Persamaan yang kompleks, solusinya susah dicari. Contoh :

Ukuran: px
Mulai penontonan dengan halaman:

Download "Persamaan yang kompleks, solusinya susah dicari. Contoh :"

Transkripsi

1 AKAR PERSAMAAN NON LINEAR Persamaan hingga derajat dua, masih mudah diselesaikan dengan cara analitik. Contoh : a + b + c = 0 Solusi : 1 = b ± b 4 ac a Persamaan yang kompleks, solusinya susah dicari. Contoh : f ( ) = e = 0

2 Maka timbulah solusi dengan metode numerik, dengan pembagian metode sebagai berikut : 1. GRAFIS. BISECTION 3. REGULA FALSI 4. SECANT 5. NEWTON RHAPSON 6. ITERASI FIXED POINT

3 1. GRAFIS Merupakan metode mencari akar dengan cara menggambar fungsi yang bersangkutan Contoh : Y = 3- Berapa akar dari persamaan tsb?

4 Jawab: Dengan memasukkan harga didapat nilai fungsi f() f() f() f X

5 . BISECTION Metode ini melakukan pengamatan terhadap nilai f() dengan berbagai nilai, yang mempunyai perbedaan tanda. Taksiran akar diperhalus dengan cara membagi pada interval yang mempunyai beda tanda tersebut.

6 F()

7 Algoritma : 1) Pilih 1 bawah dan puncak taksiran untuk akar, sehingga perubahan fungsi mencakup seluruh interval. Hal ini dapat diperiksa dengan memastikan : f ( 1 ). f ( ) < ) Taksiran akar, ditentukan oleh : r = + 1 0

8 3) Buat evaluasi dengan memastikan pada bagian interval mana akar berbeda : * jika f(1).f() < 0 akan berada pada bagian interval bawah, maka = r, dan kembali kelangkah * Jika f(1).f() > 0 akan berada pada bagian interval atas, maka 1 = r, dan kembali kelangkah * Jika f(1).f() = 0, akar setara r, perhitungan dihentikan, atau bisa juga : f ( 1). f ( ) < ε Dimana ε adalah harga toleransi yang dibuat.

9 Contoh : Carilah akar persamaan dari : 3 f ( ) = = 0, dengan ε = 0, 001 Penyelesaian: Hitung nilai f () pada interval antara titik 3 untuk =1, f ( = 1) = (1) + (1) 3(1) 3 = 4 3 untuk = f ( = ) = () + () 3() 3 = 3

10 Fungsi diatas adalah kontinyu, berarti perubahan tanda dari fungsi antara =1 dan = akan memotong sumbu paling tidak satu kali. titik perpotongan p antar sumbu dan fungsi merupakan akar-akar persamaan. hitung nilai, kemudian hitung fungsi f ) r ( r r = = = 1 1,5 f ( = 1,5) = (1,5) 3 + (1,5) 3(1,5) 3 = 1, 875 r Langkah selanjutnya adalah membuat setengah interval berikutnya untuk membuat interval yang semakin kecil, dimana akar persamaan berada. Hasil perhitungan ditunjukkan pada tabel berikut.

11 Tabel hasil perhitungan: No. f() E-05

12 HOME WORK Y = Sin X Y = X

13 3. Metode Regula Falsi (Interpolasi Linier) i Kekurangan metode bisection adalah membagi dua selang diantara 1 dengan menjadi dua bagian yang sama, besaran f( 1 ) dan f( ) diabaikan. Misalnya, jika f( 1 ) lebih dekat ke nol daripada f( ), kemungkinan besar akar akan lebih dekat ke 1 daripada ke.

14 y f( ) 1 f( 1 )

15 Algoritma : 1) Pilih 1 bawah dan (puncak) untuk taksiran akar, sehingga perubahan fungsi mencakup seluruh interval. Hal ini dapat diperiksa dengan: f( 1 ). f( ) < 0. Taksir akar r, ditentukan oleh: r = f ( ) f ( ) 1 f ( a) Buat evaluasi berikut untuk memastikan harga akar : b) Jika f ( 1 ). f ( r ) < 0, maka akar berada pada bagian interval bawah, maka, kembali ke langkah. = c) Jika f ( 1 ). f ( r ) > 0 maka akar berada pada bagian interval atas, maka = r, kembali ke langkah. 1 d) Jika f ( 1 ). f ( r ) = 0, akar setara r maka hentikan perhitungan. 1 ) r

16 Contoh: f ( ) 6 = = ditentukan t ; 1 =1 =1. subtitusikan pada persamaan ; 6 f ( 1) = = 1 6 f (1 1,) = (1,) 1, 1 = 0,78598 (1, 1) (0,78598 ( 1)) maka nilai = 1, 0,78598 = 1, r f (1,1198) = 1, , = 0,146

17 Tabel hasil perhitungan: No. f() E-05

18 4. Metode Secant Metode ini memerlukan dua taksiran awal akan tetapi karena f() tidak disyaratkan untuk berganti tanda diantara taksirantaksiran, maka metode ini tidak digolongkan sebagai metode pengurung. Persamaan yang dipakai metode secant adalah n+ 1 = n f f ( n ( n )( ) n f ( n 1 n 1 ) )

19 y f( 1 ) f( ) 3 1

20 Algoritma : Pilih 1 bawah dan (puncak) untuk taksiran akar. Taksir akar n+1, ditentukan oleh: n+ 1 = n f ( f ( )( ) f ( n n n 1 ( n n 1 Perhitungan dihentikan jika f( n+1 ) 0 atau Є = yang ditentukan ) )

21 Contoh: 6 f ( ) = 1 = 0 Ditentukan taksiran awalnya adalah : 6 X1 = 1 f (1) = 1 1 1= 1 X = f () = 6 1= 61 61( 1) = = , n ( 1)

22 Tabel hasil perhitungan: No. f() E-07

23 5. Metode Newton Rhapson Metode ini paling banyak digunakan dalam mencari akar-akar dari suatu persamaan. Jika perkiraan dari akar adalah i, suatu garis singgung dapat dibuat dari titik ( i, f( i ). Titik dimana garis singgung tersebut memotong sumbu biasanya memberikan perkiraan yang lebih dekat dari nilai akar.

24 y 1

25 Algoritma : Tentukan nilai 1 sebagai terkaan awal Buat taksiran untuk 1+n dengan persamaan : n+ 1 = n f ( ' f ( n n ) ) Perhitungan dihentikan jika f( n+1 ) 0 atau Є = yang ditentukan

26 ' Contoh : 6 f ( ) = 1 = 0 Ditentukan taksiran awal 1 = 6 f () = 1= 5 61 f ( ) = 6 1= 0 ' 5 f () = 6() 1 = = = 1,

27 Tabel hasil perhitungan: No. f() f'() E

28 6. Metode Iterasi Fied Point Teknik iterasi fied point dijalankan dengan cara membuat fungsi f() menjadi bentuk fungsi implisit f()=0 kemudian =g(), iterasi yang digunakan adalah dalam bentuk persamaan; n+1 = g( n )

29 Algoritma : Tentukan nilai taksiran awal n Lakukan perhitungan taksiran akar dengan mempergunakan persamaan; X n+1 =g( n ) Perhitungan dihentikan jika; n+ 1 n ε

30 Contoh: X = 0 Tabel Hasil Perhitungan 3 = + 1 No. Xn Іn - n+1і X = 1/3 ( +1) ε = 0,001 Ditentukan 0 = X= 1/3(+1) = 1, І 1 0 І= 1,667 = 0,

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 4 Akar Persamaan (2) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk = g() Metode

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva

Lebih terperinci

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen Mulai dengan terkaan awal yang mengurung atau memuat akar

Lebih terperinci

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya METODE NUMERIK AKAR-AKAR PERSAMAAN Eka Maulana Dept. of Electrcal Engineering University of Brawijaya Pendekatan Pencarian Akar-akar Persamaan Metode Pencarian Akar Persamaan > Metode Pengurung - metode

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 12 Rumusan Masalah Tentukan solusi dengan f fungsi nonlinear. f (x)

Lebih terperinci

Bab 2. Penyelesaian Persamaan Non Linier

Bab 2. Penyelesaian Persamaan Non Linier Bab 2. Penyelesaian Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier penentuan

Lebih terperinci

BAB II AKAR-AKAR PERSAMAAN

BAB II AKAR-AKAR PERSAMAAN BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar persamaan

Lebih terperinci

Akar-Akar Persamaan. Definisi akar :

Akar-Akar Persamaan. Definisi akar : Akar-Akar Persamaan Definisi akar : Suatu akar dari persamaan f(x) = 0 adalah suatu nilai dari x yang bilamana nilai tersebut dimasukkan dalam persamaan memberikan identitas 0 = 0 pada fungsi f(x) X 1

Lebih terperinci

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 3 Akar Persamaan (1) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk x = g(x)

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN : 3 & 4 PENYELESAIAN PERSAMAAN NON LINIER METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

Metode Numerik. Persamaan Non Linier

Metode Numerik. Persamaan Non Linier Metode Numerik Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar

Lebih terperinci

PERSAMAAN NON LINIER. Pengantar dan permasalahan persamaan Non-Linier. Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014

PERSAMAAN NON LINIER. Pengantar dan permasalahan persamaan Non-Linier. Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014 PERSAMAAN NON LINIER Pengantar dan permasalahan persamaan Non-Linier Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014 Pengantar 1. Persamaan linier sudah kita kenal sejak SMP. Contoh kasus

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier MK: METODE NUMERIK Oleh: Dr. I GL Bagus Eratodi FTI Undiknas University Denpasar Persamaan Non Linier Metode Tabulasi Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode

Lebih terperinci

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR Metode Biseksi Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER 3.. Permasalahan Persamaan Non Linier Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier.dimana akar sebuah persamaan f(x =0 adalah

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE NEWTON RAPHSON

APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE NEWTON RAPHSON Jurnal Dinamika Informatika Volume 6, No 2, September 2017 ISSN 1978-1660 : 113-132 ISSN online 2549-8517 APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE

Lebih terperinci

PERSAMAAN NON LINIER

PERSAMAAN NON LINIER PERSAMAAN NON LINIER Obyektif : 1. Mengerti penggunaan solusi persamaan non linier 2. Mengerti metode biseksi dan regulafalsi 3. Mampu menggunakan metode biseksi dan regula falsi untuk mencari solusi PENGANTAR

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP METODE NUMERIK Disusun oleh Ir. Sudiadi, M.M.A.E. Ir. Rizani Teguh, MT SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 2015 Metode Numerik i KATA PENGANTAR Pertama-tama penulis

Lebih terperinci

Menemukan Akar-akar Persamaan Non-Linear

Menemukan Akar-akar Persamaan Non-Linear Menemukan Akar-akar Persamaan Non-Linear Muhtadin, ST. MT. Agenda Metode Tertutup Biseksi Regula Falsi Metode Terbuka Newton Method 3 Solusi untuk Persamaan Non Linear Akar-akar dari persamaan (y = f())

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

CONTOH Dengan mengunakan Metode Regula Falsi, tentukanlah salah satu akar dari persamaan f(x) = x - 5x + 4. Jika diketahui nilai awal x = dan x = 5 se

CONTOH Dengan mengunakan Metode Regula Falsi, tentukanlah salah satu akar dari persamaan f(x) = x - 5x + 4. Jika diketahui nilai awal x = dan x = 5 se METODE REGULA FALSI METODE REGULA FALSI Solusi Persamaan Non Linier Universitas Budi Luhur Metode regula falsi merupakan salah satu metode tertutup untuk menentukan solusi akar dari persamaan non linier,

Lebih terperinci

BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN

BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN 1 BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN Dalam banyak usaha pemecahan permasalahan, seringkali harus diselesaikan dengan menggunakan persamaan-persamaan matematis, baik persamaan linier, persamaan kuadrat,

Lebih terperinci

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant Penyelesaian Persa amaan Non Linier Metode Iterasi Sederhana Metode Newton Raphson Permasalahan Titik Kritis pada Newton Raphson Metode Secant Iterasi/NewtonRaphson/Secant Metode Numerik - Metode Iter

Lebih terperinci

2 Akar Persamaan NonLinear

2 Akar Persamaan NonLinear 2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan

Lebih terperinci

Persamaan Non Linier 1

Persamaan Non Linier 1 Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier Penentuan akar-akar persamaan

Lebih terperinci

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1 Studi Kasus Penyelesaian Pers.Non Linier Studi Kasus Non Linier 1 Contoh Kasus Penyelesaian persamaan non linier terkadang muncul sebagai permasalahan yang terpisah, tetapi terkadang pula muncul sebagai

Lebih terperinci

Mulyono (NIM : ) BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Penelitian ini menghasilkan diagram alir, kode program serta keluaran

Mulyono (NIM : ) BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Penelitian ini menghasilkan diagram alir, kode program serta keluaran Mulyono (NIM : 0301060025) BAB IV HASIL PENELITIAN DAN PEMBAHASAN Penelitian ini menghasilkan diagram alir, kode program serta keluaran berupa tingkat ketelitian metode Biseksi dan metode Regula Falsi

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

ROOTS OF NON LINIER EQUATIONS

ROOTS OF NON LINIER EQUATIONS ROOTS OF NON LINIER EQUATIONS ROOTS OF NON LINIER EQUATIONS Metode Bagi dua (Bisection Method) Metode Regula Falsi (False Position Method) Metode Grafik Iterasi Titik-Tetap (Fi Point Iteration) Metode

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Bagi Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 20 Rumusan Masalah Bagi Tentukan solusi dengan f fungsi nonlinear.

Lebih terperinci

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 5 METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Persamaan Aljabar Non-Linier Tunggal atau PANLT merupakan sembarang fungsi atau persamaan aljabar

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

Pertemuan ke 4. Non-Linier Equation

Pertemuan ke 4. Non-Linier Equation Pertemuan ke 4 Non-Linier Equation Non-Linier Equation Persamaan Kuadrat Persamaan Kubik Metode Biseksi Metode Newton-Rapshon Metode Secant 1 Persamaan Kuadrat Persamaan kuadrat adalah suatu persamaan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR METODE GRAFIK DAN TABULASI A. Tujuan a. Memahami Metode Grafik dan Tabulasi b. Mampu Menentukan nilai akar persamaan dengan Metode Grafik dan Tabulasi c. Mampu membuat

Lebih terperinci

Silabus dan Satuan Acara Perkuliahan

Silabus dan Satuan Acara Perkuliahan Fakultas Teknik No. Dokumen : FT SSAP-S3-10 Program Studi Teknik Elektro No. Revisi : 02 Silabus dan Satuan Acara Perkuliahan Tgl.Revisi :13-07-2006 Tgl. Berlaku :13-07-2006 KOMPUTASI NUMERIK DAN SIMBOLIK

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Penyelesaian Persamaan Non Linier Pengantar Penyelesaian Pers. Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Numerik Tabel/Biseksi/RegulaFalsi 1 Pengantar Penyelesaian Persamaan Non

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro

Lebih terperinci

Langkah Penyelesaian Example 1) Tentukan nilai awal x 0 2) Hitung f(x 0 ) kemudian cek konvergensi f(x 0 ) 3) Tentukan fungsi f (x), kemudian hitung f

Langkah Penyelesaian Example 1) Tentukan nilai awal x 0 2) Hitung f(x 0 ) kemudian cek konvergensi f(x 0 ) 3) Tentukan fungsi f (x), kemudian hitung f METODE NEWTON RAPHSON (1) METODE NEWTON RAPHSON Solusi Persamaan Non Linier Oleh : Metode Newton-Raphson merupakan salah satu metode terbuka untuk menentukan solusi akar dari persamaan non linier, dengan

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan

Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan Pengertian Metode Numerik Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan Metode Numerik Tujuan Metode Numerik

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

Pertemuan 3: Penyelesaian Persamaan Transedental. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014

Pertemuan 3: Penyelesaian Persamaan Transedental. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Pertemuan 3: Penyelesaian Persamaan Transedental Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Persamaan Dalam Matematika Persamaan Linier Persamaan Kuadrat Persamaan Polynomial Persamaan Trigonometri

Lebih terperinci

PERBANDINGAN METODE REGULA-FALSI DAN SECANT DALAM MENYELESAIKAN PERSAMAAN NON-LINEAR SKRIPSI

PERBANDINGAN METODE REGULA-FALSI DAN SECANT DALAM MENYELESAIKAN PERSAMAAN NON-LINEAR SKRIPSI PERBANDINGAN METODE REGULA-FALSI DAN SECANT DALAM MENYELESAIKAN PERSAMAAN NON-LINEAR SKRIPSI Oleh: Eko Wahyudianto NIM 091810101044 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Bernardino Madaharsa Dito Adiwidya - 13507089 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan Modul 8 METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Pada modul 7 terdahulu, telah dijelaskan tentang keunggulan komparatif Metode Newton-Raphson dibanding metode-metode

Lebih terperinci

Modul Dasar dasar C. 1. Struktur Program di C++

Modul Dasar dasar C. 1. Struktur Program di C++ Modul Dasar dasar C I 1. Struktur Program di C++ Dalam bahasa pemrograman C++ strukturnya adalah sebagai berikut: a. Header. Ex: #include b. Main adalah isi dari program diawali {. dan diakhiri

Lebih terperinci

Triyana Muliawati, S.Si., M.Si.

Triyana Muliawati, S.Si., M.Si. SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. triyana.muliawati@ma.itera.ac.id 1. Pengenalan Metode

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembeli opsi untuk menjual atau membeli suatu sekuritas tertentu pada waktu dan

BAB II TINJAUAN PUSTAKA. pembeli opsi untuk menjual atau membeli suatu sekuritas tertentu pada waktu dan BAB II TINJAUAN PUSTAKA 2.1 Kontrak Opsi Kontrak opsi merupakan suatu perjanjian atau kontrak antara penjual opsi dengan pembeli opsi, penjual opsi memberikan hak dan bukan kewajiban kepada pembeli opsi

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik. Disusun oleh: Rafki Imani, MT

RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik. Disusun oleh: Rafki Imani, MT RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik Disusun oleh: Rafki Imani, MT PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS PUTRA INDONESIA YPTK PADANG 2017 LEMBAR

Lebih terperinci

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1 METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS Metode Numerik 1 Materi yang diajarkan : 1. Pendahuluan - latar belakang - mengapa dan kapan menggunakan metode numerik - prinsip penyelesaian persamaan 2. Sistim

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : MAtematika Lanjut 2 Kode / SKS : IT012220 / 2 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 Pendahuluan Metode Numerik Pengertian Metode Numerik Mahasiswa

Lebih terperinci

Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin

Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin Metode Numerik Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat 2 Metode Numerik & Teknik Komputasi - Intro 3 Tujuan Pembelajaran Mahasiswa

Lebih terperinci

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara BAB I PENDAHULUAN Latar Belakang Masalah Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara metode-metode

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini METODE NUMERIK, oleh Sri Adi Widodo, M.Pd. Hak Cipta 2015 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-882262; 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA PROJEK PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA A. PENDAHULUAN Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi terikat (bonding

Lebih terperinci

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2 ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK-031248 /2 Ming gu Pokok Bahasan & TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajara n Media Tugas Referensi

Lebih terperinci

1-x. dimana dan dihubungkan oleh teorema Pythagoras.

1-x. dimana dan dihubungkan oleh teorema Pythagoras. `2. Menyelesaikan persamaan dengan satu variabel Contoh: Berdasarkan Hukum Archimedes, suatu benda padat yang lebih ringan daripada air dimasukkan ke dalam air, maka benda tersebut akan mengapung. Berat

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Danang Tri Massandy (13508051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) IKG2E3 KOMPUTASI NUMERIK Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

esaian Pers.Non Linier Studi Kasus Penyele S. Hadi, ST. MSc. Muhammad Zen Studi Kasus Non Linier

esaian Pers.Non Linier Studi Kasus Penyele S. Hadi, ST. MSc. Muhammad Zen Studi Kasus Non Linier Studi Kasus Penyele esaian Pers.Non Linier 1 Muhammad Zen S. Hadi, ST. MSc. Contoh Kasus Penyelesaian persamaan non linier permasalahan yang terpisah, tetapi 2 terkadang muncul sebagai terkadang pula muncul

Lebih terperinci

PETUNJUK PRAKTIKUM MATLAB LANJUT

PETUNJUK PRAKTIKUM MATLAB LANJUT PRAKTIKUM KE-1 Materi : Solusi Persamaan Non Linier Tujuan : Mahasiswa dapat menyelesaikan masalah yang berkaitan dengan persamaan non linier 1.1 Rasionalisasi Misalkan dimiliki model permasalahan sebagai

Lebih terperinci

Pendahuluan

Pendahuluan Pendahuluan Pendahuluan Numerik dengan Matlab KOMPUTASI NUMERIK dengan MATLAB Oleh : Ardi Pujiyanta Edisi Pertama Cetakan Pertama, 2007 Hak Cipta 2007 pada penulis, Hak Cipta dilindungi undang-undang.

Lebih terperinci

BAB I PENDAHULUAN. ilmu pengetahuan lain untuk menyelesaikan berbagai persoalan kehidupan karena

BAB I PENDAHULUAN. ilmu pengetahuan lain untuk menyelesaikan berbagai persoalan kehidupan karena BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sangat berguna bagi ilmu pengetahuan lain untuk menyelesaikan berbagai persoalan kehidupan karena dalam

Lebih terperinci

BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta

BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta BAB I PENDAHULUAN A. Latar Belakang Matematika adalah cabang ilmu pengetahuan yang dapat digunakan dalam kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta tidak merupakan

Lebih terperinci

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran Kurikulum 1 Kelas matematika PEMINATAN PERTIDAKSAMAAN RASIONAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan rasional..

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER Persamaan taklinier sudah diperkenalkan sejak di sekolah menengah, diataranya persamaan kuadrat, persamaan trigonometri dan persamaan yang memuat logaritma atau eksponen.

Lebih terperinci

LAPORAN Pemrograman Komputer

LAPORAN Pemrograman Komputer LAPORAN Pemrograman Komputer Percobaan : Akar Persamaan Non Linier Pelaksanaan Praktikum Hari : Senin Tanggal : 2 Maret 2015 Jam : 5-6 Oleh : Nama : Mei Budi Utami Nim : 081211332009 Dosen Pembimbing :

Lebih terperinci

BANK SOAL METODE KOMPUTASI

BANK SOAL METODE KOMPUTASI BANK SOAL METODE KOMPUTASI 006 iv DAFTAR ISI Halaman Bio Data Singkat Penulis.. Kata Pengantar Daftar Isi i iii iv Pengantar... Kesalahan Bilangan Pendekatan... 6 Akar-akar Persamaan Tidak Linier.....

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

BAB I PENDAHULUAN. hanya ditunjukkan oleh meningkatnya jumlah modal yang diinvestasikan ataupun

BAB I PENDAHULUAN. hanya ditunjukkan oleh meningkatnya jumlah modal yang diinvestasikan ataupun BAB I PENDAHULUAN 1.1 Latar Belakang Dunia investasi tampaknya tengah mengalami perkembangan, hal ini tidak hanya ditunjukkan oleh meningkatnya jumlah modal yang diinvestasikan ataupun semakin bertambahnya

Lebih terperinci

PRAKTIKUM 2 Penyelesaian Persamaan Non Linier Metode Tabel

PRAKTIKUM 2 Penyelesaian Persamaan Non Linier Metode Tabel PRAKTIKUM 2 Penyelesaian Persamaan Non Linier Metode Tabel 1. Tujuan : Mempelajari metode Tabel untuk penyelesaian persamaan non linier 2. Dasar Teori : Penyelesaian persamaan non linier adalah penentuan

Lebih terperinci

Veetha Adiyani Pardede M Komputasi Fisika METODE BISECTION

Veetha Adiyani Pardede M Komputasi Fisika METODE BISECTION METODE BISECTION Program ; Uses crt; var a,b,m,fa,fb,fm,tol,n : real; iter_max,it : integer; function f(x:real) : real; f:= sqr(x)+ 3*x - 5; Begin Clrscr; writeln ('=================================================================

Lebih terperinci

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN JURUSAN INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SYIAH KUALA BANDA ACEH 2012 DAFTAR ISI DAFTAR ISI... 1 KATA PENGANTAR... 2 PENDAHULUAN...

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-2 SISTEM BILANGAN DAN KESALAHAN METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 8

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 8 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Moamad Sidiq PERTEMUAN : 8 DIFERENSIASI NUMERIK METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Moamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik

Lebih terperinci

PENINGKATAN KUALITAS PEMBELAJARAN DENGAN PEMANFAATAN PERANGKAT LUNAK AJAR PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE NEWTON RHAPSON

PENINGKATAN KUALITAS PEMBELAJARAN DENGAN PEMANFAATAN PERANGKAT LUNAK AJAR PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE NEWTON RHAPSON PENINGKATAN KUALITAS PEMBELAJARAN DENGAN PEMANFAATAN PERANGKAT LUNAK AJAR PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE NEWTON RHAPSON Marlindawati 1) Jurusan Teknik Informatika Universitas Bina Darma

Lebih terperinci

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Tommy Gunardi / 13507109 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

1 Penyelesaian Persamaan Nonlinear

1 Penyelesaian Persamaan Nonlinear 1 Penyelesaian Persamaan Nonlinear Diberikan fungsi kontinu f (x). Setiap bilangan c pada domain f yang memenuhi f (c) = 0 disebut akar persamaan f (x) = 0, atau disebut juga pembuat nol fungsi f. Dalam

Lebih terperinci

PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM

PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM E-Jurnal Matematika Vol. 5 (1), Januari 2016, pp. 1-6 ISSN: 2303-1751 PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM Ida

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK Mata Kuliah: Metode Numerik Semester: 7, Kode: KMM 090 Program Studi: Pendidikan Matematika Dosen: Khairul Umam, S.Si, M.Sc.Ed Capaian Pembelajaran: SKS:

Lebih terperinci

GARIS BESAR PROGRAM PENGAJARAN (GBPP)

GARIS BESAR PROGRAM PENGAJARAN (GBPP) GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata Kuliah : Analisis Numerik & Pemrograman Kode/Bobot : TSP-303/3 SKS Deskripsi Singkat : Mata Kuliah ini mempelajari tentang analisis numerik dan bahasa pemrograman

Lebih terperinci

METODE NUMERIK STEEPEST DESCENT

METODE NUMERIK STEEPEST DESCENT METODE NUMERIK STEEPEST DESCENT 1 Juni 2016 Ujian Akhir Semester Untuk memenuhi ujian alhir semester mata kuliah metode numerik Selvi Kusdwi Lestari (1384202138 6A1 Pendidikan Matematika Fakultas Keguruan

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54812 / Metode Numerik 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

Oleh : Anna Nur Nazilah Chamim

Oleh : Anna Nur Nazilah Chamim Oleh : Anna Nur Nazilah Chamim 1. Silabus 2. Referensi 3. Kriteria Penilaian 4. Tata Tertib Perkuliahan 5. Pembentukan Kelompok 6. Materi 1 : pengantar Analisa Numerik Setelah mengikuti mata kuliah metode

Lebih terperinci

Hendra Gunawan. 11 Oktober 2013

Hendra Gunawan. 11 Oktober 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 11 Oktober 2013 Latihan (Kuliah yang Lalu) Dengan memperhatikan: daerah asal dan daerahhasilnya, titik titik potong dengan sumbu koordinat, asimtot

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci