RAY RA TRA C TRA ING dan RADIOSITY

Ukuran: px
Mulai penontonan dengan halaman:

Download "RAY RA TRA C TRA ING dan RADIOSITY"

Transkripsi

1 RAY TRACING dan RADIOSITY

2 Revew : 3D Photorealsm Ketepatan pemodelan objek Proeks secara perspektf Efek pencahaaan ang natural kepada permukaan tampak: pantulan, transparans, tekstur, dan baangan

3 Revew : Illumnaton model vs surface renderng Model pencahaaan: model untuk menghtung ntenstas cahaa pada satu ttk pada suatu permukaan Renderng permukaan: prosedur ang menerapkan model pencahaaan untuk mendapatkan ntenstas t semua ttk pada seluruh permukaan tampak

4 Revew : Model Pencahaaan Metoda untuk menghtung ntenstas cahaa: Ambent Dffuse Specular p// p /

5 Revew : Model Pencahaaan N cos Ф N.L L L ( Lx L Lz) ) ( X Lx L Lz X L L ( YL Y L ( Z Z L L P P ) P ) ) P Ia ( Wa Wd). Ka dst.cos Id Wd. Kd. dst dst.(cos) Is Ws. dst Ia Id Is I total Ks

6

7 Revew : Teknk Renderng Permukaan (Polgon) Melakukan perhtungan dengan model pencahaaan untuk semua ttk g tampak Ra tracng Melakukan nterpolas untuk ttk ttk pada permukaan dar sekumpulan ntenstas t hasl perhtungan dengan model pencahaaan Scan lne

8 Revew : Scan lne algorthms Permukaan = polgon Aplkas model dlpencahaaan: Perhtungan ntenstas tunggal untuk masngmasng polgon Intenstas tap ttk pada polgon ddapat dengan cara nterpolas Algortma: Flat (constant ntenst) shadng Gouraud shadng Phong shadng

9 Revew : Flat shadng Intenstas tunggal untuk setap polgon Semua ttk dalam polgon dtamplkan dengan ntenstas ang sama Serng dgunakan untuk mendapat tamplan cepat dar objek Akurat dengan asums: Objek = polhedron (bukan aproksmas k k kurva) Sumber cahaa cukup jauh (N.L konstan) Pengamat cukup jauh (V.R konstan) Bsa dsasat dengan memperkecl polgon facet

10 Flat shadng: contoh

11 Revew : Gouraud shadng Renderng polgon dengan nterpolas lnear terhadap nla nla ntenstas t vertex (ttk sudut polgon) Nla ntenstas untuk tap polgon dsesuakan dengan polgon lan ang bersebelahan untuk mengurang dscontnut (sepert g terjad pada flat shadng)

12 Revew : Langkah langkah Gouraud shadng Tentukan vektor normal satuan rata rata untuk setap vertex pada polgon Terapkan model pencahaaan ke tap vertex untuk mendapatkan ntenstasna Lakukan nterpolas lnear terhadap ntenstas vertex untuk mendapatkan ntenstas ttk ttk lan pada polgon.

13 1) Vektor normal untuk vertex V n k 1 N v n k 11 N N k k Setelah mendapatkan vektor normal pada vektor V, dengan model pencahaaan bsa ddapat ntenstas untuk ttk tersebut

14 2) Interpolas ntenstas 2) Interpolas ntenstas I I I I x x x x I x x x x I P P P

15 Interpolas secara nkremental Interpolas secara nkremental I I I 1 2 ' I I I I 1 2 I I

16 Gouraud shadng: contoh

17 Kekurangan Gouraud Tamplan hghlght tdak sempurna Mach band: gars terang atau gelap muncul pada permukaan Akbat penggunaan nterpolas lnear Untuk mengurang efek tersebut: Perkecl ukuran polgon Gunakan k metode l lan (msal: Phong)

18 Revew : Phong shadng Interpolas terhadap vektor normal Model pencahaaan dterapkan pada semua ttk pada permukaan Memberkan hghlght hl h ang lbh lebh realstk k dan mereduks efek Mach band

19 Langkah langkah Phong Tentukan vektor normal satuan rata rata untuk setap vertex pada polgon Lakukan nterpolas lnear terhadap vektor normal ke seluruh permukaan polgon Terapkan model pencahaaan sepanjang scan lne untuk mendapatkan ntenstas setap ttk pada permukaan

20 Interpolas vektor normal N 2 1 N 1 N Untuk mendapatkan vektor-vektor normal antar scan lne dan sepanjang scan lne dgunakan metode nkremental

21 Phong shadng: contoh

22 Hasl lebh akurat Evaluas Phong Interpolas vektor normal Model pencahaaan dterapkan pada tap ttk Trade off: butuh baa komputas ang lebh besar Fast Phong Shadng: aproksmas ntenstas dengan perluasan deret Talor permukaan dengan patch berbentuk segtga

23 wreframe Flat shadng Gouraud shadng Phong shadng

24 computer.ourdctonar.com/flat com/flat-shadng

25 RAY TRACING Kelanjutan de Ra Castng Snar dteruskan (memantul ke / menembus objek lan) Mencatat semua kontrbus terhadap ntenstas suatu ttk Untuk mendapatkan efek fkpantulan dan transms secara global Ra Tracng dasar: deteks permukaan tampak, efek baangan, transparans, pencahaaan dengan beberapa sumber cahaa Pengembangan Ra Tracng: tamplan fotorealstk (terutama objek mengklap)

26

27

28 Ilustras tracng a ra

29 Algortma Ra Tracng Dasar For each pxel n projecton plane { Create ra from the reference pont passng through ths pxel Intalze NearestT to INFINITY and NearestObject to NULL For ever object n scene { If ra ntersects ths object { If t of ntersecton s less than NearestT { Set NearestT to t of the ntersecton Set NearestObject to ths object } } } } If NearestObject s NULL { Fll ths pxel wth background color } Else { Shoot a ra to each lght source to check f n shadow If surface s reflectve, generate reflecton ra: recurse If transparent, generate refracton ra: recurse Use NearestObject and NearestT to compute shadng functon Fll ths pxel wth color result of shadng functon }

30 Rekursf pada ra tracng Saat prmar ra (snar ang berawal dar projecton reference pont) dpantulkan atau dbaskan oleh objek, snar pantulan atau basan dsebut dengan secondar ra Secondar ra akan mengalam perlakuan ang sama sepert prmar ra saat menemu objek (dpantulkan dan / atau dbaskan)

31 Bnar Ra Tracng tree

32 Bnar Ra Tracng tree (cont d) Tracng (pembentukan tree) berhent jka: Sampa maxmum depth (plhan user / kapastas memor) Snar sampa ke sumber cahaa Intenstas pada suatu pxel: akumulas ntenstas mula termnal node (palng bawah) pada tree Intenstas tap permukaan mengalam atenuas (pelemahan) setara dengan jarak permukaan tersebut ke permukaan parent na na (pada tree: node ang tepat d atasna)

33 Intenstas akhr suatu pxel Merupakan hasl penjumlahan seluruh ntenstas ang telah mengalam atenuas (pada root node) Jka tdak ada permukaan ang berpotongan dengan snar dar pxel, maka pxel tersebut dber nla ntenstas sama dengan latar belakang Jka snar dar pxel berpotongan dengan sumber cahaa (mesk tdak reflektf), maka pxel tersebut dber nla ntenstas sama dengan sumber cahaa

34 Pantulan Ambent k Dffuse k d ( N. L ) Specular k ( H. N) a s I R u (2u. N) N a n s Jka L berpotongan dengan permukaan lan maka permukaan Jka L berpotongan dengan permukaan lan, maka permukaan tersebut dalam daerah baangan

35 Pembasan Pembasan Untuk objek dengan materal transparan ) ( N T ) cos (cos r r r N u T r ) cos (1 1 cos 2 2 r r ) ( r r

36 Contoh Ra Tracng

37 Radost Memodelkan pantulan dfus dengan lebh akurat Mempertmbangkan transfer energ radan antar permukaan (sesua dengan hukum kekekalan energ) Tngkat kecerahan (brghtness) dan warna dar segala sesuatu tergantung dar segala sesuatu ang lan Lbh Lebh realstk

38 Efek vsual radost Cahaa puth mengena bola merah Ada pantulan cahaa merah dar bola ke objek lan d sekellngna Lanta puth d sektar bola menjad kemerah merahan

39 Contoh radost

40 Teor dasar radost Radost (B): energ per satuan luas ang mennggalkan permukaan per satuan waktu; total energ ang dpancarkan dan ang dpantulkan B da E da R j B j F j da Radost x luas = energ dpancarkan + energ dpantulkan

41 Teor dasar radost (cont d) Teor dasar radost (cont d) Hubungan tmbal balk: j j j A F A F Setelah dbag dengan da : j j F B R E B j Untuk lngkungan dskrt: n j j F B R E B g g j j j F B R E B 1

42 Teor dasar radost (cont d) Tap permukaan salng mempengaruh, sehngga perlu menelesakan n persamaan secara smultan: R1F 11 R1F R1F 1 R2 F21 1 R2 F22... R2 F Rn Fn 1 Rn Fn Rn F 1 n 1 1 n 2 nn B1 E B2 E Bn En Radost bersfat monokromatk. Untuk RGB, lakukan perhtungan untuk tap warna

43 Form factor j j F j = energ dar permukaan A ang sampa ke A j energ dar permukaan A ang menebar ke semua arah dalam ruang hemsphere ang melngkup A j j F j 1 cos cos j daj da A r 2 AA j

44 Asums dlm perhtungan form factor Berlaku hukum kekekalan energ n j1 F 1 j Pantulan cahaa seragam A F j A j F j Permukaan datar atau convex F jj 0

Grafika & Pengolahan Citra (CS3214)

Grafika & Pengolahan Citra (CS3214) Grafka & Pengolahan Ctra (CS324) 2 Renderng 20- 3D Photorealsm Ketepatan pemodelan objek Proeks secara perspektf Efek pencahaaan ang natural kepada permukaan tampak: pantulan, transparans, tekstur, dan

Lebih terperinci

RAY TRACING dan. Oleh : Karmilasari

RAY TRACING dan. Oleh : Karmilasari RAY TRACING dan RADIOSITY Oleh : Karmlasar RAY TRACING vs. RADIOSITY 2 Revew : ILUMINASI Secara umum dlhat dar fsknya, model lumnas menggambaran perpndahan energ dan radas fokus pada sfat sfat cahaya danmateral

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

Histogram Citra. Bab Membuat Histogram

Histogram Citra. Bab Membuat Histogram Bab 6 Hstogram Ctra I nformas pentng mengena s ctra dgtal dapat dketahu dengan membuat hstogram ctra. Hstogram ctra adalah grafk yang menggambarkan penyebaran nla-nla ntenstas pxel dar suatu ctra atau

Lebih terperinci

METODE NUMERIK. INTERPOLASI Interpolasi Beda Terbagi Newton Interpolasi Lagrange Interpolasi Spline.

METODE NUMERIK. INTERPOLASI Interpolasi Beda Terbagi Newton Interpolasi Lagrange Interpolasi Spline. METODE NUMERIK INTERPOLASI Interpolas Beda Terbag Newton Interpolas Lagrange Interpolas Splne http://maulana.lecture.ub.ac.d Interpolas n-derajat polnom Tujuan Interpolas berguna untuk menaksr hargaharga

Lebih terperinci

Bab 2 AKAR-AKAR PERSAMAAN

Bab 2 AKAR-AKAR PERSAMAAN Analsa Numerk Bahan Matrkulas Bab AKAR-AKAR PERSAMAAN Pada kulah n akan dpelajar beberapa metode untuk mencar akar-akar dar suatu persamaan yang kontnu. Untuk persamaan polnomal derajat, persamaannya dapat

Lebih terperinci

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Studi Kasus di PT. Sinar Terang Abadi )

APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Studi Kasus di PT. Sinar Terang Abadi ) APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Stud Kasus d PT. Snar Terang Abad ) Bagus Suryo Ad Utomo 1203 109 001 Dosen Pembmbng: Drs. I Gst Ngr Ra Usadha, M.S Jurusan Matematka

Lebih terperinci

ε adalah error random yang diasumsikan independen, m X ) adalah fungsi

ε adalah error random yang diasumsikan independen, m X ) adalah fungsi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan suatu metode yang dgunakan untuk menganalss hubungan antara dua atau lebh varabel. Pada analss regres terdapat dua jens varabel yatu

Lebih terperinci

PENGGUNAAN DINDING GESER SEBAGAI ELEMEN PENAHAN GEMPA PADA BANGUNAN BERTINGKAT 10 LANTAI

PENGGUNAAN DINDING GESER SEBAGAI ELEMEN PENAHAN GEMPA PADA BANGUNAN BERTINGKAT 10 LANTAI PENGGUNAAN DINDING GESER SEBAGAI ELEMEN PENAHAN GEMPA PADA BANGUNAN BERTINGKAT 10 LANTAI Reky Stenly Wndah Dosen Jurusan Teknk Spl Fakultas Teknk Unverstas Sam Ratulang Manado ABSTRAK Pada bangunan tngg,

Lebih terperinci

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan

Lebih terperinci

Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik

Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik Pendeteksan Data Penclan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Dagnostk Sally Indra 1, Dod Vonanda, Rry Srnngsh 3 1 Student of Mathematcs Department State Unversty of Padang,

Lebih terperinci

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk

Lebih terperinci

BAB V INTEGRAL KOMPLEKS

BAB V INTEGRAL KOMPLEKS 6 BAB V INTEGRAL KOMPLEKS 5.. INTEGRAL LINTASAN Msal suatu lntasan yang dnyatakan dengan : (t) = x(t) + y(t) dengan t rl dan a t b. Lntasan dsebut lntasan tutup bla (a) = (b). Lntasan tutup dsebut lntasan

Lebih terperinci

Teorema Gauss. Garis Gaya Listrik Konsep fluks. Penggunaan Teorema Gauss

Teorema Gauss. Garis Gaya Listrik Konsep fluks. Penggunaan Teorema Gauss Teorema Gauss Gars Gaya Lstrk Konsep fluks Teorema Gauss Penggunaan Teorema Gauss Medan oleh muatan ttk Medan oleh kawat panjang tak berhngga Medan lstrk oleh plat luas tak berhngga Medan lstrk oleh bola

Lebih terperinci

BAB III METODE KOMPRESI DAN DEKOMPRESI. untuk setiap B X. fraktal. Penjelasan dimulai dengan pengenalan Multiple Reduction Copy

BAB III METODE KOMPRESI DAN DEKOMPRESI. untuk setiap B X. fraktal. Penjelasan dimulai dengan pengenalan Multiple Reduction Copy BAB III METODE KOMPRESI DAN DEKOMPRESI Kompres ctra fraktal memodelkan ctra sebaga lmt dar suatu proses teras. Jka dberkan suatu ctra A X, metode n akan mencar suatu proses W sedemkan sehngga ttk tetap

Lebih terperinci

UKURAN LOKASI, VARIASI & BENTUK KURVA

UKURAN LOKASI, VARIASI & BENTUK KURVA UKURAN LOKASI, VARIASI & BENTUK KURVA MARULAM MT SIMARMATA, MS STATISTIK TERAPAN FAK HUKUM USI @4 ARTI UKURAN LOKASI DAN VARIASI Suatu Kelompok DATA berupa kumpulan nla VARIABEL [ vaabel ] Ms banyaknya

Lebih terperinci

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai II. TEORI DASAR.1 Transormas Laplace Ogata (1984) mengemukakan bahwa transormas Laplace adalah suatu metode operasonal ang dapat dgunakan untuk menelesakan persamaan derensal lnear. Dengan menggunakan

Lebih terperinci

ANALISIS BENTUK HUBUNGAN

ANALISIS BENTUK HUBUNGAN ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan

Lebih terperinci

ANALISIS DATA KATEGORIK (STK351)

ANALISIS DATA KATEGORIK (STK351) Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat

Lebih terperinci

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman OTIMISASI enjadualan Optmal embangkt Oleh : Zurman Anthony, ST. MT Optmas pengrman daya lstrk Dmaksudkan untuk memperkecl jumlah keseluruhan baya operas dengan memperhtungkan rug-rug daya nyata pada saluran

Lebih terperinci

Bab III Analisis Rantai Markov

Bab III Analisis Rantai Markov Bab III Analss Ranta Markov Sstem Markov (atau proses Markov atau ranta Markov) merupakan suatu sstem dengan satu atau beberapa state atau keadaan, dan dapat berpndah dar satu state ke state yang lan pada

Lebih terperinci

MATERI KULIAH STATISTIKA I UKURAN. (Nuryanto, ST., MT)

MATERI KULIAH STATISTIKA I UKURAN. (Nuryanto, ST., MT) MATERI KULIAH STATISTIKA I UKURAN (Nuryanto, ST., MT) Ukuran Statstk Ukuran Statstk : 1. Ukuran Pemusatan Bagamana, d mana data berpusat? Rata-Rata Htung = Arthmetc Mean Medan Modus Kuartl, Desl, Persentl.

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 ENDAHULUAN 1.1 Latar Belakang Secara umum dapat dkatakan bahwa mengambl atau membuat keputusan berart memlh satu dantara sekan banyak alternatf. erumusan berbaga alternatf sesua dengan yang sedang

Lebih terperinci

BAB II DASAR TEORI DAN METODE

BAB II DASAR TEORI DAN METODE BAB II DASAR TEORI DAN METODE 2.1 Teknk Pengukuran Teknolog yang dapat dgunakan untuk mengukur konsentras sedmen tersuspens yatu mekank (trap sampler, bottle sampler), optk (optcal beam transmssometer,

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI

BAB 4 IMPLEMENTASI DAN EVALUASI 65 BAB IMPLEMENTASI DAN EVALUASI. Penyaan Data Hasl Peneltan Data-ata hasl peneltan yang gunakan alam pengolahan ata aalah sebaga berkut: a. ata waktu kera karyawan b. ata umlah permntaan konsumen c. ata

Lebih terperinci

Abstraksi. Abstraksi. Abstraksi. Property SP (single short shortest path) 4/29/2010. Berapa pa th yang mungkin dari garaph G tadi?

Abstraksi. Abstraksi. Abstraksi. Property SP (single short shortest path) 4/29/2010. Berapa pa th yang mungkin dari garaph G tadi? Termnolog Sngle source shortest path djkstra wjanarto Djkstra s algorthm d paka untuk menemukan shortest path dar satu source ke seluruh vertek dalam graph. Algo n menggunakan 2 hmp node yatu S dan C.

Lebih terperinci

IMPLEMENTASI INTERPOLASI LAGRANGE UNTUK PREDIKSI NILAI DATA BERPASANGAN DENGAN MENGGUNAKAN MATLAB

IMPLEMENTASI INTERPOLASI LAGRANGE UNTUK PREDIKSI NILAI DATA BERPASANGAN DENGAN MENGGUNAKAN MATLAB Semnar Nasonal Teknolog 007 (SNT 007) ISSN : 1978 9777 Yogakarta, 4 November 007 IMPEMENTASI INTERPOASI AGRANGE UNTUK PREDIKSI NIAI DATA BERPASANGAN DENGAN MENGGUNAKAN MATAB Krsnawat STMIK AMIKOM Yogakarta

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 ENDAHULUAN 1.1 Latar Belakang Manusa dlahrkan ke duna dengan ms menjalankan kehdupannya sesua dengan kodrat Illah yakn tumbuh dan berkembang. Untuk tumbuh dan berkembang, berart setap nsan harus

Lebih terperinci

ALGORITMA THRESHOLDING ADAPTIF UNTUK BINERISASI CITRA DOKUMEN BERWARNA

ALGORITMA THRESHOLDING ADAPTIF UNTUK BINERISASI CITRA DOKUMEN BERWARNA Vol. 2, No. 2 Desember 2011 ISSN 2088-2130 ALGORITMA THRESHOLDING ADAPTIF UNTUK BINERISASI CITRA DOKUMEN BERWARNA Eka Mala Sar Rochman 1), Ratna Nur Tara Shanty 2), Dyah S Rahayu 3) Unverstas Trunojoyo

Lebih terperinci

Interpretasi data gravitasi

Interpretasi data gravitasi Modul 7 Interpretas data gravtas Interpretas data yang dgunakan dalam metode gravtas adalah secara kualtatf dan kuanttatf. Dalam hal n nterpretas secara kuanttatf adalah pemodelan, yatu dengan pembuatan

Lebih terperinci

Deret Taylor & Diferensial Numerik. Matematika Industri II

Deret Taylor & Diferensial Numerik. Matematika Industri II Deret Taylor & Derensal Numerk Matematka Industr II Maclaurn Power Seres Deret Maclaurn adalah penaksran polnom derajat tak hngga 0 0! 0 n n 0 n! Notce: Deret nnte tak hngga menyatakan bahwa akhrnya deret

Lebih terperinci

PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel

PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel PRAKTIKUM 6 Penyelesaan Persamaan Non Lner Metode Newton Raphson Dengan Modfkas Tabel Tujuan : Mempelajar metode Newton Raphson dengan modfkas tabel untuk penyelesaan persamaan non lner Dasar Teor : Permasalahan

Lebih terperinci

BAB 4 PERHITUNGAN NUMERIK

BAB 4 PERHITUNGAN NUMERIK Mata kulah KOMPUTASI ELEKTRO BAB PERHITUNGAN NUMERIK. Kesalahan error Pada Penelesaan Numerk Penelesaan secara numers dar suatu persamaan matemats kadang-kadang hana memberkan nla perkraan ang mendekat

Lebih terperinci

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK:

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA Contoh : hasl ulangan Matematka 5 sswa sbb: 6 8 7 6 9 Pengertan Statstka dan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 2 LNDSN TEORI 2. Teor engamblan Keputusan Menurut Supranto 99 keputusan adalah hasl pemecahan masalah yang dhadapnya dengan tegas. Suatu keputusan merupakan jawaban yang past terhadap suatu pertanyaan.

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang

Lebih terperinci

BAB V TEOREMA RANGKAIAN

BAB V TEOREMA RANGKAIAN 9 angkaan strk TEOEM NGKIN Pada bab n akan dbahas penyelesaan persoalan yang muncul pada angkaan strk dengan menggunakan suatu teorema tertentu. Dengan pengertan bahwa suatu persoalan angkaan strk bukan

Lebih terperinci

UKURAN GEJALA PUSAT &

UKURAN GEJALA PUSAT & UKURAN GEJALA PUSAT & UKURAN LETAK UKURAN GEJALA PUSAT & LETAK Untuk mendapatkan gambaran yang jelas mengena suatu populas atau sampel Ukuran yang merupakan wakl kumpulan data mengena populas atau sampel

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan penelitian pengembangan (Research and

III. METODE PENELITIAN. Penelitian ini merupakan penelitian pengembangan (Research and III. METODE PENELITIAN A. Desan Peneltan Peneltan n merupakan peneltan pengembangan (Research and Development). Peneltan pengembangan yang dlakukan adalah untuk mengembangkan penuntun praktkum menjad LKS

Lebih terperinci

Bab IV Pemodelan dan Perhitungan Sumberdaya Batubara

Bab IV Pemodelan dan Perhitungan Sumberdaya Batubara Bab IV Pemodelan dan Perhtungan Sumberdaa Batubara IV1 Pemodelan Endapan Batubara Pemodelan endapan batubara merupakan tahapan kegatan dalam evaluas sumberdaa batubara ang bertuuan menggambarkan atau menatakan

Lebih terperinci

BAB II DASAR TEORI. Gambar 2-1 Photogrammetry proses [10].

BAB II DASAR TEORI. Gambar 2-1 Photogrammetry proses [10]. BAB II DASAR TEORI 2. Photogrammetry Photogrammetry adalah suatu teknk yang dgunakan untuk menentukan koordnat suatu ttk pada ruang tga dmens yang berasal dar dua atau lebh gambar dua dmens ttk tersebut

Lebih terperinci

BAB III METODE PENELITIAN. Pada penelitian ini, penulis memilih lokasi di SMA Negeri 1 Boliyohuto khususnya

BAB III METODE PENELITIAN. Pada penelitian ini, penulis memilih lokasi di SMA Negeri 1 Boliyohuto khususnya BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Peneltan 3.1.1 Tempat Peneltan Pada peneltan n, penuls memlh lokas d SMA Neger 1 Bolyohuto khususnya pada sswa kelas X, karena penuls menganggap bahwa lokas

Lebih terperinci

BAB II KAJIAN TEORI. 2.1 Pendahuluan. 2.2 Pengukuran Data Kondisi

BAB II KAJIAN TEORI. 2.1 Pendahuluan. 2.2 Pengukuran Data Kondisi BAB II KAJIAN TEORI 2.1 Pendahuluan Model penurunan nla konds jembatan yang akan destmas mengatkan data penurunan konds jembatan dengan beberapa varabel kontnu yang mempengaruh penurunan kondsnya. Data

Lebih terperinci

PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL BIASA http://starto.sta.ugm.ac.d PERSAMAAN DIFERENSIAL BIASA Ordnar Derental Equatons ODE Persamaan Derensal Basa http://starto.sta.ugm.ac.d Acuan Chapra, S.C., Canale R.P., 990, Numercal Methods or Engneers,

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH BAB V ANALISA PEMECAHAN MASALAH 5.1 Analsa Pemlhan Model Tme Seres Forecastng Pemlhan model forecastng terbak dlakukan secara statstk, dmana alat statstk yang dgunakan adalah MAD, MAPE dan TS. Perbandngan

Lebih terperinci

BAB 2 TINJAUAN KEPUSTAKAAN

BAB 2 TINJAUAN KEPUSTAKAAN BAB TIJAUA KEPUSTAKAA.1. Gambaran Umum Obyek Peneltan Gambar.1 Lokas Daerah Stud Gambar. Detal Lokas Daerah Stud (Sumber : Peta Dgtal Jabotabek ver.0) 7 8 Kawasan perumahan yang dplh sebaga daerah stud

Lebih terperinci

III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan

III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan Pada bab n akan dbahas mengena penyelesaan masalah ops real menggunakan pohon keputusan bnomal. Dalam menentukan penlaan proyek, dapat dgunakan beberapa metode d antaranya dscounted cash flow (DF). DF

Lebih terperinci

Pemilihan Lokasi Kontinyu (1)

Pemilihan Lokasi Kontinyu (1) Pemlhan Lokas Kontnu 1 - Model Dasar - 6 Oleh : Debrna Puspta Andran Teknk Industr, Unverstas Brawjaa e-mal : [email protected] www.debrna.lecture.ub.ac.d Medan method Gravt method Contour-Lne method Weszfeld

Lebih terperinci

ANALISIS REGRESI. Catatan Freddy

ANALISIS REGRESI. Catatan Freddy ANALISIS REGRESI Regres Lner Sederhana : Contoh Perhtungan Regres Lner Sederhana Menghtung harga a dan b Menyusun Persamaan Regres Korelas Pearson (Product Moment) Koefsen Determnas (KD) Regres Ganda :

Lebih terperinci

Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan :

Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan : Analss Regres Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Itasa & Y Angran Dep. Statstka FMIPA-IPB Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan

Lebih terperinci

III. METODE PENELITIAN. Metode dalam penelitian ini adalah metode eksperimen. Penggunaan metode eksperimen ini

III. METODE PENELITIAN. Metode dalam penelitian ini adalah metode eksperimen. Penggunaan metode eksperimen ini III. METODE PENELITIAN A. Metode Peneltan Metode dalam peneltan n adalah metode ekspermen. Penggunaan metode ekspermen n bertujuan untuk mengetahu apakah suatu metode, prosedur, sstem, proses, alat, bahan

Lebih terperinci

PENDAHULUAN Latar Belakang

PENDAHULUAN Latar Belakang PENDAHULUAN Latar Belakang Menurut teor molekuler benda, satu unt volume makroskopk gas (msalkan cm ) merupakan suatu sstem yang terdr atas sejumlah besar molekul (kra-kra sebanyak 0 0 buah molekul) yang

Lebih terperinci

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES

LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES Hubungan n akan dawal dar gaya yang beraks pada massa fluda. Gaya-gaya n dapat dbag ke dalam gaya bod, gaya permukaan, dan gaya nersa. a. Gaya Bod Gaya bod

Lebih terperinci

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana

Lebih terperinci

PENENTUAN KOEFISIEN MULTIPLE REGRESI DENGAN MENGGUNAKAN METODE LINIER PROGRAMMING

PENENTUAN KOEFISIEN MULTIPLE REGRESI DENGAN MENGGUNAKAN METODE LINIER PROGRAMMING PENENTUAN KOEFISIEN MULTIPLE REGRESI DENGAN MENGGUNAKAN METODE LINIER PROGRAMMING SKRIPSI RINA ASTRY GINTING 060823031 PROGRAM STUDI SARJANA MATEMATIKA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

BAB III SKEMA NUMERIK

BAB III SKEMA NUMERIK BAB III SKEMA NUMERIK Pada bab n, akan dbahas penusunan skema numerk dengan menggunakan metoda beda hngga Forward-Tme dan Centre-Space. Pertama kta elaskan operator beda hngga dan memberkan beberapa sfatna,

Lebih terperinci

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat BAB LANDASAN TEORI. 1 Analsa Regres Regres pertama kal dpergunakan sebaga konsep statstk pada tahun 1877 oleh Sr Francs Galton. Galton melakukan stud tentang kecenderungan tngg badan anak. Teor Galton

Lebih terperinci

BAB 4 METODOLOGI PENELITIAN. data, dan teknik analisis data. Kerangka pemikiran hipotesis membahas hipotesis

BAB 4 METODOLOGI PENELITIAN. data, dan teknik analisis data. Kerangka pemikiran hipotesis membahas hipotesis BAB 4 METODOLOGI PENELITIAN Pada bab n akan durakan kerangka pemkran hpotess, teknk pengumpulan data, dan teknk analss data. Kerangka pemkran hpotess membahas hpotess pengujan pada peneltan, teknk pengumpulan

Lebih terperinci

BAB I PENDAHULUAN. pembangunan dalam sektor energi wajib dilaksanakan secara sebaik-baiknya. Jika

BAB I PENDAHULUAN. pembangunan dalam sektor energi wajib dilaksanakan secara sebaik-baiknya. Jika BAB I PENDAHULUAN 1.1.Latar Belakang Energ sangat berperan pentng bag masyarakat dalam menjalan kehdupan seharhar dan sangat berperan dalam proses pembangunan. Oleh sebab tu penngkatan serta pembangunan

Lebih terperinci

SEARAH (DC) Rangkaian Arus Searah (DC) 7

SEARAH (DC) Rangkaian Arus Searah (DC) 7 ANGKAAN AUS SEAAH (DC). Arus Searah (DC) Pada rangkaan DC hanya melbatkan arus dan tegangan searah, yatu arus dan tegangan yang tdak berubah terhadap waktu. Elemen pada rangkaan DC melput: ) batera ) hambatan

Lebih terperinci

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi. BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tnjauan Pustaka Dar peneltan yang dlakukan Her Sulstyo (2010) telah dbuat suatu sstem perangkat lunak untuk mendukung dalam pengamblan keputusan menggunakan

Lebih terperinci

Bab II Tinjauan Pustaka

Bab II Tinjauan Pustaka Bab II Tnauan Pustaka 2.1 Konsep Gagasan Penghematan Bahan Bakar pada Kompor Gas Prnsp dar alat penghemat gas pada tugas akhr n merupakan pengembangan dar tugas akhr yang sebelumnya sudah pernah dlaksanakan.

Lebih terperinci

Kecocokan Distribusi Normal Menggunakan Plot Persentil-Persentil yang Distandarisasi

Kecocokan Distribusi Normal Menggunakan Plot Persentil-Persentil yang Distandarisasi Statstka, Vol. 9 No., 4 47 Me 009 Kecocokan Dstrbus Normal Menggunakan Plot Persentl-Persentl yang Dstandarsas Lsnur Wachdah Program Stud Statstka Fakultas MIPA Unsba e-mal : [email protected] ABSTRAK

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c 6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

Configural Frequency Analysis untuk Melihat Penyimpangan pada Model Log Linear

Configural Frequency Analysis untuk Melihat Penyimpangan pada Model Log Linear SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Confgural Frequency Analyss untuk Melhat Penympangan pada Model Log Lnear Resa Septan Pontoh 1, Def Y. Fadah 2 1,2 Departemen Statstka FMIPA

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi Daftar Is Daftar Is... Kata pengantar... BAB I...1 PENDAHULUAN...1 1.1 Latar Belakang...1 1.2 Rumusan Masalah...2 1.3 Tujuan...2 BAB II...3 TINJAUAN TEORITIS...3 2.1 Landasan Teor...4 BAB III...5 PEMBAHASAN...5

Lebih terperinci

PEMAHAMAN METODE NUMERIK MENGGUNAKAN PEMPROGRMAN MATLAB (Studi Kasus : Metode Secant)

PEMAHAMAN METODE NUMERIK MENGGUNAKAN PEMPROGRMAN MATLAB (Studi Kasus : Metode Secant) PEMAHAMAN METODE NUMERIK MENGGUNAKAN PEMPROGRMAN MATLAB (Stud Kasus : Metode Secant) Melda panjatan STMIK Bud Darma, Jln.SM.Raja No.338 Sp.Lmun, Medan Sumatera Utara Jurusan Teknk Informatka e-mal : [email protected]

Lebih terperinci

BAYANGAN S1 Teknik Informatika

BAYANGAN S1 Teknik Informatika BAYANGAN S1 Teknik Informatika 1 Definisi Bayangan (shading) adalah bidang yang terbentuk akibat hilangnya sebuah sinar oleh objek yang tidak bisa ditembus oleh sinar tersebut. Bayangan adalah proses penentuan

Lebih terperinci

PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Studi Kasus pada Data Inflasi Indonesia)

PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Studi Kasus pada Data Inflasi Indonesia) PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Stud Kasus pada Data Inflas Indonesa) Putr Noorwan Effendy, Amar Sumarsa, Embay Rohaet Program Stud Matematka Fakultas

Lebih terperinci

Hybrid intelligent system adalah kombinasi lebih dari dua teknologi cerdas.

Hybrid intelligent system adalah kombinasi lebih dari dua teknologi cerdas. Teny Handhayan Pendahuluan Hybrd ntellgent system adalah kombnas lebh dar dua teknolog cerdas. Contohnya kombnas Neural Network dengan Fuzzy membentuk Neuro-fuzzy system Perbandngan Expert Systems, Fuzzy

Lebih terperinci

III PEMODELAN MATEMATIS SISTEM FISIK

III PEMODELAN MATEMATIS SISTEM FISIK 34 III PEMODELN MTEMTIS SISTEM FISIK Deskrps : Bab n memberkan gambaran tentang pemodelan matemats, fungs alh, dagram blok, grafk alran snyal yang berguna dalam pemodelan sstem kendal. Objektf : Memaham

Lebih terperinci

Petunjuk Praktikum Fisika Dasar I. (Tumbukan Dalam Satu Dimensi)

Petunjuk Praktikum Fisika Dasar I. (Tumbukan Dalam Satu Dimensi) Petunjuk Praktkum Fska Dasar I (Tumbukan Dalam Satu Dmens) Dajukan Untuk Memenuh Tugas Tersruktur Mata ulah Ekspermen Fska Dasar 1 Jurusan Penddkan Fska Oleh : Muhamad Ihsanudn (0602425) JURUSAN PENDIDIAN

Lebih terperinci

REKAYASA TRANSPORTASI LANJUT UNIVERSITAS PEMBANGUNAN JAYA

REKAYASA TRANSPORTASI LANJUT UNIVERSITAS PEMBANGUNAN JAYA REKAYASA TRANSPORTASI LANJUT UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bntaro Sektor 7, Bntaro Jaya Tangerang Selatan 15224 PENDAHULUAN Bangktan perjalanan (Trp generaton model ) adalah suatu tahapan

Lebih terperinci

RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Design) Dr.Ir. I Made Sumertajaya, M.Si Departemen Statistika-FMIPA IPB 2007

RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Design) Dr.Ir. I Made Sumertajaya, M.Si Departemen Statistika-FMIPA IPB 2007 RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Desgn) Dr.Ir. I Made Sumertajaya, M.S Departemen Statstka-FMIPA IPB 007 Revew Rancangan Acak Kelompok Kta ngn membandngkan t perlakuan Pengelompokan

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4. PENGUJIAN PENGUKURAN KECEPATAN PUTAR BERBASIS REAL TIME LINUX Dalam membuktkan kelayakan dan kehandalan pengukuran kecepatan putar berbass RTLnux n, dlakukan pengujan dalam

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PEDAHULUA. Latar Belakang Rsko ddentfkaskan dengan ketdakpastan. Dalam mengambl keputusan nvestas para nvestor mengharapkan hasl yang maksmal dengan rsko tertentu atau hasl tertentu dengan rsko yang

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fska Dasar I (FI-31) Topk har n (mnggu 5) Usaha dan Energ Usaha dan Energ Energ Knetk Teorema Usaha Energ Knetk Energ Potensal Gravtas Usaha dan Energ Potensal Gravtas Gaya Konservatf dan Non-Konservatf

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilakukan di MTs Negeri 2 Bandar Lampung dengan populasi siswa

III. METODE PENELITIAN. Penelitian ini dilakukan di MTs Negeri 2 Bandar Lampung dengan populasi siswa III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlakukan d MTs Neger Bandar Lampung dengan populas sswa kelas VII yang terdr dar 0 kelas yatu kelas unggulan, unggulan, dan kelas A sampa dengan

Lebih terperinci

BAB II TEORI ALIRAN DAYA

BAB II TEORI ALIRAN DAYA BAB II TEORI ALIRAN DAYA 2.1 UMUM Perhtungan alran daya merupakan suatu alat bantu yang sangat pentng untuk mengetahu konds operas sstem. Perhtungan alran daya pada tegangan, arus dan faktor daya d berbaga

Lebih terperinci

BAB III HIPOTESIS DAN METODOLOGI PENELITIAN

BAB III HIPOTESIS DAN METODOLOGI PENELITIAN BAB III HIPOTESIS DAN METODOLOGI PENELITIAN III.1 Hpotess Berdasarkan kerangka pemkran sebelumnya, maka dapat drumuskan hpotess sebaga berkut : H1 : ada beda sgnfkan antara sebelum dan setelah penerbtan

Lebih terperinci

TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph

TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph TINJAUAN PUSTAKA Bayesan Networks BNs dapat memberkan nformas yang sederhana dan padat mengena nformas peluang. Berdasarkan komponennya BNs terdr dar Bayesan Structure (Bs) dan Bayesan Parameter (Bp) (Cooper

Lebih terperinci

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012 Pertemuan ke-4 Analsa Terapan: Metode Numerk 4 Oktober Persamaan Non Non--Lner: Metode NewtonNewton-Raphson Dr.Eng. Agus S. Muntohar Metode Newton Newton--Raphson f( f( f( + [, f(] + = α + + f( f ( Gambar

Lebih terperinci

Fisika Dasar I (FI-321) Usaha dan Energi

Fisika Dasar I (FI-321) Usaha dan Energi Fska Dasar I (FI-31) Topk har n (mnggu 5) Usaha dan Energ Usaha Menyatakan hubungan antara gaya dan energ Energ menyatakan kemampuan melakukan usaha Usaha,,, yang dlakukan oleh gaya konstan pada sebuah

Lebih terperinci

PERANCANGAN PARAMETER DENGAN PENDEKATAN TAGUCHI UNTUK DATA DISKRIT

PERANCANGAN PARAMETER DENGAN PENDEKATAN TAGUCHI UNTUK DATA DISKRIT BIAStatstcs (05) Vol. 9, No., hal. -7 PERANCANGAN PARAMETER DENGAN PENDEKATAN TAGUCHI UNTUK DATA DISKRIT Faula Arna Jurusan Teknk Industr, Unverstas Sultan Ageng Trtayasa Banten Emal : [email protected]

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 13 Bandar Lampung. Populasi dalam

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 13 Bandar Lampung. Populasi dalam III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SMP Neger 3 Bandar Lampung. Populas dalam peneltan n yatu seluruh sswa kelas VIII SMP Neger 3 Bandar Lampung Tahun Pelajaran 0/03 yang

Lebih terperinci

Kritikan Terhadap Varians Sebagai Alat Ukur

Kritikan Terhadap Varians Sebagai Alat Ukur Krtkan Terhadap Varans Sebaga Alat Ukur Varans mengukur penympangan pengembalan aktva d sektar nla yang dharapkan, maka varans mempertmbangkan juga pengembalan d atas atau d bawah nla pengembalan yang

Lebih terperinci

IMAGE CLUSTER BERDASARKAN WARNA UNTUK IDENTIFIKASI KEMATANGAN BUAH TOMAT DENGAN METODE VALLEY TRACING

IMAGE CLUSTER BERDASARKAN WARNA UNTUK IDENTIFIKASI KEMATANGAN BUAH TOMAT DENGAN METODE VALLEY TRACING IMAGE CLUSTER BERDASARKAN WARNA UNTUK IDENTIFIKASI KEMATANGAN BUAH TOMAT DENGAN METODE VALLEY TRACING M. Helmy Noor 1, Moh. Harad 2 Program Pasasarjana, Jurusan Teknk Elektro, Program Stud Jarngan Cerdas

Lebih terperinci