KUANTOR (Minggu ke-7)
|
|
|
- Sonny Pranata
- 8 tahun lalu
- Tontonan:
Transkripsi
1 KUANTOR (Minggu ke-7) 1
2 4 Pendahuluan 1. Kuantor Universal: Untuk semua x berlaku atau Untuk setiap x berlaku. S P : Himpunan semua bilangan asli. 1. x > 1 merupakan kalimat terbuka 2. Untuk semua x berlakulah x > 1 merupakan kalimat deklaratif bernilai 2. Kuantor Eksistensial: Terdapat x sedemikian hingga atau Ada x sedemikian hingga S P : Himpunan semua bilangan asli 1. x > 1 merupakan kalimat terbuka 2. Terdapat x sedemikian hingga x > 1 merupakan kalimat deklaratif bernilai benar, sebab untuk x = 2 berlakulah x > 1. 2
3 Simbol Kuantor 1. Untuk semua x berlakulah x > 1 : ( x)p (x) - Semua x bersifat P - Setiap x mempunyai sifat P. - Untuk semua x berlaku sifat P. dengan sifat P : lebih besar daripada 1 2. Terdapat suatu x yang memenuhi (sifat) x > 1 ( x)p (x) - Terdapat x yang mempunyai sifat P - Beberapa x mempunyai sifat P. - Paling sedikit ada satu x yang mempunyai sifat P. 3
4 Perhatian: 1. Simbol kuantor mengikat lebih kuat dibandingkan kata penghubung lainnya. 2. Di bidang ilmu eksakta sifat-sifat (hukum-hukum) yang berlaku umum tidak jarang kuantor universal tidak ditulis Contoh: 1. ( x)p(x) (α β) yang dimaksud: (( x)p(x)) (α β) 2. x n 1 = (x 1)(x n 1 + x n ) seharusnya: ( x).x n 1 = (x 1)(x n 1 + x n ). 4
5 4.1 Kuantor Jamak S P himpunan semua bilangan real 1. ( x)( y)( y < x < y = x 2 < y 2 ). 2. ( x)( y)(x y = 0 = y + x). 3. ( x)( y)(x + y = y + x = y). 4. ( x)((x 0) = ( y)(xy = yx = 1)). Apa yang dimaksud? Bagaimana mengucapkannya? 5
6 4.2 Urutan, Sifat-sifat dan Hubungan Antar Kuantor Misalkan p adalah suatu predikat tertentu: 1. ( x)( y).p(x, y), juga ditulis: ( x, y).p(x, y). Dibaca : Untuk semua x dan y berlaku x dan y bersifat p. 2. ( x)( y).p(x, y). Dibaca : Untuk semua x terdapat y yang memenuhi x dan y bersifat p. 3. ( x)( y).p(x, y). Dibaca : Terdapat x yang memenuhi untuk semua y berlaku x dan y mempunyai sifat p. 4. ( x)( y).p(x, y), juga ditulis: ( x, y).p(x, y). Dibaca : Terdapat x dan y yang memenuhi sifat p. 6
7 Pertukaran Letak Kuantor Teorema 4.1 Teorema 4.2 Teorema 4.3 ( x)( y).q(x, y) ( y)( x).q(x, y). ( x)( y).q(x, y) ( y)( x).q(x, y). ( x)( y).q(x, y) = ( y)( x).q(x, y). Belum tentu berlaku sebaliknya Contoh: 1. ( x)( y)(x y = 0 = y + x), T 2. ( x)( y)(x y = 0 = y + x), F dengan S P himpunan semua bilangan nyata. 7
8 4.3 Ingkaran Kalimat Berkuantor Ingkaran Semua x mempunyai sifat p : 1. Tidak benar semua x mempunyai sifat p, 2. Tidak semua x mempunyai sifat p Maknanya sama dengan kalimat Ada x yang tidak mempunyai sifat p. Teorema 4.4 ( x).p(x) ( x).p(x). 8
9 Contoh: S P : himpunan semua bilangan nyata, tentukan ingkaran dari kalimat-kalimat berikut ini: 1. ( x)(x 2 + 2x + 1 1) 2. ( x)( a x a = x 2 a 2 ) Penyelesaian: 1. ( x)x 2 + 2x Sama dengan: ( x)(x 2 + 2x + 1 1) Atau: ( x)(x 2 + 2x + 1 < 1) 2. ( x) a x a = x 2 a 2 Sama dengan: ( x) a x a x 2 a 2 Dengan kata lain: ( x)( a x a x 2 a 2 ) Mempunyai makna sama dengan: ( x)( a x a x 2 > a 2 ) 9
10 Teorema 4.5 ( x).p(x) ( x).p(x). Contoh: Tentukan ingkaran dari kalimat-kalimat berikut ini: 1. Ada mahasiswa yang IPK-nya lebih besar daripada 3, Dengan semesta himpunan bilangan nyata: ( x)(x 2 2x + 1 < 1) Penyelesaian: 1. Tidak ada mahasiswa yang IPK-nya lebih besar daripada 3,85. Sama dengan: Semua mahasiswa IPK-nya tidak lebih besar daripada 3,85 Atau: Semua mahasiswa IPK-nya kurang dari atau sama dengan 3, ( x)x 2 2x + 1 < 1 Sama dengan: ( x)(x 2 2x + 1 < 1) Atau: ( x)(x 2 2x + 1 1) 10
11 4.4 Ingkaran Kuantor Jamak Teorema 4.6 Ingkaran kuantor jamak: 1. ( x)( y).p(x, y) ( x)( y).p(x, y) 2. ( x)( y).p(x, y) ( x)( y).p(x, y) 3. ( x)( y).p(x, y) ( x)( y).p(x, y) 4. ( x)( y).p(x, y) ( x)( y).p(x, y) Contoh: S P : Himpunan semua bilangan nyata. Tentukan ingkaran: 1. ( x)( y)(x + y = 0). 2. ( l)( ϵ)(ϵ > 0 = P (l, ϵ)) 3. ( x)( y)(x > y ( u)(u > 0 x = y + u)). 11
12 Penyelesaian: 1. Ingkaran dari: ( x)( y)(x + y = 0) adalah : ( x)( y)(x + y = 0) ( x)( y)(x + y = 0) ( x)( y)x + y = 0 ( x)( y)(x + y 0) 2. Ingkaran dari: ( l)( ϵ)(ϵ > 0 = P (l, ϵ)) adalah : ( l)( ϵ)(ϵ > 0 = P (l, ϵ)) ( l)( ϵ)(ϵ > 0 = P (l, ϵ)) ( l)( ϵ)ϵ > 0 = P (l, ϵ) ( l)( ϵ)(ϵ > 0 P (l, ϵ)) 3. Untuk Latihan 12
13 4.5 Nilai Kebenaran Kalimat Berkuantor Contoh: 1. ( x).x 2 x > 1 F 2. ( x).x 2 x > 1 T 3. ( x). x 2 = x F 4. ( x). x 2 = x T 5. ( x)(x > 0 = ( y)( 1 y < x)) T 6. ( x)( y)( x y = 0) F 7. ( x)( y)(x y = ( z)(x < z < y y < z < x)) T 13
14 Contoh: Semesta pembicaraan adalah himpunan bilangan 0, 1, 2, 3 dan 4. Tentukan nilai logika dari kalimat berikut ini. 1. ( x).x 1 T 2. ( x).x 2 x > x 1 T 3. ( x).x 2 16 T 4. ( x). x 2 = x F 14
15 Latihan 1. S P : himpunan semua manusia. Tulislah penyataan-pernyataan ini dengan menggunakan kauantor 1.1 Ada manusia yang suka berolah raga tetapi tidak pandai 1.2 Ada mahasiswa yang pandai dan suka berolah raga. 1.3 Semua manusia yang tidak pandai tetapi suka berolah raga pasti bukan mahasiswa. 1.4 Ada manusia yang suka berolah raga tetapi bukan mahasiswa 2. S P : himpunan semua bilangan nyata. Ucapkanlah dengan menggunakan bahasa sehari-hari (dengan makna yang sama dengan bentuk simbolnya). Selanjutnya tentukan nilai kebenaraannya. 2.1 ( y)( x)(x y) 2.2 ( y)( x)(yx = xy = 0) 2.3 ( x)(( ϵ)(ϵ > 0 = x < 0) = x = 0) 2.4 ( x)( y)(x > y > 0 x 2 < y 2 ) 3. Tentukanlah ingkaran bentuk simbolisma dari kalimat-kalimat Soal dan , kemudian terjemahkan dalam bahasa sehari-hari, dan tentukan nilai kebenarannya. 15
BAB III INDUKSI MATEMATIKA
BAB III INDUKSI MATEMATIKA BAB III INDUKSI MATEMATIKA 3.1 Pendahuluan Dalam bidang matematika tidak jarang ditemui pola-pola induktif yang melibatkan himpunan indeks berupa himpunan bilangan asli atau
BAB III INDUKSI MATEMATIKA
3.1 Pendahuluan BAB III INDUKSI MATEMATIKA Dalam bidang matematika tidak jarang ditemui pola-pola induktif yang melibatkan himpunan indeks berupa himpunan bilangan asli atau bulat seperti barisan atau
KUANTOR KHUSUS (Minggu ke-8)
KUANTOR KHUSUS (Minggu ke-8) 1 4 Kuantor Jenis Lain Terdapatlah satu dan hanya satu x yang mempunyai sifat P. ( x)(p(x) ( y)(p(y) = y = x)) Terdapat x yang memenuhi sifat p dan untuk setiap y yang memenuhi
BAB III KUANTOR kuantor, 1. Kuantor Universal 3. Kuantor Eksistensial
BAB III KUANTOR Untuk mengubah kalimat tebuka menjadi kalimat deklaratif, selain dengan jalan mengganti variabel dengan konstanta, dapat juga dilakukan dengan menggunakan kuantor, yaitu dengan menggunakan
Mahasiswa memahami kuantifikasi dan simbolisme logika. 2) Mahasiswa dapat menyebutkan hubungan antara kuantor eksistensial dan kuantor
BAB II KUANTIFIKASI Tujun Instruksional Umum Mahasiswa memahami kuantifikasi dan simbolisme logika. Tujuan Instruksional Khusus 1) Mahasiswa dapat menggunakan kuantor 2) Mahasiswa dapat menyebutkan hubungan
PERNYATAAN (PROPOSISI)
Logika Gambaran Umum Logika : - Logika Pernyataan membicarakan tentang pernyataan tunggal dan kata hubungnya sehingga didapat kalimat majemuk yang berupa kalimat deklaratif. - Logika Predikat menelaah
Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup.
LOGIKA MATEMATIKA Definisi : predikat (first order) adalah suatu Kata (simbol) yg jika di berikan pada kalimat terbuka, dapat berubah menjadi kalimat tertutup. Beberapa hal yang digunakan dalam logika
Mahasiswa memahami kuantifikasi dan simbolisme logika. 2) Mahasiswa dapat menyebutkan hubungan antara kuantor eksistensial dan kuantor
BAB II KUANTIFIKASI Tujun Instruksional Umum Mahasiswa memahami kuantifikasi dan simbolisme logika. Tujuan Instruksional Khusus 1) Mahasiswa dapat menggunakan kuantor 2) Mahasiswa dapat menyebutkan hubungan
PTI 206 Logika. Semester I 2007/2008. Ratna Wardani
PTI 206 Logika Semester I 2007/2008 Ratna Wardani 1 Materi Logika Predikatif Fungsi proposisi Kuantor : Universal dan Eksistensial Kuantor bersusun 2 Logika Predikat Logika Predikat adalah perluasan dari
KALKULUS PREDIKAT KALIMAT BERKUANTOR
1 KALKULUS PREDIKAT KALIMAT BERKUANTOR A. PREDIKAT DAN KALIMAT BERKUANTOR Dalam tata bahasa, predikat menunjuk pada bagian kalimat yang memberi informasi tentang subjek. Dalam ilmu logika, kalimat-kalimat
KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA. Disusun Oleh : Dra. Noeryanti, M.Si 31 MODUL LOGIKA MATEMATIKA
KUANTOR SMTS 1101 / 3SKS LOGIKA MATEMATIKA Disusun Oleh : Dra. Noeryanti, M.Si 31 DAFTAR ISI Cover pokok bahasan... 31 Daftar isi.... 3 Judul Pokok Bahasan... 33.1. Pengantar... 33.. Kompetensi... 33.3
PERNYATAAN MAJEMUK & NILAI KEBENARAN
PERNYATAAN MAJEMUK & NILAI KEBENARAN 1. Pernyataan Majemuk Perhatikan pernyataan hari ini hujan dan aku berjalan-jalan. Pernyataan tersebut terdiri dari dua pernyataan pokok/tunggal (prime sentence), yaitu
KALIMAT DEKLARATIF (Minggu ke-1 dan 2)
KALIMAT DEKLARATIF (Minggu ke-1 dan 2) 1 1 Kalimat Definisi 1.1 Kalimat dikatakan lengkap jika paling sedikit memuat subyek dan predikat. Contoh: 1. Toni makan L 2. Menulis buku TL 3. Setiap hari matahari
Bagaimana Cara Guru Matematika Membantu Siswanya Mempelajari Pernyataan Berkuantor
Bagaimana Cara Guru Matematika Membantu Siswanya Mempelajari Pernyataan Berkuantor Fadjar Shadiq, M.App.Sc ([email protected] & fadjarp3g.wordpress.com) Widyaiswara PPPPTK Matematika Kemampuan bernalar
KALIMAT BERKUANTOR. Pertemuan 4 Senin, 11 Maret 2013
KALIMAT BERKUANTOR Pertemuan 4 Senin, 11 Maret 2013 Pokok Bahasan 1. Predikat dan kalimat berkuantor 2. Ingkaran kalimat berkuantor 3. Kalimat berkuantor ganda 4. Aplikasi logika matematika dalam ilmu
Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI.
Modul ke: 5 Logika Matematika Proposisi & Kuantor Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Materi Pembelajaran Kalkulus Proposisi Konjungsi Disjungsi
NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3)
NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) 1 1 Kata Penghubung Kalimat 1. Konjungsi: menggunakan kata penghubung: dan 2. Disjungsi: menggunakan kata penghubung: atau 3. Implikasi: menggunakan kata
Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan
Unit 5 PENALARAN/LOGIKA MATEMATIKA Wahyudi Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan. Penalaran matematika menjadi pedoman atau tuntunan sah atau tidaknya
LOGIKA MATEMATIKA (Pendalaman Materi SMA)
LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT
RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6)
RUMUS-RUMUS TAUTOLOGI (Minggu ke-5 dan 6) 1 1 Rumus-rumus tautologi Rumus 1.1 (Komutatif) 1. p q q p 2. p q q p Bukti: p q p q q p T T T T T F F F F T F F F F F F 2 Rumus 1.2 (Distributif) 1. p (q r) (p
Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses.
Unit 6 PENALARAN MATEMATIKA Clara Ika Sari Budhayanti Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan baik di bidang aritmatika, aljabar, geometri dan pengukuran,
BAB I LOGIKA MATEMATIKA
BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut
BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN
BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN 2.1 Pendahuluan Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi
PENALARAN DALAM MATEMATIKA
PENALARAN DALAM MATEMATIKA A. PENDAHULUAN Siswa belajar dimulai dari mengamati contoh-contoh atau fenomena Dari informasi-informasi yang diperoleh secara khusus siswa mencoba melakukan generalisasi secara
I. PERNYATAAN DAN NEGASINYA
1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan
PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear
Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum
MA5032 ANALISIS REAL
(Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: [email protected]. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan
LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1
LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 5 KUANTOR II: METODE MEMILIH (c) Hendra Gunawan (2015) 2 Masih Berurusan dengan Kuantor Sekarang kita akan membahas metode memilih,
Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.
Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu
RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) DAN BUKU DIKTAT PENGANTAR LOGIKA MATEMATIKA DAN HIMPUNAN. Budi Surodjo
RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) DAN BUKU DIKTAT PENGANTAR LOGIKA MATEMATIKA DAN HIMPUNAN Budi Surodjo Jurusan Matematika Fakultas Matematikan dan Ilmu Pengetahuan Alam Universitas
Gerbang dan Rangkaian Logika
Gerbang dan Rangkaian Logika Teknik Digital (TKE 071207) Iwan Setiawan stwn at unsoed.ac.id Pemutakhiran terakhir: 24/04/11 20:51 rangkaian digital beroperasi dalam mode biner. (masukan tegangan bernilai
Matematika Industri I
LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai
Jadi penting itu baik, tapi jadi baik jauh lebih penting
LOGIKA MATEMATIKA Logika Matematika - Pernyataan, Nilai Kebenaran, dan Kalimat Terbuka - Pernyataan Majemuk - Konvers, Invers, dan Kontraposisi - Kuantor Universal dan Kuantor Eksistensial - Ingkaran dari
BAB 2 : KALIMAT BERKUANTOR
BAB 2 : KALIMAT BERKUANTOR 2.1 PENGANTAR LOGIKA PREDIKAT 2.1.1 PENDAHULUAN Seperti yang telah dibahas sebelumnya, dapat ditarik satu kesimpulan bahwa titik berat logika adalah pada pembuktian validitas
MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun
MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Tentang Mata Kuliah MA3231 Mata kuliah ini merupakan mata kuliah wajib bagi mahasiswa program studi S1 Matematika, dengan
Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012
Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya
KUANTIFIKASI Nur Insani, M.Sc
KUANTIFIKASI Nur Insani, M.Sc Pada validitas : Banyak argumen valid, namun validitasnya tak dapat diuji dengan alat uji validitas yang ada. 2 Bagaimana Validitas Argumen ini? Semua kucing adalah hewan
Tingkat-tingkat Berpikir Mahasiswa... (M. Andy Rudhito)
Tingkat-tingkat Berpikir Mahasiswa... (M. Andy Rudhito) TINGKAT-TINGKAT BERPIKIR MAHASISWA DALAM MENERJEMAHKAN PERNYATAAN MATEMATIS BERKUANTOR UNIVERSAL DARI BENTUK KALIMAT BIASA MENJADI BENTUK KALIMAT
Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1
2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki
LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.
LOGIKA MATEMATIKA A. Definisi 1). Pernyataan Pernyataan adalah suatu kalimat yang bernilai benar atau salah, tetapi tidak sekaligus benar dan salah. Air laut rasanya asin, adalah bilangan prima, urabaya
1 INDUKSI MATEMATIKA
1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua
NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG
LOGIKA MATEMATIKA A. PERNYATAAN DAN KALIMAT TERBUKA Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenarannya (benar dan salah). 1. Gadis itu cantik. 2. Bersihkan lantai itu. 3. Pernyataan/kalimat
Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi
Selamat datang di Perkuliahan LOGIKA MAEMAIKA Logika Matematika eori Himpunan eori fungsi Dosen : Dr. Julan HERNADI PUSAKA : Kenneth H Rossen, Discrete mathematics and its applications, fifth edition.
LOGIKA PREDIKAT. Altien Jonathan Rindengan, S.Si, M.Kom
LOGIKA PREDIKAT Altien Jonathan Rindengan, S.Si, M.Kom Logika Predikat Seringkali kita harus memeriksa argumen yang berisi proposisi-proposisi yang berkenaan dengan kumpulan objek. Misalkan, memeriksa
HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS.
15, 20, 23, 25 HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS. Dst. KESIMPULAN : (hubungkan dengan SIKAP yang harus Anda miliki untuk memilih dan memberikan alasan) PROBLEM
PERTEMUAN Logika Matematika
3-1 PERTEMUAN 3 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengamu : Dr. Suarman E-mail : [email protected] HP : 0813801198 Judul Pokok Bahasan Tujuan Pembelajaran : 3. Logika Matematika
FUNGSI DUA VARIABEL (TURUNAN PARSIAL) Kus Prihantoso Krisnawan. January 2, Yogyakarta. Pertemuan 7. Krisnawan. Fungsi. Diferensial Partial
FUNGSI DUA VARIABEL (TURUNAN PARSIAL) Kus Prihantoso January 2, 2012 Yogyakarta 2 Variabel fungsi 2 variabel: f (x, y) = x 2 + y 2 f (x, y) = cos x sin y f (x, y) = x 2 y + 3y 3 f (x, y) = x 2 sin(xy 2
RELASI DAN FUNGSI. A. Pengertian Relasi dan Fungsi
RELASI DAN FUNGSI A. Pengertian Relasi dan Fungsi Banyak enomena atau kejadian alam yang dapat dihubungkan dengan suatu relasi Sebagai contoh, misalkan diberikan dua himpunan : A = {sepeda, sepeda motor,
Program Kuliah Fondasi Matematika Pertemuan 4-7
Program Kuliah Fondasi Matematika Pertemuan 4-7 Pertemuan 4 Memahami denisi fungsi proposisi Mengidentikasi nilai kebenaran fungsi proposisi Menentukan domain di mana fungsi proposisi bernilai benar Memahami
LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X
LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi
RPKPS MATA KULIAH PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FMIPA UGM
RPKPS MATA KULIAH PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FMIPA UGM 1 Judul, Kode, SKS Pengantar Logika Matematika Dan Himpunan, MMM 1201, 3 SKS 2 Silabus Semesta Pembicaraan, Kalimat Deklaratif, Ingkaran
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA
LOGIKA Matematika Industri I
LOGIKA TIP FTP UB Pokok Bahasan Pengertian Logika Pernyataan Matematika Nilai Kebenaran Operasi Uner Operasi Biner Tabel kebenaran Pernyataan Tautologi, Kontradiksi dan Kontingen Pernyataan-pernyataan
MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi)
MATEMATIKA DASAR (Ekivalensi dan Kuantifikasi) Antonius Cahya Prihandoko Universitas Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Ekivalensi dan Kuantifikasi Jember, 2015 1 / 20
Gerbang dan Rangkaian Logika Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed
Gerbang dan Rangkaian Logika Teknik Digital (TKE071207) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2012/2013 Brown, Vranesic (2005) Tocci, Widmer, Moss (2007)
Materi-3 PROPOSITION LOGIC. Properties of Sentences Inference Methods Quantifier Sentences
Materi-3 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences 1 Properties of Sentences Adalah sifat-sifat yang dimiliki oleh kalimat logika Ada 3 sifat, yaitu: 1. Valid 2.
PENGANTAR ANALISIS REAL
Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,
LOGIKA MATEMATIKA I. PENDAHULUAN
LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan
Modul Ilmu Mantiq/Logika. Dosen: Ahmad Taufiq MA
Modul Ilmu Mantiq/Logika Dosen: Ahmad Taufiq MA C. PROPOSISI Unsur Dasar Proposisi Proposisi kategorik adalah suatu pernyataan yang terdiri atas hubungan 2 term sebagai subjek dan predikat serta dapat
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan
MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4. Fungsi Kontinu 4.1 Konsep Kekontinuan Fungsi kontinu Limit fungsi dan limit barisan Prapeta himpunan buka 4.2 Sifat-Sifat Fungsi
PROPOSITION LOGIC LOGIKA INFORMATIKA. Properties of Sentences Inference Methods Quantifier Sentences. Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta
1 PROPOSITION LOGIC Properties of Sentences Inference Methods Quantifier Sentences LOGIKA INFORMATIKA Heri Sismoro, M.Kom. STMIK AMIKOM Yogyakarta 2 Properties of Sentences Adalah sifat-sifat yang dimiliki
Logika & Himpunan 2013 LOGIKA MATEMATIKA. Oleh NUR INSANI, M.SC. Disadur dari BUDIHARTI, S.Si.
LOGIKA MATEMATIKA Oleh NUR INSANI, M.SC Disadur dari BUDIHARTI, S.Si. Logika adalah ilmu yang mempelajari secara sistematis kaidah-kaidah penalaran yang absah/valid. Ada dua macam penalaran, yaitu: penalaran
Sistem Bilangan Kompleks (Bagian Pertama)
Sistem Bilangan Kompleks (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:[email protected], [email protected] (Pertemuan Minggu I) Outline 1 Pendahuluan 2 Pengertian
TEORI HIMPUNAN LOGIKA MATEMATIKA
TEORI HIMPUNN SMTS 1101 / 3SKS LOGIK MTEMTIK Disusun Oleh : Dra. Noeryanti, M.Si 87 Dra. Noeryanti, M.Si DFTR ISI Cover pokok bahasan... 87 Daftar isi... 88 Judul Pokok Bahasan... 89 4.1. Pengantar...
1. Memahami pengertian proposisi dan predikat. 3. Memahami penggunaan penghubung dan tabel kebenaran
Modul 1 Logika Matematika Pendahuluan Pada Modul ini akan dibahas materi yang berkaitan dengan logika proposisi dan logika predikat, serta berbagai macam manipulasi didalamnya. Tujuan Instruksional Umum
FONDASI MATEMATIKA. Julan HERNADI. September 9, 2012 BUKU TEKS WAJIB. (Dasar berpikir deduktif dalam matematika)
FONDASI MATEMATIKA (Dasar berpikir deduktif dalam matematika) Julan HERNADI September 9, 2012 BUKU TEKS WAJIB DAFTAR ISI 1 PROPOSISI DAN KONEKTIVITAS 1 1.1 Proposisi dan nilai kebenaran......................
FONDASI MATEMATIKA. Julan HERNADI. December 13, 2011 BUKU TEKS WAJIB. (Dasar berpikir deduktif dalam matematika)
FONDASI MATEMATIKA (Dasar berpikir deduktif dalam matematika) Julan HERNADI December 13, 2011 BUKU TEKS WAJIB DAFTAR ISI 1 PROPOSISI DAN KONEKTIVITAS 1 1.1 Proposisi dan nilai kebenaran......................
Teori Dasar Logika (Lanjutan)
Teori Dasar Logika (Lanjutan) Inferensi Logika Logika selalu berhubungan dengan pernyataan-pernyataan yang ditentukan nilai kebenarannya. Untuk menentukan benar tidaknya kesimpulan berdasarkan sejumlah
BAB 6 ALJABAR BOOLE. 1. Definisi Dasar. Teorema 1 MATEMATIKA DISKRIT
BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut
Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar
Aljabar Boole Meliputi : 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Boole 3. Teorema Dasar Aljabar Boole 4. Orde dalam sebuah Aljabar Boole Definisi Aljabar Boole Misalkan B adalah himpunan
RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) DAN BUKU DIKTAT PENGANTAR LOGIKA MATEMATIKA DAN HIMPUNAN
RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) DAN BUKU DIKTAT PENGANTAR LOGIKA MATEMATIKA DAN HIMPUNAN Budi Surodjo Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
BAB I LOGIKA KALIMAT
BAB I LOGIKA KALIMA Dalam suatu pernyataan kalimat, baik verbal maupun dalam bentuk tulisan, sering muncul ketidak mengertian, kesalah tafsiran dan bahkan keslah pahaman oleh karena beberapa aspek yang
PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.
PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta
http://www.brigidaarie.com 1. Semua gajah mempunyai belalai. 2. Dumbo seekor gajah. 3. Dengan demikian, Dumbo memiliki belalai. VALID?? 1. Semua mahasiswa pasti pandai. 2. Dekisugi seorang mahasiswa. 3.
Logika Predikat 1. Kita akan memulai bagian ini dengan dua argumen.
Logika Predikat 1 III. Logika Predikat Kita akan memulai bagian ini dengan dua argumen. Premis Konklusi Premis Konklusi A: Semua orang menyukai Ali. B: Budi menyukai Ali. C: Cecep menyukai Ali. D: Seseorang
Logika Matematika Modul ke: Himpunan
Logika Matematika Modul ke: Himpunan Fakultas FASILKOM Syukri Nazar. M.Kom Program Studi Teknik Informatika Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut
FONDASI MATEMATKA. Julan HERNADI. October 15, BUKU TEKS WAJIB Pada Program Studi Pendidikan Matematika FKIP UNMUH PONOROGO
FONDASI MATEMATKA Julan HERNADI October 15, 2011 BUKU TEKS WAJIB Pada Program Studi Pendidikan Matematika FKIP UNMUH PONOROGO DAFTAR ISI 1 PROPOSISI DAN KONEKTIVITAS 1 1.1 Proposisi dan nilai kebenaran......................
5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION
5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION Rekursif Ada kalanya kita mengalami kesulitan untuk mendefinisikan suatu obyek secara eksplisit. Mungkin lebih mudah untuk mendefinisikan obyek tersebut
Teori Himpunan Elementer
Teori Himpunan Elementer Kuliah Matematika Diskret Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Himpunan Januari 2016 1 / 72 Acknowledgements
6. LOGIKA MATEMATIKA
6. LOGIKA MATEMATIKA A. Negasi (Ingkaran) Negasi adalah pengingkaran terhadap nilai kebenaran suatu pernyataan. ~ p : tidak p p ~ p B S S B B. Operator Logika 1) Konjungsi adalah penggabungan dua pernyataan
BAB 6 ALJABAR BOOLE. 1. Definisi Dasar MATEMATIKA DISKRIT
BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 15 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1
PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR
PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP
Logika, Himpunan, dan Fungsi
Logika, Himpunan, dan Fungsi A. Logika Matematika Logika matematika adalah ilmu untuk berpikir dan menalar dengan menggunakan bahasa serta simbol-simbol matematika dengan benar. 1) Kalimat Matematika Kalimat
LOGIKA MATEMATIKA. Pernyataan
LOGIKA MATEMATIKA 1 PERNYATAAN DAN UKAN PERNYATAAN A Pengertian logika Matematika Logika adalah ilmu untuk berpikir dan menalar dengan benar. Logika matematika (logika simbolik) adalah ilmu tentang penyimpulan
TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,
II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema
ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan
(Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: [email protected]. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang
LOGIKA MATEMATIKA SOAL DAN PENYELESAIAN Logika, Himpunan, Relasi, Fungsi JONG JEK SIANG Kita menjalani hidup dari apa yang kita dapatkan Tetapi kita menikmati hidup dari apa yang kita berikan Jong Jek
BAB V HIMPUNAN ( ( dan dibaca : himpunan semua sedemikian hingga mempunyai sifat.
BAB V HIMPUNAN 5.1 Pendahuluan Pengertian himpunan dan menjadi anggota suatu himpunan merupakan hal yang mendasar dalam matematika. Orang tidak mungkin mengadakan diskusi matematika dengan tidak menyangkut
B. Proposisi (Pernyataan) yaitu kalimat yang mempunyai nilai salah atau benar tetapi tidak sekaligus keduanya
A. emesta Pembicaraan yaitu himpunan semua objek yang dibicarakan a. 1 + 1 = 2 Jika semesta pembicaraannya adalah himpunan bilangan bulat, himpunan bilangan cacah, himpunan bilangan asli. b. x 2 1 = 0
PERTEMUAN 3 DASAR-DASAR LOGIKA
PERTEMUAN 3 DASAR-DASAR LOGIKA 1.1 PENGERTIAN UMUM LOGIKA Filsafat dan matematika adalah bidang pengetahuan rasional yang ada sejak dahulu. Jauh sebelum matematika berkembang seperti sekarang ini dan penerapannya
Persamaan dan pertidaksamaan kuadrat BAB II
BAB II Misalkan a,b,c Є R dan a 0 maka persamaan yang berbentuk dinamakan persamaan kuadrat dalam peubah x. Dalam persamaan kuadrat ax bx c 0, a adalah koefisien dari x, b adalah koefisien dari x dan c
KALKULUS MULTIVARIABEL II
Definisi KALKULUS MULTIVARIABEL II (Minggu ke-7) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Definisi 1 Definisi 2 ontoh Soal Definisi Integral Garis Fungsi f K R 2 R di Sepanjang Kurva
PENGARUH MODEL PEMBELAJARAN LEARNING CYCLE TERHADAP PEMAHAMAN KONSEP MATEMATIKA SISWA KELAS X SMA NEGERI 15 PADANG TAHUN PELAJARAN 2013/2014
PENGARUH MODEL PEMBELAJARAN LEARNING CYCLE TERHADAP PEMAHAMAN KONSEP MATEMATIKA SISWA KELAS X SMA NEGERI 15 PADANG TAHUN PELAJARAN 2013/2014 Wina Novitasari 1), Suherman 2), Mirna 3) 1 ) FMIPA UNP : email:
Logika Predikat (Kalkulus Predikat)
Logika Predikat (Kalkulus Predikat) Kuliah (Pengantar) Metode Formal Semester Ganjil 2015-2016 M. Arzaki Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Logika Predikat (Kalkulus
URAIAN POKOK-POKOK PERKULIAHAN
Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan
Persamaan dan Pertidaksamaan Linear
MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai
BAB 2 PENGANTAR LOGIKA PROPOSISIONAL
BAB 2 PENGANTAR LOGIKA PROPOSISIONAL 1. Pendahuluan Dilihat dari bentuk struktur kalimatnya, suatu pernyataan akan memiliki bentuk susunan minimal terdiri dari subjek diikuti predikat kemudian dapat diikuti
B. Proposisi (Pernyataan) yaitu kalimat yang mempunyai nilai salah atau benar tetapi tidak sekaligus keduanya
A. emesta Pembicaraan yaitu himpunan semua objek yang dibicarakan a. 1 + 1 = 2 Jika semesta pembicaraannya adalah himpunan bilangan bulat, himpunan bilangan cacah, himpunan bilangan asli. b. x 2 1 = 0
