METODE NUMERIK SECANT

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE NUMERIK SECANT"

Transkripsi

1 Prodi S1 Pendidikan Matematika UMT FKIP UMT April 4, 2016

2 Metode Numerik Secant Metode Numerik Secant

3 Metode Numerik Secant Metode numerik Secant merupakan turunan dari metode Newton dan digunakan untuk menentukan nilai x yang memaksimumkan atau meminimumkan fungsi Z = F (x)

4 Metode Numerik Secant Metode numerik Secant merupakan turunan dari metode Newton dan digunakan untuk menentukan nilai x yang memaksimumkan atau meminimumkan fungsi Z = F (x) Pandang Metode Newton x k+1 = x k f (x k ) f (x k )

5 Metode Numerik Secant Metode numerik Secant merupakan turunan dari metode Newton dan digunakan untuk menentukan nilai x yang memaksimumkan atau meminimumkan fungsi Z = F (x) Pandang Metode Newton x k+1 = x k f (x k ) f (x k ) Nilai f (x) dapat didekati dengan f (x k ) = f ( x k ) f ( x k 1 ) x k x k 1

6 Metode Numerik Secant Metode numerik Secant merupakan turunan dari metode Newton dan digunakan untuk menentukan nilai x yang memaksimumkan atau meminimumkan fungsi Z = F (x) Pandang Metode Newton x k+1 = x k f (x k ) f (x k ) Nilai f (x) dapat didekati dengan f (x k ) = f ( x k ) f ( x k 1 ) x k x k 1 Berdasarkan hal tersebut diperoleh yang disebut dengan metode secant x k+1 = x k 1f (x k ) x k f (x k 1 ) f (x k ) f (x k 1 )

7 Diberikan suatu fungsi Z = F (x), dan akan ditentukan nilai x yang memin atau memaks fungsi Z = F (x) tersebut

8 Diberikan suatu fungsi Z = F (x), dan akan ditentukan nilai x yang memin atau memaks fungsi Z = F (x) tersebut Tentukan titik awal x 1 dan x 0 serta erorɛ dengan ketentuan nilai x asli ada diantara kedua titik tersebut

9 Diberikan suatu fungsi Z = F (x), dan akan ditentukan nilai x yang memin atau memaks fungsi Z = F (x) tersebut Tentukan titik awal x 1 dan x 0 serta erorɛ dengan ketentuan nilai x asli ada diantara kedua titik tersebut Tentukan x 1, x 2...x k dengan cara x k+1 = x k 1f (x k ) x k f (x k 1 ) f (x k ) f (x k 1 )

10 Diberikan suatu fungsi Z = F (x), dan akan ditentukan nilai x yang memin atau memaks fungsi Z = F (x) tersebut Tentukan titik awal x 1 dan x 0 serta erorɛ dengan ketentuan nilai x asli ada diantara kedua titik tersebut Tentukan x 1, x 2...x k dengan cara x k+1 = x k 1f (x k ) x k f (x k 1 ) f (x k ) f (x k 1 ) Iterasi berhenti ketika x k x k 1 < ɛ

11 Tetukan nilai x yang meminimalkan F (x) = 2x 2 5x + 3 dengan Metode Secant apabila diketahui x 1 = 0,x 0 = 2 dan ɛ = 0.05

12 Tetukan nilai x yang meminimalkan F (x) = 2x 2 5x + 3 dengan Metode Secant apabila diketahui x 1 = 0,x 0 = 2 dan ɛ = 0.05 Bukti Dari soal diketahui F (x) = 2x 2 5x + 3, berdasarkan hal tersebut F (x) = 4x 5, F (0) = 5 dan F (2) = 3

13 Tetukan nilai x yang meminimalkan F (x) = 2x 2 5x + 3 dengan Metode Secant apabila diketahui x 1 = 0,x 0 = 2 dan ɛ = 0.05 Bukti Dari soal diketahui F (x) = 2x 2 5x + 3, berdasarkan hal tersebut F (x) = 4x 5, F (0) = 5 dan F (2) = 3 Berdasarkan formula x k+1 = x k 1f (x k ) x k f (x k 1 ), diperoleh f (x k ) f (x k 1 )

14 Tetukan nilai x yang meminimalkan F (x) = 2x 2 5x + 3 dengan Metode Secant apabila diketahui x 1 = 0,x 0 = 2 dan ɛ = 0.05 Bukti Dari soal diketahui F (x) = 2x 2 5x + 3, berdasarkan hal tersebut F (x) = 4x 5, F (0) = 5 dan F (2) = 3 Berdasarkan formula x k+1 = x k 1f (x k ) x k f (x k 1 ), diperoleh f (x k ) f (x k 1 ) x 1 = x 1f (x 0 ) x 0 f (x 1 ) f (x 0 ) f (x 1 )

15 Tetukan nilai x yang meminimalkan F (x) = 2x 2 5x + 3 dengan Metode Secant apabila diketahui x 1 = 0,x 0 = 2 dan ɛ = 0.05 Bukti Dari soal diketahui F (x) = 2x 2 5x + 3, berdasarkan hal tersebut F (x) = 4x 5, F (0) = 5 dan F (2) = 3 Berdasarkan formula x k+1 = x k 1f (x k ) x k f (x k 1 ), diperoleh f (x k ) f (x k 1 ) x 1 = x 1f (x 0 ) x 0 f (x 1 ) f (x 0 ) f (x 1 ) x 1 = 1.25

16 Tetukan nilai x yang meminimalkan F (x) = 2x 2 5x + 3 dengan Metode Secant apabila diketahui x 1 = 0,x 0 = 2 dan ɛ = 0.05 Bukti Dari soal diketahui F (x) = 2x 2 5x + 3, berdasarkan hal tersebut F (x) = 4x 5, F (0) = 5 dan F (2) = 3 Berdasarkan formula x k+1 = x k 1f (x k ) x k f (x k 1 ), diperoleh f (x k ) f (x k 1 ) x 1 = x 1f (x 0 ) x 0 f (x 1 ) f (x 0 ) f (x 1 ) x 1 = 1.25 Dengan langkah analog, diperoleh x 2 = 1.25

17 lanjutan Berdasarkan perhitungan terlihat bahwa x 2 x 1 = 0 < 0.05, iterasi berhenti sehingga diperoleh x = 1.25 = x

18 lanjutan Berdasarkan perhitungan terlihat bahwa x 2 x 1 = 0 < 0.05, iterasi berhenti sehingga diperoleh x = 1.25 = x Nilaiminf (1.25) = 0.125

19 lanjutan Berdasarkan perhitungan terlihat bahwa x 2 x 1 = 0 < 0.05, iterasi berhenti sehingga diperoleh x = 1.25 = x Nilaiminf (1.25) = Tugas Minggu Depan Buatlah soal optimisasi menentukan nilai x yang memaksimumkan suatu fungsi polinomial berderajat 4 dengan x 1 = 2 dan x 0 = 4 serta ɛ = 0.05 Kumpulkan minggu Depan

Metode Numerik Dichotomus

Metode Numerik Dichotomus Algoritma Prodi S1 Pendidikan Matematika UMT April 4, 016 Algoritma Algoritma Algoritma adalah salah satu metode numerik yang dapat digunakan untuk menentukan nilai x yang meminimumkan suatu fungsi dari

Lebih terperinci

Metode Numerik Newton

Metode Numerik Newton 1. March 1, 2016 1. 1. 1. Berbeda dengan Metode numerik Golden Rasio dan Fibonacci yang tidak memerlukan f (x), metode numerik Newton memerlukan turunan dari fungsi f (x) tersebut. 1. Berbeda dengan Metode

Lebih terperinci

Metode Numerik Roosenberg

Metode Numerik Roosenberg Metode Numerik Roosenberg Rukmono Budi Utomo, M.Sc. Prodi S1 Pendikan Matematika UMT email: rukmono.budi.u@students.itb.ac.id May 4, 2016 Metode Numerik Roosenberg Metode Numerik Roosenberg Algoritma Roosenberg

Lebih terperinci

Metode Numerik Arah Konjugasi

Metode Numerik Arah Konjugasi Contoh Penyelesaian Masalah Optimisasi dengan Metode Numerik Rukmono Budi Utomo, M.Sc. Prodi S1 Pendikan Matematika UMT email: rukmono.budi.u@students.itb.ac.id May 2, 2016 Contoh Penyelesaian Masalah

Lebih terperinci

METODE NUMERIK BISEKSI

METODE NUMERIK BISEKSI February 24, 2016 Metode Biseksi 1. Metode Biseksi 1 1. Metode Biseksi 2 Metode Biseksi Metode Biseksi memberikan alternatif perhitungan numerik menentukan x yang meminimumkan atau memaksimumkan suatu

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK Mata Kuliah: Metode Numerik Semester: 7, Kode: KMM 090 Program Studi: Pendidikan Matematika Dosen: Khairul Umam, S.Si, M.Sc.Ed Capaian Pembelajaran: SKS:

Lebih terperinci

METODE NUMERIK ROSENBERG

METODE NUMERIK ROSENBERG METODE NUMERIK ROSENBERG Mata Kuliah : Metode Numerik Dosen Pengampu : Rukmono Budi Utomo, M.Sc Disusun Oleh : Rizka Apriyanti 6 A1 13840080 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU

Lebih terperinci

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1 Studi Kasus Penyelesaian Pers.Non Linier Studi Kasus Non Linier 1 Contoh Kasus Penyelesaian persamaan non linier terkadang muncul sebagai permasalahan yang terpisah, tetapi terkadang pula muncul sebagai

Lebih terperinci

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 4 Akar Persamaan (2) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk = g() Metode

Lebih terperinci

BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta

BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta BAB I PENDAHULUAN A. Latar Belakang Matematika adalah cabang ilmu pengetahuan yang dapat digunakan dalam kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta tidak merupakan

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

BAB II AKAR-AKAR PERSAMAAN

BAB II AKAR-AKAR PERSAMAAN BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau

Lebih terperinci

METODE NUMERIK ARAH KONJUGASI

METODE NUMERIK ARAH KONJUGASI METODE NUMERIK ARAH KONJUGASI 14 Mei 2016 Diajukan untuk Memenuh Tugas Ujian Akhir Semester Mata kuliah Metode Numerik Dosen Pengampu Bapak Rukmono Budi Utomo,M.Sc Nur Aliyah 1384202043 6A1 Fakultas Keguruan

Lebih terperinci

ARAH KONJUGAT. dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni Dadang Supriadi A2

ARAH KONJUGAT. dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni Dadang Supriadi A2 ARAH KONJUGAT dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni 2016 Dadang Supriadi 1384202098 6A2 UNIVERSITAS MUHAMMADIYAH TANGERANG FAKULTAS KEGURUAN ILMU

Lebih terperinci

METODE STEEPEST DESCENT

METODE STEEPEST DESCENT METODE STEEPEST DESCENT Dosen Pengampu: Rukmono Budi Utomo M.Sc. Disusun Oleh : Linna Tri Lestari 6A1 1384202140 Diajukan sebagai tugas Ujian Akhir Semester UAS Metode Numerik UNIVERSITAS MUHAMMADIYAH

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

Oleh : Anna Nur Nazilah Chamim

Oleh : Anna Nur Nazilah Chamim Oleh : Anna Nur Nazilah Chamim 1. Silabus 2. Referensi 3. Kriteria Penilaian 4. Tata Tertib Perkuliahan 5. Pembentukan Kelompok 6. Materi 1 : pengantar Analisa Numerik Setelah mengikuti mata kuliah metode

Lebih terperinci

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan

Lebih terperinci

Persamaan yang kompleks, solusinya susah dicari. Contoh :

Persamaan yang kompleks, solusinya susah dicari. Contoh : AKAR PERSAMAAN NON LINEAR Persamaan hingga derajat dua, masih mudah diselesaikan dengan cara analitik. Contoh : a + b + c = 0 Solusi : 1 = b ± b 4 ac a Persamaan yang kompleks, solusinya susah dicari.

Lebih terperinci

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SYIAH KUALA Darussalam, Banda Aceh

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SYIAH KUALA Darussalam, Banda Aceh 08/02/2017 Nama Mata Kuliah : Metode Numerik Kode Mata Kuliah : KMM 090 Bobot SKS : 2 (dua) Semester : Ganjil Hari Pertemuan : 1 (pertama) Tempat Pertemuan : Ruang kuliah Koordinator MK : Khairul Umam,

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini METODE NUMERIK, oleh Sri Adi Widodo, M.Pd. Hak Cipta 2015 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-882262; 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU 1 Nama Mata Kuliah : Pemrograman Komputer 2 Kode Mata Kuliah : TSS 2119 3 Semester : III 4 (sks) : 2 5

Lebih terperinci

BAB I PENDAHULUAN. ilmu pengetahuan lain untuk menyelesaikan berbagai persoalan kehidupan karena

BAB I PENDAHULUAN. ilmu pengetahuan lain untuk menyelesaikan berbagai persoalan kehidupan karena BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sangat berguna bagi ilmu pengetahuan lain untuk menyelesaikan berbagai persoalan kehidupan karena dalam

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada suatu eksperimen atau pengamatan terhadap suatu keadaan, pengambilan data merupakan salah satu bagian terpenting, agar hasil dari eksperimen dapat lebih

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

BAB I PENDAHULUAN. adalah optimasi digunakan untuk memaksimalkan keuntungan yang akan diraih

BAB I PENDAHULUAN. adalah optimasi digunakan untuk memaksimalkan keuntungan yang akan diraih BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam kehidupan sehari-hari, baik disadari maupun tidak disadari, manusia sebenarnya telah melakukan upaya optimasi untuk memenuhi kebutuhan hidupnya. Akan

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Program Linear Program Linear adalah suatu cara yang digunakan untuk menyelesaikan masalah optimasi suatu model linear dengan berbagai kendala yang dihadapinya. Masalah program

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

Silabus dan Satuan Acara Perkuliahan

Silabus dan Satuan Acara Perkuliahan Fakultas Teknik No. Dokumen : FT SSAP-S3-10 Program Studi Teknik Elektro No. Revisi : 02 Silabus dan Satuan Acara Perkuliahan Tgl.Revisi :13-07-2006 Tgl. Berlaku :13-07-2006 KOMPUTASI NUMERIK DAN SIMBOLIK

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016

SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016 Halaman 1/4 SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016 KODE DOSEN NAMA DOSEN KODE MATA KULIAH NAMA MATA KULIAH SEMESTER/KELAS F 220 MAT RUKMONO BUDI UTOMO, M.Sc. MKP010 METODE NUMERIK VI/A1,A2,B1,B2

Lebih terperinci

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik.

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik. SILABUS MATAKULIAH Matakuliah Jurusan : Metode Numerik : Matematika Deskripsi Matakuliah :Metode Numerik membahas permasalahan matematika yang bersifat numerik. Penyelesaian persamaan khususnya non liner,

Lebih terperinci

BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear

BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear BAB III PEMBAHASAN Pada bab ini akan dijelaskan tentang konsep dasar metode kuadrat terkecil yang digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear dan langkah-langkah penyelesaiannya

Lebih terperinci

Prasyarat : - Status Matakuliah. Deskripsi Singkat Matakuliah :

Prasyarat : - Status Matakuliah. Deskripsi Singkat Matakuliah : Nama Matakuliah Kode / SKS : Fisika Komputasi : MAP4113 / 2 SKS Prasyarat : - Status Matakuliah : Wajib Deskripsi Singkat Matakuliah : Matakuliah Fisika Komputasi mempelajari bagaimana menggunakan komputer

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik. Disusun oleh: Rafki Imani, MT

RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik. Disusun oleh: Rafki Imani, MT RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik Disusun oleh: Rafki Imani, MT PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS PUTRA INDONESIA YPTK PADANG 2017 LEMBAR

Lebih terperinci

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2 ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK-031248 /2 Ming gu Pokok Bahasan & TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajara n Media Tugas Referensi

Lebih terperinci

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR Metode Biseksi Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari

Lebih terperinci

... Difference equation dapat diselesaikan menggunakan proses iterasi. Didefinisikan fungsi

... Difference equation dapat diselesaikan menggunakan proses iterasi. Didefinisikan fungsi LECTURE 1: EXAMPLE OF DYNAMICAL SYSTEM A. An Example from Finance Misalkan kita mendeposito uang $1000 di sebuah bank dengan bunga 10% setiap tahun. Diasumsikan bunga 10% ditambahkan pada setiap akhir

Lebih terperinci

esaian Pers.Non Linier Studi Kasus Penyele S. Hadi, ST. MSc. Muhammad Zen Studi Kasus Non Linier

esaian Pers.Non Linier Studi Kasus Penyele S. Hadi, ST. MSc. Muhammad Zen Studi Kasus Non Linier Studi Kasus Penyele esaian Pers.Non Linier 1 Muhammad Zen S. Hadi, ST. MSc. Contoh Kasus Penyelesaian persamaan non linier permasalahan yang terpisah, tetapi 2 terkadang muncul sebagai terkadang pula muncul

Lebih terperinci

5. INTERPOLASI. orde 1 orde 2 orde 3 menghubungkan 2 titik menghubungkan 3 titik menghubungkan 4 titik. Gambar 5.1

5. INTERPOLASI. orde 1 orde 2 orde 3 menghubungkan 2 titik menghubungkan 3 titik menghubungkan 4 titik. Gambar 5.1 5. INTERPOLASI PENDAHULUAN Bentuk umum persamaan polinomial orde n adalah: f() = a + a. + a. +.. + a n. n Untuk n+ titik data, hanya terdapat satu polinomial orde n atau kurang yang melalui semua titik.

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Bagi Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 20 Rumusan Masalah Bagi Tentukan solusi dengan f fungsi nonlinear.

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) PENDIDIKAN KARAKTER

RENCANA PEMBELAJARAN SEMESTER (RPS) PENDIDIKAN KARAKTER RENCANA PEMBELAJARAN SEMESTER (RPS) PENDIDIKAN KARAKTER Mata Kuliah: Metode Numerik Semester : 7 (tujuh); Kode : KMM 090; SKS : 2 (dua) Program Studi : Pendidikan Matematika Dosen : Khairul Umam, S.Si,

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : MAtematika Lanjut 2 Kode / SKS : IT012220 / 2 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 Pendahuluan Metode Numerik Pengertian Metode Numerik Mahasiswa

Lebih terperinci

DAFTAR ISI. BAB II DASAR TEORI Himpunan Fuzzy Bilangan Fuzzy Masalah Transportasi Program Linear Multiobjective..

DAFTAR ISI. BAB II DASAR TEORI Himpunan Fuzzy Bilangan Fuzzy Masalah Transportasi Program Linear Multiobjective.. DAFTAR ISI HALAMAN JUDUL..... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN.. iii HALAMAN PERSEMBAHAN... iv KATA PENGANTAR... v DAFTAR ISI. vii DAFTAR LAMBANG DAN SINGKATAN... ix DAFTAR TABEL. x DAFTAR

Lebih terperinci

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1 METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS Metode Numerik 1 Materi yang diajarkan : 1. Pendahuluan - latar belakang - mengapa dan kapan menggunakan metode numerik - prinsip penyelesaian persamaan 2. Sistim

Lebih terperinci

PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI. Lilik Prasetiyo Pratama

PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI. Lilik Prasetiyo Pratama PENDEKATAN NEAR MINIMAKS SEBAGAI PENDEKATAN FUNGSI Lilik Prasetiyo Pratama Jurusan Matematika, FMIPA UNS. LATAR BELAKANG Tidak semua fungsi mudah dievaluasi, terlebih fungsi yang rumit. Pendekatan dengan

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 8

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 8 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Moamad Sidiq PERTEMUAN : 8 DIFERENSIASI NUMERIK METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Moamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier MK: METODE NUMERIK Oleh: Dr. I GL Bagus Eratodi FTI Undiknas University Denpasar Persamaan Non Linier Metode Tabulasi Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode

Lebih terperinci

PROGRAM LINEAR. tersebut. Dua macam fungsi Program Linear: tujuan perumusan masalah

PROGRAM LINEAR. tersebut. Dua macam fungsi Program Linear: tujuan perumusan masalah PROGRAM LINEAR Program linear adalah salah satu model matematika yang digunakan untuk menyelesaikan masalah optimisasi, yaitu memaksimumkan atau meminimumkan fungsi tujuan yang bergantung pada sejumlah

Lebih terperinci

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Bernardino Madaharsa Dito Adiwidya - 13507089 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

Pendahuluan

Pendahuluan Pendahuluan Pendahuluan Numerik dengan Matlab KOMPUTASI NUMERIK dengan MATLAB Oleh : Ardi Pujiyanta Edisi Pertama Cetakan Pertama, 2007 Hak Cipta 2007 pada penulis, Hak Cipta dilindungi undang-undang.

Lebih terperinci

METODE SIMPLEKS KASUS MEMAKSIMUMKAN

METODE SIMPLEKS KASUS MEMAKSIMUMKAN TUGAS KELOMPOK RISET OPERASI METODE SIMPLEKS KASUS MEMAKSIMUMKAN KELOMPOK RINI ANGGRAINI S (H ) NURUL MUTHIAH (H 5) RAINA DIAH GRAHANI (H 68) FATIMAH ASHARA (H 78) PRODI STATISTIKA JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

Pertemuan 3: Penyelesaian Persamaan Transedental. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014

Pertemuan 3: Penyelesaian Persamaan Transedental. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Pertemuan 3: Penyelesaian Persamaan Transedental Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Persamaan Dalam Matematika Persamaan Linier Persamaan Kuadrat Persamaan Polynomial Persamaan Trigonometri

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8. Supriadi Putra & M. Imran

MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8. Supriadi Putra & M. Imran MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8 Supriadi Putra & M. Imran Laboratorium Komputasi Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat

BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat 1 BAB I PENDAHULUAN 1.1 Latar Belakang Sistem persamaan dapat dipandang F(x) = 0 [5], merupakan kumpulan dari beberapa persamaan nonlinear dengan fungsi tujuannya saja atau bersama fungsi kendala berbentuk

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Zaman yang semakin berkembang membuat persoalan semakin kompleks, tidak terkecuali persoalan yang melibatkan persoalan matematika. Kompleksitas yang semakin meningkat

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Dalam bab ini dijelaskan metode Adams Bashforth-Moulton multiplikatif (M) orde empat beserta penerapannya. Metode tersebut memuat metode Adams Bashforth multiplikatif orde empat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan

Lebih terperinci

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant Penyelesaian Persa amaan Non Linier Metode Iterasi Sederhana Metode Newton Raphson Permasalahan Titik Kritis pada Newton Raphson Metode Secant Iterasi/NewtonRaphson/Secant Metode Numerik - Metode Iter

Lebih terperinci

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR Eka Ceria 1, Agusni, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

MATA KULIAH ANALISIS NUMERIK

MATA KULIAH ANALISIS NUMERIK BAHAN AJAR MATA KULIAH ANALISIS NUMERIK Oleh: M. Muhaemin Muhammad Saukat JURUSAN TEKNIK DAN MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN 2009 Bahan Ajar Analisis

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Rumusan Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang dan Rumusan Masalah 1 BAB I PENDAHULUAN Pada bagian ini akan dijelaskan latar belakang dan rumusan masalah, tujuan dan manfaat penelitian, tinjauan pustaka, metode penelitian, serta sistematika penulisan. 1.1. Latar Belakang

Lebih terperinci

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Polinomial real berderajat n 0 adalah fungsi yang mempunyai bentuk p n (x) = n a i x i = a 0 x 0 + a

Lebih terperinci

KATA PENGANTAR. FisikaKomputasi i -FST Undana

KATA PENGANTAR. FisikaKomputasi i -FST Undana Disertai Flowchart, Algoritma, Script Program dalam Pascal, Matlab5 dan Mathematica5 Ali Warsito, S.Si, M.Si Jurusan Fisika, Fakultas Sains & Teknik Universitas Nusa Cendana 2009 KATA PENGANTAR Buku ajar

Lebih terperinci

UNIVERSITAS BINA NUSANTARA

UNIVERSITAS BINA NUSANTARA UNIVERSITAS BINA NUSANTARA Program Ganda Teknik Informatika - Matematika Skripsi Sarjana Program Ganda Semester Genap 2005/2006 PERBANDINGAN METODE INTEGRASI NUMERIK BOOLE, GAUSS- LEGENDRE, DAN ADAPTIVE

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN : 3 & 4 PENYELESAIAN PERSAMAAN NON LINIER METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar

Lebih terperinci

METODE NUMERIK STEEPEST DESCENT

METODE NUMERIK STEEPEST DESCENT METODE NUMERIK STEEPEST DESCENT 1 Juni 2016 Ujian Akhir Semester Untuk memenuhi ujian alhir semester mata kuliah metode numerik Selvi Kusdwi Lestari (1384202138 6A1 Pendidikan Matematika Fakultas Keguruan

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 12 Rumusan Masalah Tentukan solusi dengan f fungsi nonlinear. f (x)

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Tidak semua permasalahan matematis atau perhitungan dapat diselesaikan dengan mudah. Bahkan dalam prinsip matematik, dalam memandang permasalahan, terlebih dahulu

Lebih terperinci

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 68 75 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA ELSA JUMIASRI, SUSILA BAHRI, BUKTI GINTING

Lebih terperinci

BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik

BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik BAB 1 Konsep Dasar 1 BAB 2 Solusi Persamaan Fungsi Polinomial Denition 2.0.1 (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik kalkulasi berulang (teknik iterasi)

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembeli opsi untuk menjual atau membeli suatu sekuritas tertentu pada waktu dan

BAB II TINJAUAN PUSTAKA. pembeli opsi untuk menjual atau membeli suatu sekuritas tertentu pada waktu dan BAB II TINJAUAN PUSTAKA 2.1 Kontrak Opsi Kontrak opsi merupakan suatu perjanjian atau kontrak antara penjual opsi dengan pembeli opsi, penjual opsi memberikan hak dan bukan kewajiban kepada pembeli opsi

Lebih terperinci

IMPLEMENTASI FORMULA NEWTON-COTES UNTUK MENENTUKAN NILAI APROKSIMASI INTEGRAL TENTU MENGGUNAKAN POLINOMIAL BERORDE 4 DAN 5. Wahyu Sakti G. I.

IMPLEMENTASI FORMULA NEWTON-COTES UNTUK MENENTUKAN NILAI APROKSIMASI INTEGRAL TENTU MENGGUNAKAN POLINOMIAL BERORDE 4 DAN 5. Wahyu Sakti G. I. Sakti G.I., Implementasi Formula Newton-Cotes Untuk Menentukan Nilai Aproksimasi Integral Tentu Menggunakan Polinomial Berorde 4 dan 5 IMPLEMENTASI FORMULA NEWTON-COTES UNTUK MENENTUKAN NILAI APROKSIMASI

Lebih terperinci

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Danang Tri Massandy (13508051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

PETUNJUK PRAKTIKUM MATLAB LANJUT

PETUNJUK PRAKTIKUM MATLAB LANJUT PRAKTIKUM KE-1 Materi : Solusi Persamaan Non Linier Tujuan : Mahasiswa dapat menyelesaikan masalah yang berkaitan dengan persamaan non linier 1.1 Rasionalisasi Misalkan dimiliki model permasalahan sebagai

Lebih terperinci

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan

Lebih terperinci

BAB 2 KAJIAN PUSTAKA. Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut:

BAB 2 KAJIAN PUSTAKA. Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut: BAB 2 KAJIAN PUSTAKA 2.1 Masalah Optimisasi dan Program Non Linier Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut: 1. Masalah optimisasi tanpa kendala.

Lebih terperinci

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner Hendy Sutanto - 13507011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata Kuliah : Metode Numerik Bobot Mata Kuliah : 3 Sks Deskripsi Mata Kuliah : Unified Modelling Language; Use Case Diagram; Class Diagram dan Object Diagram;

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang digilib.uns.ac.id BAB I PENDAHULUAN 1.1 Latar Belakang Perangkat lunak sebagai media pembelajaran telah menjadi sebuah tren di kalangan masyarakat. Media merupakan alat saluran komunikasi. Kata media berasal

Lebih terperinci

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42 Jurnal Matematika Integratif ISSN 1412-6184 Volume 12 No 1, April 2016, pp 35 42 Perbandingan Tingkat Kecepatan Konvergensi dari Newton Raphson dan Secant Setelah Mengaplikasikan Aiken s dalam Perhitungan

Lebih terperinci

Mulyono (NIM : ) BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Penelitian ini menghasilkan diagram alir, kode program serta keluaran

Mulyono (NIM : ) BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Penelitian ini menghasilkan diagram alir, kode program serta keluaran Mulyono (NIM : 0301060025) BAB IV HASIL PENELITIAN DAN PEMBAHASAN Penelitian ini menghasilkan diagram alir, kode program serta keluaran berupa tingkat ketelitian metode Biseksi dan metode Regula Falsi

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

PERBANDINGAN METODE REGULA-FALSI DAN SECANT DALAM MENYELESAIKAN PERSAMAAN NON-LINEAR SKRIPSI

PERBANDINGAN METODE REGULA-FALSI DAN SECANT DALAM MENYELESAIKAN PERSAMAAN NON-LINEAR SKRIPSI PERBANDINGAN METODE REGULA-FALSI DAN SECANT DALAM MENYELESAIKAN PERSAMAAN NON-LINEAR SKRIPSI Oleh: Eko Wahyudianto NIM 091810101044 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

DAFTAR ISI... HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... HALAMAN PERSEMBAHAN... PRAKATA... DAFTAR LAMBANG... DAFTAR GAMBAR...

DAFTAR ISI... HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... HALAMAN PERSEMBAHAN... PRAKATA... DAFTAR LAMBANG... DAFTAR GAMBAR... DAFTAR ISI Halaman HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... HALAMAN PERSEMBAHAN... PRAKATA... DAFTAR ISI... DAFTAR LAMBANG... DAFTAR GAMBAR... DAFTAR TABEL... INTISARI... ABSTRACT...

Lebih terperinci

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks

Lebih terperinci

Fungsi Analitik (Bagian Pertama)

Fungsi Analitik (Bagian Pertama) Fungsi Analitik (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu IV) Outline 1 Fungsi Variabel Kompleks 2 Pemetaan/Transformasi/Mappings

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) IKG2E3 KOMPUTASI NUMERIK Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK Nurul Ain Farhana, Imran M Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

Menentukan Akar-Akar Polinomial dengan Metode Bairstow

Menentukan Akar-Akar Polinomial dengan Metode Bairstow Menentukan Akar-Akar Polinomial dengan Metode Bairstow Iges Windra #1, Minora Longgom Nasution #, Meira Parma Dewi #3 1 Student of Mathematics Department State University of Padang, Indonesia,3 Lecturers

Lebih terperinci

IMPLEMENTASI ALGORITMA PEMROGRAMAN LINIER SIMPLEKS DUA FASE MENGGUNAKAN BAHASA C++

IMPLEMENTASI ALGORITMA PEMROGRAMAN LINIER SIMPLEKS DUA FASE MENGGUNAKAN BAHASA C++ IMPLEMENTASI ALGORITMA PEMROGRAMAN LINIER SIMPLEKS DUA FASE MENGGUNAKAN BAHASA C++ Nama : Adityo Rancaka NPM : 50412263 Jurusan : Teknik Informatika Fakultas : Teknologi Industri Universitas Gunadarma

Lebih terperinci

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 3 Akar Persamaan (1) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk x = g(x)

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Program linear merupakan model umum yang dapat digunakan dalam pemecahan masalah pengalokasian sumber yang terbatas secara optimal yaitu memaksimumkan keuntungan

Lebih terperinci