TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph
|
|
|
- Ida Susanto
- 8 tahun lalu
- Tontonan:
Transkripsi
1 TINJAUAN PUSTAKA Bayesan Networks BNs dapat memberkan nformas yang sederhana dan padat mengena nformas peluang. Berdasarkan komponennya BNs terdr dar Bayesan Structure (Bs) dan Bayesan Parameter (Bp) (Cooper & Herskovts 992). Bs merupakan sebuah graf Drected Acyclc Graph (DAG) yang menggambarkan ketergantungan antar setap peubah, dan Bp merupakan hmpunan dar parameter dar sebaran peluang bersyarat setap peubah berdasarkan graf tersebut. Bs terdr dar node yang merepresentaskan peubah-peubah dan edge yang merepresentaskan hubungan ketergantungan antar node sepert pada Gambar. Setap node yang dhubungkan secara langsung, menunjukan hubungan ketergantungan. Msalkan hmpunan dar node dnyatakan dengan {Y,,Y n }, jka terdapat edge dar node Y j ke node Y k, dkatakan bahwa Y j adalah parent dar Y k, dan Y k adalah chld dar Y j. Hmpunan parent dar node Y dnotaskan sebaga Π. Sebaga contoh, berdasarkan Gambar parent untuk Y 2 adalah Y dan chld untuk Y 2 adalah Y 3 dan Y 4. Y Edge Y 2 Node Y 3 Y 4 Gambar Drected Acyclc Graph Struktur ketergantungan atau kebebasan yang dgambarkan dengan DAG dapat dterjemahkan kedalam fungs kepekatan bersama dar peubah-peubah dengan jalan mengalkan semua peluang berdasarkan parent-nya sebaga berkut:
2 n, y2,..., yn ) = P( y ) = P( y π () Berdasarkan persamaan () dapat dketahu bahwa DAG n mendefnskan dekomposs dar fungs peluang berdmens besar ke dalam sebaran lokal bedmens rendah. Berdasarkan jens peubah, ada dua tpe BNs yatu Multnomal BNs untuk peubah dskret dan Gaussan BNs untuk peubah kontnyu. Multnomal Bayesan Networks Dalam multnomal BNs dasumskan bahwa semua peubah adalah dskret, d mana setap peubah memlk hmpunan nla yang terbatas, dan bahwa peluang bersyarat untuk setap peubah berdasarkan parent-nya menyebar multnomal. Menurut Cooper dan Herskovts (992) nla harapan dar peluang bersyarat dalam jarngan ddefnskan sebaga berkut: Msal dnotaskan sebaga peluang bersyarat, yang merupakan peluang bahwa memlk nla, k=,2,, r, dengan syarat parent dar x, yang dnyatakan dengan memlk nla w j. Bla sebaga peluang bersyarat dar jarngan (network condtonal probablty), N jk adalah banyak node ke- yang memlk nla parent ke-j untuk kategor ke-k, dan msalkan dnotaskan sebaga asums d mana :. Semua peubah merupakan peubah dskret 2. Setap observas salng bebas 3. Tdak ada data hlang dar setap peubah 4. Fungs kepekatan peluang f(b P B s ) adalah unform, maka nla,,, yang merupakan nla harapan dar berdasarkan hmpunan pengamatan D, struktur jarngan B s, dan asums dnyatakan sebaga berkut: Njk + E( θ jk D, BS, δ ) = (2) N + r j
3 sedangkan ragamnya adalah: ( Nj + )( Nj + r N ) jk Var( θ jk D, BS, δ ) = (3) 2 ( N + r ) ( N + r + ) j j Gaussan Bayesan Networks Dalam Gaussan BNs, semua peubah dasumskan menyebar Normal ganda, yatu: (,Σ) f ( x) ~ N μ (4) μ adalah vektor rataan berdmens n, Σ adalah matrk peragam berukuran n n, Σ adalah determnan dar Σ, dan μ T dnotaskan sebaga transpos dar μ. Peluang bersyarat untuk setap node berdasarkan parent-nya untuk Gaussan BNs adalah sebaga berkut (Cano et al. 2004) : f ( x,2,..., ) ~ = + ( ), ; n π N μ βj x j μ j v (5) j =,2,..., n j= adalah koefsen regres antara node ke- dengan parent ke-j dan Σ Σ Π Σ Π Σ T Π adalah condtonal varance dar X, dengan syarat Π, d mana Σ adalah uncondtonal varance dar X, Σ Π adalah vektor dar peragam antara X dan peubah-peubah ddalam Π, dan Σ Π adalah matrk peragam dar Π. Sebaga catatan bahwa mengukur kekuatan hubungan antara X dan X j. Jka 0, maka X j bukan merupakan parent untuk X. Gaussan BNs terdr dar kumpulan parameter,,,,,, dan.
4 Pembentukan Struktur BNs Berdasarkan Data Permasalahan yang dhadap adalah menentukan struktur yang terbak dar semua struktur yang mungkn. Banyaknya kemungknan struktur untuk n node dformulaskan sebaga berkut (Cooper & Herskovts 992): n + n ( ) f ( n) ( ) n = 2 f ( n ) (6) = pada persamaan 6 terdapat batasan untuk f(0)=, banyaknya struktur untuk beberapa n dapat dlhat pada Tabel : Tabel Banyaknya struktur untuk n node n Jumlah Struktur Jka dasumskan bahwa peubah tersebut durut, dmana jka Y mendahulu Y j dalam urutan, maka tdak dperbolehkan terdapat tanda panah dar Y j ke Y. Berdasarkan aturan pengurutan tersebut maka kemungknan struktur BNs yang dapat terbentuk sebanyak 2 2 kemungknan. sehngga perlu suatu algortma yang memberkan struktur terbak. Salah satu algortma dalam mencar struktur Bayes adalah algortma K2. Algortma K2 Algortma K2 menentukan struktur jarngan B S yang memaksmalkan P(B S,D) dengan mengasumskan bahwa peubah tersebut terurut. Algortma n dawal dengan mengasumskan bahwa setap node tersebut tdak punya parent, kemudan dlakukan penambahan parent dmana penambahan tersebut menngkatkan peluang dar hasl akhr struktur. Jka penambahan perents sudah tdak lag menngkatkan peluang dar hasl akhr struktur, maka penambahan
5 parent dhentkan. Adapun fungs yang menjad acuan penngkatan nla dar peluang strukturnya adalah: ( r ) q r! g(, π ) = N! (7) ( N + r )! j= j k= jk N jk dhtung relatf terhadap π yang merupakan parent dar y dan relatve terhadap hmpunan pengamatan D. Fungs Pred(y ) merupakan fungs yang mengembalkan hmpunan dar node yang mendahulu y dalam urutan node. Adapun algortma K2 adalah (Cooper & Herskovts 992): Procedure K2 For := to n do π = φ; P old = g(, π ); OKToProceed := true whle OKToProceed and π <u do let v be the node n Pred(y )- π that maxmzes g(, π {v}); P new = g(, π {v}); f P new > P old then P old := P new ; π :=π {v} ; else OKToProceed := false; end {whle} wrte( Node:, parent of ths nodes :, π ); end {for} end {K2} Autoregressve Integrated Movng Average Box dan Jenkns (976) secara efektf telah berhasl mencapa kesepakatan mengena nformas relevan yang dperlukan untuk memaham dan memaka model-model ARIMA untuk deret waktu peubah tunggal. Alur pendekatan Box- Jenkns tercantum pada Gambar 2, yang terdr dar tga tahap : dentfkas,
6 penaksran dan pengujan, serta penerapan (Makrdaks et al. 988). Secara umum untuk proses AR orde ke-p dapat dnyatakan sebaga berkut: X + t = μ ' + φ X t + φ2 X t φ p X t p et (8) d mana merupakan nla konstanta, adalah parameter autoregressve ke-j dan merupakan nla kesalahan pada saat t. Untuk model MA secara umum dapat dnyatakan sebaga berkut: X t = μ + e θ e θ e... θ e t t 2 t 2 q t q (9) dmana sampa adalah parameter-parameter MA, adalah nla kesalahan pada saat t-k dan adalah suatu konstanta. Tahap Identfkas Rumuskan kelompok model model yang umum Penetapan model untuk sementara Tahap Penaksran dan Pengujan Penaksran parameter pada model sementara Tdak Apakah model memada? Tahap Penerapan Ya Gunakan model untuk peramalan Gambar 2 Skema pendekatan Box-Jenkns
7 Valdas Slang Menurut Naes et al. (2002) valdas slang merupakan langkah meramalkan nla-nla peubah tak bebas dengan model yang sudah dmlk. Semakn dekat hasl peramalan dengan data aktual menunjukan semakn baknya model. Nla Root Mean Square Error of Predcton (RMSEP) dapat dgunakan untuk melhat keeratan hubungan antara nla amatan dengan nla peramalan. Nla RMSEP yang mendekat nol menunjukan kedekatan hasl ramalan dengan data aktual. Nla RMSEP drumuskan sebaga berkut: RMSEP = n p ( ˆ Y Y ) = n p 2 / 2 (0) dmana merupakan data dugaan respon ke-, adalah data aktual respon ke- serta merupakan banyaknya pengamatan untuk peramalan.
BAB 2 LANDASAN TEORI
7 BAB LANDASAN TEORI.1 Analsa Regres Analsa regres dnterpretaskan sebaga suatu analsa yang berkatan dengan stud ketergantungan (hubungan kausal) dar suatu varabel tak bebas (dependent varable) atu dsebut
Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN
BAB I PENDAHULUAN Sebuah jarngan terdr dar sekelompok node yang dhubungkan oleh busur atau cabang. Suatu jens arus tertentu berkatan dengan setap busur. Notas standart untuk menggambarkan sebuah jarngan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang
Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan :
Analss Regres Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Itasa & Y Angran Dep. Statstka FMIPA-IPB Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan
PENDUGAAN RASIO, BEDA DAN REGRESI
TEKNIK SAMPLING PENDUGAAN RASIO, BEDA DAN REGRESI PENDAHULUAN Pendugaan parameter dar peubah Y seharusnya dlakukan dengan menggunakan nformas dar nla-nla peubah Y Bla nla-nla peubah Y sult ddapat, maka
BAB VB PERSEPTRON & CONTOH
BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur
BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.
BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan
APLIKASI KORELASI PEARSON DALAM MEMBANGUN MODEL TREE-AUGMENTED NETWORK (TAN) (Studi Kasus Pengenalan Karakter Tulisan Tangan)
APLIKASI KORELASI PEARSON DALAM MEMBANGUN MODEL TREE-AUGMENTED NETWORK (TAN) (Stud Kasus Pengenalan Karakter Tulsan Tangan) Irwan Bud Santoso Jurusan Teknk Informatka, Sans dan Teknolog Unverstas Islam
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan
PENDAHULUAN Latar Belakang
PENDAHULUAN Latar Belakang Menurut teor molekuler benda, satu unt volume makroskopk gas (msalkan cm ) merupakan suatu sstem yang terdr atas sejumlah besar molekul (kra-kra sebanyak 0 0 buah molekul) yang
BAB 2 LANDASAN TEORI. persamaan penduga dibentuk untuk menerangkan pola hubungan variabel-variabel
BAB LANDASAN TEORI. Analss Regres Regres merupakan suatu alat ukur yang dgunakan untuk mengukur ada atau tdaknya hubungan antar varabel. Dalam analss regres, suatu persamaan regres atau persamaan penduga
BAB III METODE PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode
BAB III METODE PENELITIAN Desan Peneltan Metode peneltan yang dgunakan dalam peneltan n adalah metode deskrptf analts dengan jens pendekatan stud kasus yatu dengan melhat fenomena permasalahan yang ada
BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan metode statstka ang dgunakan untuk meramalkan sebuah varabel respon Y dar satu atau lebh varabel bebas X, selan tu juga dgunakan untuk
ANALISIS BENTUK HUBUNGAN
ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel
Bab III Analisis Rantai Markov
Bab III Analss Ranta Markov Sstem Markov (atau proses Markov atau ranta Markov) merupakan suatu sstem dengan satu atau beberapa state atau keadaan, dan dapat berpndah dar satu state ke state yang lan pada
III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan
Pada bab n akan dbahas mengena penyelesaan masalah ops real menggunakan pohon keputusan bnomal. Dalam menentukan penlaan proyek, dapat dgunakan beberapa metode d antaranya dscounted cash flow (DF). DF
BAB 2 LANDASAN TEORI. Universitas Sumatera Utara
BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang
MINGGU KE- V: UKURAN PENYEBARAN
MINGGU KE- V: UKURAN PENYEBARAN Tujuan Instruksonal Umum :. Mahasswa mampu memaham apa yang dmaksud dengan ukuran penyebaran. Mahasswa mampu memaham berbaga pengukuran untuk mencar nla ukuran penyebaran
BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model
BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN A. Regres Model Log-Log Pada prnspnya model n merupakan hasl transformas dar suatu model tdak lner dengan membuat model dalam bentuk
BAB IV CONTOH PENGGUNAAN MODEL REGRESI GENERALIZED POISSON I. Kesulitan ekonomi yang tengah terjadi akhir-akhir ini, memaksa
BAB IV CONTOH PENGGUNAAN MODEL REGRESI GENERALIZED POISSON I 4. LATAR BELAKANG Kesultan ekonom yang tengah terjad akhr-akhr n, memaksa masyarakat memutar otak untuk mencar uang guna memenuh kebutuhan hdup
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN 3.1. Hpotess Peneltan Berkatan dengan manusa masalah d atas maka penuls menyusun hpotess sebaga acuan dalam penulsan hpotess penuls yatu Terdapat hubungan postf antara penddkan
BAB III METODE PENELITIAN. Sebelum dilakukan penelitian, langkah pertama yang harus dilakukan oleh
BAB III METODE PENELITIAN 3.1 Desan Peneltan Sebelum dlakukan peneltan, langkah pertama yang harus dlakukan oleh penelt adalah menentukan terlebh dahulu metode apa yang akan dgunakan dalam peneltan. Desan
Preferensi untuk alternatif A i diberikan
Bahan Kulah : Topk Khusus Metode Weghted Product (WP) menggunakan perkalan untuk menghubungkan ratng atrbut, dmana ratng setap atrbut harus dpangkatkan dulu dengan bobot atrbut yang bersangkutan. Proses
BAB X RUANG HASIL KALI DALAM
BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan
DIMENSI PARTISI GRAF GIR
Jurnal Matematka UNAND Vol. 1 No. 2 Hal. 21 27 ISSN : 2303 2910 c Jurusan Matematka FMIPA UNAND DIMENSI PARTISI GRAF GIR REFINA RIZA Program Stud Matematka, Fakultas Matematka dan Ilmu Pengetahuan Alam,
BAB IV HASIL PENELITIAN DAN PEMBAHASAN
BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskrps Data Hasl Peneltan Satelah melakukan peneltan, penelt melakukan stud lapangan untuk memperoleh data nla post test dar hasl tes setelah dkena perlakuan.
BAB 1 PENDAHULUAN. Universitas Sumatera Utara
BAB 1 ENDAHULUAN 1.1 Latar Belakang Secara umum dapat dkatakan bahwa mengambl atau membuat keputusan berart memlh satu dantara sekan banyak alternatf. erumusan berbaga alternatf sesua dengan yang sedang
IV. PERANCANGAN DAN IMPLEMENTASI SISTEM
IV. PERANCANGAN DAN IMPLEMENTASI SISTEM Perancangan Sstem Sstem yang akan dkembangkan adalah berupa sstem yang dapat membantu keputusan pemodal untuk menentukan portofolo saham yang dperdagangkan d Bursa
BAB 1 PENDAHULUAN. Pertumbuhan dan kestabilan ekonomi, adalah dua syarat penting bagi kemakmuran
BAB 1 PENDAHULUAN 1.1. Latar Belakang Pertumbuhan dan kestablan ekonom, adalah dua syarat pentng bag kemakmuran dan kesejahteraan suatu bangsa. Dengan pertumbuhan yang cukup, negara dapat melanjutkan pembangunan
BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat
BAB LANDASAN TEORI. 1 Analsa Regres Regres pertama kal dpergunakan sebaga konsep statstk pada tahun 1877 oleh Sr Francs Galton. Galton melakukan stud tentang kecenderungan tngg badan anak. Teor Galton
RANGKAIAN SERI. 1. Pendahuluan
. Pendahuluan ANGKAIAN SEI Dua elemen dkatakan terhubung ser jka : a. Kedua elemen hanya mempunya satu termnal bersama. b. Ttk bersama antara elemen tdak terhubung ke elemen yang lan. Pada Gambar resstor
MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM
MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN. Latar Belakang Matematka sebaga bahasa smbol yang bersfat unversal memegang peranan pentng dalam perkembangan suatu teknolog. Matematka sangat erat hubungannya dengan kehdupan nyata.
Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381
Bab 1 Ruang Vektor Defns Msalkan F adalah feld, yang elemen-elemennya dnyatakansebaga skalar. Ruang vektor atas F adalah hmpunan tak kosong V, yang elemen-elemennya merupakan vektor, bersama dengan dua
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tnjauan Pustaka Dar peneltan yang dlakukan Her Sulstyo (2010) telah dbuat suatu sstem perangkat lunak untuk mendukung dalam pengamblan keputusan menggunakan
BAB III METODE PENELITIAN. Pada penelitian ini, penulis memilih lokasi di SMA Negeri 1 Boliyohuto khususnya
BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Peneltan 3.1.1 Tempat Peneltan Pada peneltan n, penuls memlh lokas d SMA Neger 1 Bolyohuto khususnya pada sswa kelas X, karena penuls menganggap bahwa lokas
BAB IV PEMBAHASAN HASIL PENELITIAN
BAB IV PEMBAHASAN HASIL PENELITIAN A. Hasl Peneltan Pada peneltan yang telah dlakukan penelt selama 3 mnggu, maka hasl belajar matematka pada mater pokok pecahan d kelas V MI I anatussbyan Mangkang Kulon
PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel
PRAKTIKUM 6 Penyelesaan Persamaan Non Lner Metode Newton Raphson Dengan Modfkas Tabel Tujuan : Mempelajar metode Newton Raphson dengan modfkas tabel untuk penyelesaan persamaan non lner Dasar Teor : Permasalahan
BAB I Rangkaian Transient. Ir. A.Rachman Hasibuan dan Naemah Mubarakah, ST
BAB I angkaan Transent Oleh : Ir. A.achman Hasbuan dan Naemah Mubarakah, ST . Pendahuluan Pada pembahasan rangkaan lstrk, arus maupun tegangan yang dbahas adalah untuk konds steady state/mantap. Akan tetap
Bootstrap Pada Regresi Linear dan Spline Truncated
Statstka, Vol. 8 No. 1, 47 54 Me 2008 Bootstrap Pada Regres Lnear dan Splne runcated Harson Darmaw 1) dan Bambang Wdjanarko Otok 2) 1) enaga Pengajar d Jurusan Matematka UNRI, Pekanbaru e-mal: [email protected]
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PEDAHULUA. Latar Belakang Rsko ddentfkaskan dengan ketdakpastan. Dalam mengambl keputusan nvestas para nvestor mengharapkan hasl yang maksmal dengan rsko tertentu atau hasl tertentu dengan rsko yang
Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi.
BAB V TEOEMA-TEOEMA AGKAIA 5. Teorema Superposs Teorema superposs bagus dgunakan untuk menyelesakan permasalahan-permasalahan rangkaan yang mempunya lebh dar satu sumber tegangan atau sumber arus. Konsepnya
BAB 1 PENDAHULUAN. dependen (y) untuk n pengamatan berpasangan i i i. x : variabel prediktor; f x ) ). Bentuk kurva regresi f( x i
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan analss statstk yang dgunakan untuk memodelkan hubungan antara varabel ndependen (x) dengan varabel ( x, y ) n dependen (y) untuk n pengamatan
Bab 1 PENDAHULUAN Latar Belakang
11 Bab 1 PENDAHULUAN 1.1. Latar Belakang Perbankan adalah ndustr yang syarat dengan rsko. Mula dar pengumpulan dana sebaga sumber labltas, hngga penyaluran dana pada aktva produktf. Berbaga kegatan jasa
BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER
BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan
BAB II DASAR TEORI. 2.1 Definisi Game Theory
BAB II DASAR TEORI Perkembangan zaman telah membuat hubungan manusa semakn kompleks. Interaks antar kelompok-kelompok yang mempunya kepentngan berbeda kemudan melahrkan konflk untuk mempertahankan kepentngan
III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen yang telah dilaksanakan di SMA
III. METODE PENELITIAN A. Waktu dan Tempat Peneltan Peneltan n merupakan stud ekspermen yang telah dlaksanakan d SMA Neger 3 Bandar Lampung. Peneltan n dlaksanakan pada semester genap tahun ajaran 2012/2013.
III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen dengan populasi penelitian yaitu
4 III. METODE PENELITIAN A. Populas Peneltan Peneltan n merupakan stud ekspermen dengan populas peneltan yatu seluruh sswa kelas VIII C SMP Neger Bukt Kemunng pada semester genap tahun pelajaran 01/013
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI.1 Pengertan Regres Regres pertama kal dgunakan sebaga konsep statstka oleh Sr Francs Galton (18 1911).Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang selanjutnya
BAB IV PEMBAHASAN MODEL
BAB IV PEMBAHASAN MODEL Pada bab IV n akan dlakukan pembuatan model dengan melakukan analss perhtungan untuk permasalahan proses pengadaan model persedaan mult tem dengan baya produks cekung dan jont setup
Analisis Regresi 1. Pokok Bahasan : Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh
Analss Regres 1 Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan nla harapannya E[Y x] E[Y x] y b
BAB V Model Bayes Pendugaan Area Kecil untuk Respon Binomial dan Multinomial Berbasis Penarikan Contoh Berpeluang Tidak Sama
BAB V Model Bayes Pendugaan Area Kecl untuk Respon Bnomal dan Multnomal Berbass Penarkan Contoh Berpeluang Tdak Sama 5.1. Pendahuluan Pada umumnya pengembangan model SAE dan pendugaannya dlakukan dengan
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN. Latar Belakang Manova atau Multvarate of Varance merupakan pengujan dalam multvarate yang bertujuan untuk mengetahu pengaruh varabel respon dengan terhadap beberapa varabel predktor
2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil
.1 Sstem Makroskopk dan Sstem Mkroskopk Fska statstk berangkat dar pengamatan sebuah sstem mkroskopk, yakn sstem yang sangat kecl (ukurannya sangat kecl ukuran Angstrom, tdak dapat dukur secara langsung)
ANALISIS REGRESI REGRESI NONLINEAR REGRESI LINEAR REGRESI KUADRATIK REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUBIK
REGRESI NON LINIER ANALISIS REGRESI REGRESI LINEAR REGRESI NONLINEAR REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUADRATIK REGRESI KUBIK Membentuk gars lurus Membentuk Gars Lengkung Regres
JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN :
JURNA MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 59-70, Agustus 2003, ISSN : 1410-8518 MASAAH RUTE TERPENDEK PADA JARINGAN JAAN MENGGUNAKAN AMPU AU-INTAS Stud Kasus: Rute Peralanan Ngesrep Smpang ma Eko Bud
III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 13 Bandar Lampung. Populasi dalam
III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SMP Neger 3 Bandar Lampung. Populas dalam peneltan n yatu seluruh sswa kelas VIII SMP Neger 3 Bandar Lampung Tahun Pelajaran 0/03 yang
III. METODE PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode
8 III. METODE PENELITIAN A. Metode Peneltan Metode peneltan adalah suatu cara yang dpergunakan untuk pemecahan masalah dengan teknk dan alat tertentu sehngga dperoleh hasl yang sesua dengan tujuan peneltan.
PROPOSAL SKRIPSI JUDUL:
PROPOSAL SKRIPSI JUDUL: 1.1. Latar Belakang Masalah SDM kn makn berperan besar bag kesuksesan suatu organsas. Banyak organsas menyadar bahwa unsur manusa dalam suatu organsas dapat memberkan keunggulan
PENYELESAIAN SHORTEST PATH PROBLEM DENGAN JARINGAN SARAF TIRUAN HOPFIELD
Semnar Nasonal Sstem dan Informatka 2007; Bal, 6 November 2007 PENYELESAIAN SHORTEST PATH PROBLEM DENGAN JARINGAN SARAF TIRUAN HOPFIELD Nur Hasanah ) Istkhomah 2) Taufq Hdayat 3) Sr Kusumadew 4) Jurusan
PERTEMUAN I PENGENALAN STATISTIKA TUJUAN PRAKTIKUM
PERTEMUAN I PENGENALAN STATISTIKA TUJUAN PRAKTIKUM 1) Membuat dstrbus frekuens. 2) Mengetahu apa yang dmaksud dengan Medan, Modus dan Mean. 3) Mengetahu cara mencar Nla rata-rata (Mean). TEORI PENUNJANG
BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c
6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan
Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal
157 Vol. 13, No. 2, 157-161, Januar 2017 Tnjauan Algortma Genetka Pada Permasalahan Hmpunan Httng Mnmal Jusmawat Massalesse, Bud Nurwahyu Abstrak Beberapa persoalan menark dapat dformulaskan sebaga permasalahan
TEORI INVESTASI DAN PORTFOLIO MATERI 4.
TEORI INVESTASI DAN PORTFOLIO MATERI 4 KONSEP DASAR 2/40 Ada tga konsep dasar yang perlu dketahu untuk memaham pembentukan portofolo optmal, yatu: portofolo efsen dan portofolo optmal fungs utltas dan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 ENDAHULUAN 1.1 Latar Belakang Manusa dlahrkan ke duna dengan ms menjalankan kehdupannya sesua dengan kodrat Illah yakn tumbuh dan berkembang. Untuk tumbuh dan berkembang, berart setap nsan harus
LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES
LAMPIRAN A PENURUNAN PERSAMAAN NAVIER-STOKES Hubungan n akan dawal dar gaya yang beraks pada massa fluda. Gaya-gaya n dapat dbag ke dalam gaya bod, gaya permukaan, dan gaya nersa. a. Gaya Bod Gaya bod
BAB IV HASIL PENELITIAN DAN PEMBAHASAN
BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskrps Data Hasl Peneltan Peneltan n menggunakan peneltan ekspermen; subyek peneltannya dbedakan menjad kelas ekspermen dan kelas kontrol. Kelas ekspermen dber
BAB 2 LANDASAN TEORI. Universitas Sumatera Utara
BAB LANDASAN TEORI Unverstas Sumatera Utara . Pengertan Regres Istlah regres pertama kal dperkenalkan oleh Francs Galtom. Menurut Galtom, analss regres erkenaan dengan stud ketergantungan dar satu varael
BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metode eksperimen
3 BAB III METODOLOGI PENELITIAN A. Metode dan Desan Peneltan Metode yang dgunakan dalam peneltan n adalah metode ekspermen karena sesua dengan tujuan peneltan yatu melhat hubungan antara varabelvarabel
BAB I PENDAHULUAN. dan. 0. Uji fungsi distribusi empiris yang populer, yaitu uji. distribusi nol
BAB I PENDAHULUAN 1.1. Latar Belakang Sebagan besar peneltan-peneltan bdang statstka berhubungan dengan pengujan asums dstrbus, bak secara teor maupun praktk d lapangan. Salah satu uj yang serng dgunakan
BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE
BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan
TEORI KESALAHAN (GALAT)
TEORI KESALAHAN GALAT Penyelesaan numerk dar suatu persamaan matematk hanya memberkan nla perkraan yang mendekat nla eksak yang benar dar penyelesaan analts. Berart dalam penyelesaan numerk tersebut terdapat
ANALISIS DATA KATEGORIK (STK351)
Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat
Deret Taylor & Diferensial Numerik. Matematika Industri II
Deret Taylor & Derensal Numerk Matematka Industr II Maclaurn Power Seres Deret Maclaurn adalah penaksran polnom derajat tak hngga 0 0! 0 n n 0 n! Notce: Deret nnte tak hngga menyatakan bahwa akhrnya deret
BAB III FUNGSI MAYOR DAN MINOR. Pada bab ini akan dibahas konsep-konsep dasar dari fungsi mayor dan fungsi
BAB III FUNGSI MAYOR DAN MINOR Pada bab n akan dbahas konsep-konsep dasar dar fungs mayor dan fungs mnor dar suatu fungs yang terdefns pada suatu nterval tertutup. Pendefnsan fungs mayor dan mnor tersebut
PEMODELAN KARAKTERISTIK TINGKAT PENDIDIKAN ANAK DI PROVINSI JAWA BARAT MENGGUNAKAN LOG LINEAR
PEMODELAN KARAKTERISTIK TINGKAT PENDIDIKAN ANAK DI PROVINSI JAWA BARAT MENGGUNAKAN LOG LINEAR Resa Septan Pontoh 1), Neneng Sunengsh 2) 1),2) Departemen Statstka Unverstas Padjadjaran 1) [email protected],
REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear
REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana
METODE REGRESI RIDGE UNTUK MENGATASI KASUS MULTIKOLINEAR
METODE REGRESI RIDGE UNTUK MENGATASI KASUS MULTIKOLINEAR Margaretha Ohyver Jurusan Matematka, Fakultas Sans dan Teknolog, Bnus Unversty Jl. Kh.Syahdan No.9, Palmerah, Jakarta 480 [email protected],
BAB IV HASIL DAN PEMBAHASAN PENELITIAN. penerapan Customer Relationship Management pada tanggal 30 Juni 2011.
44 BAB IV HASIL DAN PEMBAHASAN PENELITIAN 4.1 Penyajan Data Peneltan Untuk memperoleh data dar responden yang ada, maka dgunakan kuesoner yang telah dsebar pada para pelanggan (orang tua sswa) d Kumon
BAB IV APLIKASI. Pada bagian ini akan dibahas bagaimana contoh mengestimasi. parameter model yang diasumsikan memiliki karateristik spasial lag
BAB IV APLIKASI Pada bagan n akan dbahas bagamana contoh mengestmas parameter model yang dasumskan memlk karaterstk spasal lag sekalgus spasal error. Estmas dlakukan dengan menggunakan software Evews 3
BAB II TEORI ALIRAN DAYA
BAB II TEORI ALIRAN DAYA 2.1 UMUM Perhtungan alran daya merupakan suatu alat bantu yang sangat pentng untuk mengetahu konds operas sstem. Perhtungan alran daya pada tegangan, arus dan faktor daya d berbaga
BAB III METODE PENELITIAN. yang digunakan meliputi: (1) PDRB Kota Dumai (tahun ) dan PDRB
BAB III METODE PENELITIAN 3.1 Jens dan Sumber Data Jens data yang dgunakan dalam peneltan n adalah data sekunder. Data yang dgunakan melput: (1) PDRB Kota Duma (tahun 2000-2010) dan PDRB kabupaten/kota
Bab 2 AKAR-AKAR PERSAMAAN
Analsa Numerk Bahan Matrkulas Bab AKAR-AKAR PERSAMAAN Pada kulah n akan dpelajar beberapa metode untuk mencar akar-akar dar suatu persamaan yang kontnu. Untuk persamaan polnomal derajat, persamaannya dapat
BAB II TINJAUAN PUSTAKA. George Boole dalam An Investigation of the Laws of Thought pada tahun
BAB II TINJAUAN PUSTAKA 2.1 Aljabar Boolean Barnett (2011) menyatakan bahwa Aljabar Boolean dpublkaskan oleh George Boole dalam An Investgaton of the Laws of Thought pada tahun 1954. Dalam karya n, Boole
INFERENSI FUNGSI KETAHANAN DENGAN METODE KAPLAN-MEIER
Tatk Wdharh dan Naschah ska Andran (Inferens Fungs Ketahanan dengan Metode Kaplan-Meer INFERENI FUNGI KETAHANAN DENGAN METODE KAPLAN-MEIER Tatk Wdharh dan Naschah ska Andran Jurusan Matematka FMIPA UNDIP
Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik
Pendeteksan Data Penclan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Dagnostk Sally Indra 1, Dod Vonanda, Rry Srnngsh 3 1 Student of Mathematcs Department State Unversty of Padang,
SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES 1 ABSTRAK
SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES Harm Sugart Jurusan Statstka FMIPA Unverstas Terbuka emal: [email protected] ABSTRAK Adanya penympangan terhadap asums
BAB V ANALISA PEMECAHAN MASALAH
BAB V ANALISA PEMECAHAN MASALAH 5.1 Analsa Pemlhan Model Tme Seres Forecastng Pemlhan model forecastng terbak dlakukan secara statstk, dmana alat statstk yang dgunakan adalah MAD, MAPE dan TS. Perbandngan
PEMODELAN REGRESI POISSON MEMPENGARUHI ANGKA KEMATIAN BAYI DI JAWA TIMUR TAHUN Yayuk Listiani NRP Dr. Purhadi, M. Sc.
PEMODELAN REGRESI POISSON PADA FAKTOR-FAKTOR YANG MEMPENGARUHI ANGKA KEMATIAN BAYI DI JAWA TIMUR TAHUN 007 Yayuk Lstan NRP 06 00 068 DOSEN PEMBIMBING Dr. Purhad, M. Sc. JURUSAN STATISTIKA FAKULTAS MATEMATIKA
III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Al-Azhar 3 Bandar Lampung yang terletak di
III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SMP Al-Azhar 3 Bandar Lampung yang terletak d Jl. Gn. Tanggamus Raya Way Halm, kota Bandar Lampung. Populas dalam peneltan n adalah
berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat
10 KARAKTRISTIK TRANSISTOR 10.1 Dasar Pengoperasan JT Pada bab sebelumnya telah dbahas dasar pengoperasan JT, utamannya untuk kasus saat sambungan kolektor-bass berpanjar mundur dan sambungan emtor-bass
2. ANALISIS DATA LONGITUDINAL
. ANALISIS DATA LONGITUDINAL Data longtudnal merupakan salah satu bentuk data berkorelas. Pada data longtudnal, peubah respon dukur pada beberapa ttk waktu untuk setap subyek. Dalam stud longtudnal dmungknkan
