, di antaranya mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka), mendeskripsikan
Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1
2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki
KISI-KISI SOAL UJIAN SEKOLAH SEKOLAH MENENGAH KEJURUAN (SMK)
0 KISI-KISI UJIAN SEKOLAH SEKOLAH MENENGAH KEJURUAN (SMK) MATA PELAJARAN : MATEMATIKA KELAS : XII KELOMPOK : TEKNOLOGI, PERTANIAN DAN KESEHATAN BENTUK & JMl : PILIHAN GANDA = 35 DAN URAIAN = 5 WAKTU :
LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.
LOGIKA MATEMATIKA A. Definisi 1). Pernyataan Pernyataan adalah suatu kalimat yang bernilai benar atau salah, tetapi tidak sekaligus benar dan salah. Air laut rasanya asin, adalah bilangan prima, urabaya
BAB I DASAR-DASAR LOGIKA
BAB I DASAR-DASAR LOGIKA 11 Pendahuluan Logika adalah suatu displin yang berhubungan dengan metode berpikir Pada tingkat dasar, logika memberikan aturan-aturan dan teknik-teknik untuk menentukan apakah
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA
Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI.
Modul ke: 5 Logika Matematika Proposisi & Kuantor Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Materi Pembelajaran Kalkulus Proposisi Konjungsi Disjungsi
KUANTOR. A. Fungsi Pernyataan
A. Fungsi Pernyataan KUANTOR Definisi : Suatu fungsi pernyataan adalah suatu kalimat terbuka di dalam semesta pembicaraan (semesta pembicaraan diberikan secara eksplisit atau implisit). Fungsi pernyataan
METODA PEMBUKTIAN DALAM MATEMATIKA
1 1 Program Studi Pend Matematika FKIP UM Ponorogo January 12, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat
BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?
BAB I PENDAHULUAN 1.1 LATAR BELAKANG Secara etimologi, istilah Logika berasal dari bahasa Yunani, yaitu logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga ilmu pengetahuan. Dalam arti
BAB IV PENALARAN MATEMATIKA
BAB IV PENALARAN MATEMATIKA A. Pendahuluan Materi penalaran matematika merupakan dasar untuk mempelajari materimateri logika matematika lebih lanjut. Logika tidak dapat dilepaskan dengan penalaran, karena
PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.
PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta
LOGIKA. Logika Nilai kebenaran pernyataan majemuk Ingkaran suatu pernyataan Penarikan kesimpulan. A. Pernyataan, Kalimat Terbuka, Ingkaran.
LOGIKA Standar Kompetensi Lulusan (SKL) Memahami pernyataan dalam matematika dan ingkarannya, menentukan nilai kebenaran pernyataan majemuk, serta mampu menggunakan prinsip logika matematika dalam pemecahan
B S B B B S B S. baris ke-1 baris ke-2 baris ke-3 baris ke-4. Contoh 1.7
. Implikasi dan iimplikasi 1. Implikasi Perhatikan contoh berikut ini Jika Ajid lulus ujian maka Ajid diajak bertamasya. Kalimat ini merupakan pernyataan majemuk. Pernyataan-pernyataan tunggalnya adalah
METODA PEMBUKTIAN DALAM MATEMATIKA
1 1 Program Studi Pend Matematika FKIP UM Ponorogo October 29, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat
MATEMATIKA. Sekolah Menengah Kejuruan (SMK) Kelas XI. To ali. Kelompok Penjualan dan Akuntansi. Pusat Perbukuan Departemen Pendidikan Nasional
i MATEMATIKA Sekolah Menengah Kejuruan (SMK) Kelas XI Kelompok Penjualan dan Akuntansi To ali Pusat Perbukuan Departemen Pendidikan Nasional ii Hak Cipta pada Departemen Pendidikan Nasional Dilindungi
MATEMATIKA DISKRIT LOGIKA
MATEMATIKA DISKRIT LOGIKA Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika.
MODUL 3 OPERATOR LOGIKA
STMIK STIKOM BALIKPAPAN 1 MODUL 3 OPERATOR LOGIKA 1. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN 1. Tema : Operator Logika 2. Fokus Pembahasan Materi Pokok : 1. Operator Logika Konjungsi 2. Operator Logika Disjungsi
BAGAIMANA MENENTUKAN BENAR TIDAKNYA SUATU PERNYATAAN?
BAGAIMANA MENENTUKAN BENAR TIDAKNYA SUATU PERNYATAAN? Fadjar Shadiq Dimulai sejak kecil, setiap manusia, sedikit demi sedikit akan melengkapi perbendaharaan kata-katanya. Di saat berkomunikasi, seseorang
22. MATEMATIKA SMA/MA (PROGRAM IPA)
22. MATEMATIKA SMA/MA (PROGRAM IPA) NO. 1. Memahami pernyataan dalam matematika dan ingkarannya, menentukan nilai kebenaran pernyataan majemuk serta menggunakan prinsip logika matematika dalam pemecahan
BAB VI. LOGIKA MATEMATIKA
BAB VI. LOGIKA MATEMATIKA Ingkaran, Disjungsi, Konjungsi, Implikasi, Biimplikasi : Konvers, Invers, Kontraposisi : Tabel Kebenaran : p q ~ p ~ q p q p q p q p q B B S S B B B B B S S B B S S S S B B S
PENGANTAR ANALISIS REAL
Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,
1 INDUKSI MATEMATIKA
1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua
LOGIKA PREDIKAT. Altien Jonathan Rindengan, S.Si, M.Kom
LOGIKA PREDIKAT Altien Jonathan Rindengan, S.Si, M.Kom Logika Predikat Seringkali kita harus memeriksa argumen yang berisi proposisi-proposisi yang berkenaan dengan kumpulan objek. Misalkan, memeriksa
SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IX LOGIKA MATEMATIKA
SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB IX LOGIKA MATEMATIKA Dr. Djadir, M.Pd. Dr. Ilham Minggi, M.Si Ja faruddin,s.pd.,m.pd. Ahmad Zaki, S.Si.,M.Si Sahlan Sidjara,
Unit 7 PENALARAN INDUKTIF DAN DEDUKTIF. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar dan tetap bersemangat, semoga Anda sukses.
Unit 7 PENALARAN INDUKTIF DAN DEDUKTIF Pendahuluan Clara Ika Sari Budhayanti U nit penalaran induktif dan deduktif ini akan membahas mengenai penarikan kesimpulan dan penalaran indukti deduktif. Dalam
BAHAN KULIAH LOGIKA MATEMATIKA
BAHAN KULIAH LOGIKA MATEMATIKA O L E H A. Rahman H., S.Si, MT & Muhammad Khaidir STTIKOM Insan unggul Jl. S.A. tirtayasa no. 146 Komp. Istana Cilegon blok B 25-28 Cilegon Banten 42414 http://didir.co.cc
DASAR-DASAR MATEMATIKA
DASAR-DASAR MATEMATIKA Manfaat Matematika Pengertian Karakteristik Matematika Perbedaan matematika dan Pendidikan Matematika Refleksi Pengantar Dasar Matematika 1 MANFAAT MEMPELAJARI MATEMATIKA PERDAGANGAN
Dasar Logika Matematika
Dasar Logika Matematika Pertemuan 1: Brainstorming Perhatikan kedudukan himpunan titik-titik yang berderet kemudian tentukan himpunan titik-titik berikutnya sesuai dengan pola.? Pengantar Dasar Logika
51. Mata Pelajaran Matematika Kelompok Teknologi, Kesehatan dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A.
51. Mata Pelajaran Matematika Kelompok Teknologi, Kesehatan dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. Latar Belakang Matematika merupakan ilmu universal yang
KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA. Disusun Oleh : Dra. Noeryanti, M.Si 31 MODUL LOGIKA MATEMATIKA
KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA Disusun Oleh : Dra. Noeryanti, M.Si 31 DAFTAR ISI Cover pokok bahasan... 31 Daftar isi.... 3 Judul Pokok Bahasan... 33.1. Pengantar... 33.. Kompetensi... 33.3
PERTEMUAN 3 DASAR-DASAR LOGIKA
PERTEMUAN 3 DASAR-DASAR LOGIKA 1.1 PENGERTIAN UMUM LOGIKA Filsafat dan matematika adalah bidang pengetahuan rasional yang ada sejak dahulu. Jauh sebelum matematika berkembang seperti sekarang ini dan penerapannya
KUANTIFIKASI Nur Insani, M.Sc
KUANTIFIKASI Nur Insani, M.Sc Pada validitas : Banyak argumen valid, namun validitasnya tak dapat diuji dengan alat uji validitas yang ada. 2 Bagaimana Validitas Argumen ini? Semua kucing adalah hewan
LOGIKA DAN PEMBUKTIAN
BAB I LOGIKA DAN PEMBUKTIAN A. PENGANTAR Prinsip dari logika matematika memiliki korelasi dengan pembuktian kebenaran yang dilakukan menggunakan tabel kebenaran ataupun tanpa menggunakan tabel kebenaran
BAB III KUANTOR kuantor, 1. Kuantor Universal 3. Kuantor Eksistensial
BAB III KUANTOR Untuk mengubah kalimat tebuka menjadi kalimat deklaratif, selain dengan jalan mengganti variabel dengan konstanta, dapat juga dilakukan dengan menggunakan kuantor, yaitu dengan menggunakan
LOGIKA MATEMATIKA. Modul Matematika By : Syaiful Hamzah Nasution
LOGIKA MATEMATIKA Logika matematika mempunyai peranan mendasar dalam perkembangan teknologi computer. Karena logika digunakan dalam berbagai aspek di bidang computer seperti pemrograman, ersitektur computer,
RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6)
RUMUS-RUMUS TAUTOLOGI (Minggu ke-5 dan 6) 1 1 Rumus-rumus tautologi Rumus 1.1 (Komutatif) 1. p q q p 2. p q q p Bukti: p q p q q p T T T T T F F F F T F F F F F F 2 Rumus 1.2 (Distributif) 1. p (q r) (p
50. Mata Pelajaran Matematika Kelompok Akuntansi dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A.
50. Mata Pelajaran Matematika Kelompok Akuntansi dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari
Silabus. Tugas individu, tugas kelompok, kuis.
Silabus Nama Sekolah : SMK Mata Pelajaran : MATEMATIKA Kelas / Program : X / TEKNOLOGI, KESEHATAN, DAN PERTANIAN Semester : GANJIL Sandar Kompetensi: 1. Memecahkan masalah berkaitan dengan konsep operasi
Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik.
Induksi Matematika Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Contoh: 1. Buktikan bahwa jumlah n bilangan bilangan bulat positif pertama adalah n(n
LANDASAN MATEMATIKA Handout 4 (Kuantor)
LANDASAN MATEMATIKA Handout 4 (Kuantor) Tatik Retno Murniasih, S.Si., M.Pd. [email protected] / [email protected] Standar Kompetensi Mahasiswa dapat mengerti dan memahami kuantor sehingga dapat
LOGIKA MATEMATIKA. Oleh : Siardizal, S.Pd., M.Kom
LOGIKA MATEMATIKA Oleh : iardizal,.pd., M.Kom elamat datang di CD berprogram Menu Utama Info Guru Diskripsi Materi Pelajaran LOGIKA MATEMATIKA Kompetensi Dasar Materi Latihan oal 2 elamat datang di CD
LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan
LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan (statements). Proposisi kalimat deklaratif yang bernilai benar (true)
UJIAN NASIONAL TAHUN PELAJARAN 2007/2008
UJIAN NASIONAL TAHUN PELAJARAN 007/008 PANDUAN MATERI MATEMATIKA Kelompok Teknologi, Kesehatan, dan Pertanian PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG
B. Tujuan Mata pelajaran Matematika bertujuan agar peserta didik memiliki kemampuan sebagai berikut.
49. Mata Pelajaran Matematika Kelompok Seni, Pariwisata, Sosial, Administrasi Perkantoran, dan Teknologi Kerumahtanggaan untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. Latar Belakang
RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN
RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN Updated by Admin of Bahan Belajar Logika matematika merupakan salah satu materi pelajaran matematika dan cabang logika yang mengandung kajian matematis logika.
