METODE SIMPLEKS KASUS MEMAKSIMUMKAN
|
|
|
- Hadi Halim
- 8 tahun lalu
- Tontonan:
Transkripsi
1 TUGAS KELOMPOK RISET OPERASI METODE SIMPLEKS KASUS MEMAKSIMUMKAN KELOMPOK RINI ANGGRAINI S (H ) NURUL MUTHIAH (H 5) RAINA DIAH GRAHANI (H 68) FATIMAH ASHARA (H 78) PRODI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS HASANUDDIN MAKASSAR
2 METODE SIMPLEKS KASUS MEMAKSIMUMKAN Metode simpleks diperkenalkan oleh George Dantzig pada tahun 97. Metode ini menjadi terkenal ketika ditemukannya alat hitung elektronik dan menjadi popular ketika munculnya komputer. Proses perhitungan metode simpleks adalah dengan menggunakan iterasi berulang-ulang sampai tercapai hasil optimal. Proses perhitungan metode simpleks menjadi lebih mudah dengan menggunakan komputer, karena komputer dirancang untuk melakukan pekerjaan berulang-ulang yang mungkin akan membosankan jika dilakukan oleh manusia. Metode simpleks merupakan pengembangan metode aljabar yang hanya menguji sebagian dari jumlah solusi basis dalam bentuk tabel. Tabel simpleks hanya menggambarkan masalah program linier dalam bentuk koefisien saja, baik koefisien fungsi tujuan maupun koefisien fungsi kendala. Penentuan solusi optimal menggunakan metode simpleks didasarkan pada teknik eliminasi Gauss Jordan. Ada kasus yang dapat kita cari solusinya yaitu Kasus Memaksimumkan dan Kasus Meminimumkan, dalam pembahan ini kita akan membahas Kasus memamaksimumkan. Dalam kasus memaksimumkan kita harus memenuhi syarat yaitu model program linear harus diubah dulu ke dalam suatu bentuk umum yang dinamakan bentuk baku. Perlu diperhatikan bahwa Metode Simpleks hanya bisa dipakai (diaplikasikan) pada bentuk standar, sehingga jika tidak dalam bentuk standar harus ditransformasikan dahulu ke bentuk standar. Untuk memudahkan dalam melakukan transformasi ke bentuk standar, ada beberapa hal yang perlu diperhatikan : a. Fungsi pembatas, suatu fungsi pembatas yang mempunyai tanda diubah menjadi suatu bentuk persamaan (bentuk standar) dengan cara menambahkan suatu variabel baru yang dinamakan slack variabel (variable pengurang). b. Fungsi Tujuan, dengan adanya slack variable pada fungsi pembatas, maka fungsi tujuan juga harus disesuaikan dengan memasukkan unsur slack variable ini, karena slack variable tidak mempunyai kontribusi apa-apa terhadap fungsi tujuan, maka konstanta untuk slack variable tersebut dituliskan nol.
3 Contoh soal. Fungsi tujuan: Maksimumkan Z = 85x + 75x + 7x Fungsi pembatas: x + x + x 7 x + x + x x + x + x x, x, x Langkah Ubah system pertidaksamaan ke dalam system persamaan linear dengan menambahkan variable tiruan atau disebut slack. Fungsi tujuan: Maksimumkan Z = 85x + 75x + 7x Fungsi pembatas: x + x + x + s = 7 x + x + x + s = x + x + x + s = Langkah. Menyusun semua persamaan ke dalam table simpleks. Iterasi CB VDB NK x x x s s s s s s c j Keterangan. CB : koefisien variable basis yang masuk pada fungsi tujuan VDB : variabel basis yang masuk
4 NK : nilai kanan persamaan, yaitu nilai di belakang tanda = c j : nilai fungsi tujuan, yaitu jumlah dari hasil kali variable ke-j dan CB : koefisien variable pada fungsi tujuan (bilangan yang terletak di atas variabel) Hitung nilai dan c j sebagai berikut. VARIABEL c j NK = x + + = 85 = 85 x + + = 75 = 75 x + + = 7 = 7 s + + = = s + + = = s + + = = Selanjutnya kita input nilai-nilai tersebut ke dalam tabel simpleks. Iterasi CB VDB NK x x x s s s s 7 s s c j Langkah. Menentukan kolom kunci, baris kunci, bilangan kunci, dan rasio. Kolom kunci : suatu kolom yang nilai c j paling kecil Baris kunci : baris yang memiliki rasio positif paling kecil Bilangan kunci : bilangan yang terletak pada pertemuan antara kolom kunci dan baris kunci : bilangan yang ditentukan oleh perbandingan antara NK dan kolom kunci
5 untuk baris pada variabel: s = 7 = 7 s = = 7 s = = Iterasi CB VDB NK x x x s s s s 7 7 s s c j Kolom berwarna biru dipilih sebagai kolom kunci. Baris berwarna kuning dipilih sebagai baris kunci. Bilangan kunci adalah perpotongan antara kolom kunci dan baris kunci, yaitu (bilangan dengan text berwarna merah). Langkah. Mengubah nilai-nilai pada baris kunci dengan cara membaginya dengan bilangan kunci. Selanjuntya x menggantikan s, CB pada baris ketiga kita isi dengan 85. Iterasi CB VDB NK x x x s s s s s 85 x c j Baris berwarna kuning dapat disebut sebagai nilai baris baru kunci.
6 Langkah 5. Membuat baris baru dengan mengubah nilai-nilai baris selain baris kunci melalui operasi baris elementer (OBE),sehingga nilai-nilai kolom kunci=. Dapat juga melalui perhitungan sebagai berikut. nilai baris baru = nilai baris lama (KAKK x NBKK) Dimana, KAKK : Koefisien Angka Kolom Kunci (nilai setiap baris kolom kunci) NBBK : Nilai Baris Baru Kunci Dari langkah sebelumnya kita dapat mengetahui KAKK dan NBBK, seperti yang tertera pada tabel berikut. Iterasi CB VDB NK x x x s s s s 7 s 85 x c j Kuning untuk NBBK dan biru untuk KAKK. Baris baru s Baris lama 7 KAKK x NBBK [ ] Baris baru 7 5
7 Baris baru s Baris lama KAKK x NBBK [ ] Baris baru Input nilai baris baru s dan s ke dalam tabel simpleks, sehingga tabel menjadi seperti berikut. Iterasi CB VDB NK x x x s s s s 7 s 85 s c j Selanjutnya kita hitung nilai dan c j sebagai berikut. VARIABEL c j NK = 85 x = = x x = = = 55 7 = s = = s = = s = 85 = 85 6
8 Lalu kita input nilai-nilai tersebut ke dalam tabel simpleks. Iterasi CB VDB NK x x x s s s s 7 s 85 x c j Mengulangi langkah sampai langkah 5 Langkah Menentukan kolom kunci, baris kunci, bilangan kunci, dan rasio. untuk baris pada variabel: s = 7 s = s = = = = 5 7
9 Iterasi CB VDB NK x x x s s s s 7 s 85 x c j Kolom berwarna biru dipilih sebagai kolom kunci. Baris berwarna kuning dipilih sebagai baris kunci. Bilangan kunci adalah perpotongan antara kolom kunci dan baris kunci, yaitu (bilangan dengan text berwarna merah). Langkah. Mengubah nilai-nilai pada baris kunci dengan cara membaginya dengan bilangan kunci. Selanjutya x menggantikan s, CB pada baris kedua kita isi dengan 75. Iterasi CB VDB NK x x x s s s s 75 x 85 x c j Baris berwarna kuning dapat disebut sebagai nilai baris baru kunci. 8
10 Langkah 5. Membuat baris baru. Dari langkah sebelumnya kita dapat mengetahui KAKK dan NBBK, seperti yang tertera pada tabel berikut. Iterasi CB VDB NK x x x s s s s 7 75 x 85 x c j Kuning untuk NBBK dan biru untuk KAKK. Baris baru s Baris lama 7 KAKK x NBBK [ Baris baru 6 ] Baris barus Baris lama KAKK x NBBK [ Baris baru 8 ] 9
11 Input nilai baris baru s dan s ke dalam tabel simpleks, sehingga tabel menjadi seperti berikut. Iterasi CB VDB NK x x x s s s s 6 75 x 85 x 8 c j Selanjutnya kita hitung nilai dan c j sebagai berikut. VARIABEL c j NK = 95 x = = x = = x + ( ) = = 5 s = = s ( ) 85 = = 75 s + ( ) = = Lalu kita input nilai-nilai tersebut ke dalam table simpleks. Iterasi CB VDB NK x x x s s s s 6 75 x 85 x c j 5 75
12 Ulangi kembali langkah sampai langkah 5 Langkah Menentukan kolom kunci, baris kunci, bilangan kunci, dan rasio. untuk baris pada variabel: s = 6 = s = = 6 s = 8 = 8 Iterasi CB VDB NK x x x s s s s 6 75 x 85 x c j Kolom berwarna biru dipilih sebagai kolom kunci. Baris berwarna kuning dipilih sebagai baris kunci. Bilangan kunci adalah perpotongan antara kolom kunci dan baris kunci, yaitu (bilangan dengan text berwarna merah).
13 Langkah. Mengubah nilai-nilai pada baris kunci dengan cara membaginya dengan bilangan kunci. Selanjutnya x menggantikan s, CB pada baris kedua kita isi dengan 7. Iterasi CB VDB NK x x x s s s 7 x 75 x 85 x c j Baris berwarna kuning dapat disebut sebagai nilai baris baru kunci. Langkah 5. Membuat baris baru. Dari langkah sebelumnya kita dapat mengetahui KAKK dan NBBK, seperti yang tertera pada tabel berikut. Iterasi CB VDB NK x x x s s s 7 x 75 x 85 x 8 c j Kuning untuk NBBK dan biru untuk KAKK.
14 Baris baru s Baris lama KAKK x NBBK [ ] Barisbaru Baris baru s Baris lama 8 KAKK x NBBK [ ] Barisbaru Input nilai baris baru s dan s ke dalam tabel simpleks, sehingga tabel menjadi seperti berikut. Iterasi CB VDB NK x x x s s s 7 x 75 x x c j
15 Selanjutnya kita hitung nilai dan c j sebagai berikut. VARIABEL c j NK = 995 x = = x = = x = = s ( ) 85 = 5 5 = 5 s ( ) 85 = = 65 s 7 + ( ) = = Kemudian kita input nilai-nilai tersebut ke dalam table simpleks. Iterasi CB VDB NK x x x s s s 7 x 75 x x c j 5 65 Dari tabel di atas terlihat bahwa baris evaluasi c j sudah tidak ada yang negatif, maka program telah optimal. Dengan demikian, dari tabel di atas dapat disimpulkan bahwa x =, x = 5, dan x = dengan nilai maksimum z = 995.
Metode Simpleks M U H L I S T A H I R
Metode Simpleks M U H L I S T A H I R PENDAHULUAN Metode Simpleks adalah metode penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan
METODE SIMPLEKS DALAM PROGRAM LINIER
METODE SIMPLEKS DALAM PROGRAM LINIER Metode Simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahn yang berhubungan
METODE SIMPLEKS DALAM PROGRAM LINIER
Staf Gunadarma Gunadarma University METODE SIMPLEKS DALAM PROGRAM LINIER Metode Simpleks merupakan salah satu teknik pengambilan keputusan dalam permasalahan yang berkaitan dengan pengalokasian sumber
METODE SIMPLEKS DALAM PROGRAM LINIER
METODE SIMPLEKS DALAM PROGRAM LINIER Metode Simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahn yang berhubungan
BAB IV. METODE SIMPLEKS
BAB IV. METODE SIMPLEKS Penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan dengan memeriksa titik ekstrim (ingat kembali solusi
Model umum metode simpleks
Model umum metode simpleks Fungsi Tujuan: Z C X C 2 X 2 C n X n S S 2 S n = NK FungsiPembatas: a X + a 2 X 2 + + a n X n + S + S 2 + + S n = b a 2 X + a 22 X 2 + + a 2n X n + S + S 2 + + S n = b 2 a m
BAB II METODE SIMPLEKS
BAB II METODE SIMPLEKS 2.1 Pengantar Salah satu teknik penentuan solusi optimal yang digunakan dalam pemrograman linier adalah metode simpleks. Penentuan solusi optimal menggunakan metode simpleks didasarkan
BAB III. METODE SIMPLEKS
BAB III. METODE SIMPLEKS 3.1. PENGANTAR Metode grafik tidak dapat menyelesaikan persoalan linear program yang memilki variabel keputusan yang cukup besar atau lebih dari dua, maka untuk menyelesaikannya
PROGRAM LINEAR DENGAN METODE SIMPLEX
PROGRAM LINEAR DENGAN METODE SIMPLEX PENDAHULUAN Metode simpleks ini adalah suatu prosedur aljabar yang bukan secara grafik untuk mencari nilai optimal dari fungsi tujuan dalam masalah-masalah optimisasi
PROGRAM LINEAR: METODE SIMPLEX
PROGRAM LINEAR: METODE SIMPLEX Latar Belakang Sulitnya menggambarkan grafik berdimensi banyak atau kombinasi lebih dari dua variabel. Metode grafik tidak mungkin dapat dilakukan untuk menyelesaikan masalah
Perhatikan model matematika berikut ini. dapat dibuat tabel
4. Metode Simpleks Maks/min : h.m Perhatikan model matematika berikut ini. simpleksnya yaitu. dapat dibuat tabel Cb VDB Q M M Penilai an Z Keterangan: = variabel ke-j (termasuk variabel slack dan surplus)..
Taufiqurrahman 1
PROGRAM LINEAR: METODE SIMPLEX Latar Belakang Sulitnya menggambarkan grafik berdimensi banyak atau kombinasi lebih dari dua variabel. Metode grafik tidak mungkin dapat dilakukan untuk menyelesaikan masalah
Riset Operasional LINEAR PROGRAMMING
Bahan Kuliah Riset Operasional LINEAR PROGRAMMING Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 25 1 ANALISA SISTEM Agar lebih mendekati langkah-langkah operasional, Hall & Dracup
MATA KULIAH RISET OPERASIONAL
MATA KULIAH RISET OPERASIONAL [KODE/SKS : KK023311/ 2 SKS] METODE SIMPLEKS Pengubahan ke dalam bentuk baku Untuk menyempurnakan metode grafik. Diperkenalkan oleh : George B Dantzig Ciri ciri : 1. Semua
METODE SIMPLEKS DALAM PROGRAM LINIER
METODE SIMPLEKS DALAM PROGRAM LINIER Dian Wirdasari Abstrak Metode simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahan
Metode Simpleks (Simplex Method) Materi Bahasan
Metode Simpleks (Simplex Method) Kuliah 03 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Rumusan Pemrograman linier dalam bentuk baku 2 Pemecahan sistem persamaan linier 3 Prinsip-prinsip metode simpleks
Algoritma Simplex. Algoritma Simplex adalah algoritma yang digunakan untuk mengoptimalkan fungsi objektif dan memperhatikan semua persamaan
Algoritma Simplex Algoritma Simplex adalah algoritma yang digunakan untuk mengoptimalkan fungsi objektif dan memperhatikan semua persamaan kendala. (George Dantizg, USA, 1950) Contoh Kasus Suatu perusahaan
kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi
Lecture 4: (B) Supaya terdapat penyelesaian basis awal yang fisibel, pada kendala berbentuk = dan perlu ditambahkan variabel semu (artificial variable) pada ruas kiri bentuk standarnya, untuk siap ke tabel
PROGRAM LINIER METODE SIMPLEKS
PROGRAM LINIER METODE SIMPLEKS Merupakan metode yang biasanya digunakan untuk memecahkan setiap permasalahan pada pemrogramman linear yang kombinasi variabelnya terdiri dari tiga variabel atau lebih. Metode
OPTIMALISASI KEUNTUNGAN PADA PERUSAHAAN KERIPIK BALADO MAHKOTA DENGAN METODE SIMPLEKS
OPTIMALISASI KEUNTUNGAN PADA PERUSAHAAN KERIPIK BALADO MAHKOTA DENGAN METODE SIMPLEKS Muhammad Muzakki Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas Padang,
contoh soal metode simplex dengan minimum
contoh soal metode simplex dengan minimum Perusahaan Maju Terus merencanakan untuk menginvestasikan uang paling banyak $ 1.200.000. uang ini akan ditanamkan pada 2 buah cabang usaha yaitu P dan Q. setiap
Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan
Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan mempunyai variabel surplus, tidak ada variabel slack.
BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS
BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS A. Metode Simpleks Metode simpleks yang sudah kita pelajari, menunjukkan bahwa setiap perpindahan tabel baru selalu membawa semua elemen yang terdapat dalam
Metode Simpleks Minimum
Metode Simpleks Minimum Perhatian Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan caranya BERBEDA. Perhatian Model matematika dari
BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau
BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah
METODE dan TABEL SIMPLEX
METODE dan TABEL SIMPLEX Mengubah bentuk baku model LP ke dalam bentuk tabel akan memudahkan proses perhitungan simplex. Langkah-langkah perhitungan dalam algoritma simplex adalah :. Berdasarkan bentuk
Metode Simpleks Kasus Minimisasi
Metode Simpleks Kasus Minimisasi Penyimpangan-penyimpangan dari Bentuk Standar 1. Minimisasi Fungsi tujuan dari permasalahan linear programming yang bersifat minimisasi, harus diubah menjadi maksimisasi,
Ir. Tito Adi Dewanto
Ir. Tito Adi Dewanto Cara dan formulasi masalah ke dalam persamaan linier sama dengan metode grafik. Perbedaan pada langkah-langkah untuk pemecahan optimal. Kelebihan metode Simpleks dibanding dengan metode
BAB II KAJIAN TEORI. Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program
BAB II KAJIAN TEORI Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program linear, metode simpleks, dan program linear fuzzy untuk membahas penyelesaian masalah menggunakan metode fuzzy
mempunyai tak berhingga banyak solusi.
Lecture 4: A. Introduction Jika suatu masalah LP hanya melibatkan 2 kegiatan (variabel keputu-san) saja, maka dapat diselesaikan dengan metode grafik. Tetapi, jika melibatkan lebih dari 2 kegiatan, maka
BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan
BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks
Teknik Riset Operasi. Oleh : A. AfrinaRamadhani H. Teknik Riset Operasi
Oleh : A. AfrinaRamadhani H. 1 PERTEMUAN 7 2 METODE BIG M Sering kita menemukan bahwa fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tapi juga oleh pertidakasamaan dan/atau persamaan (=). Fungsi
PEMROGRAMAN LINIER. Metode Simpleks
PEMROGRAMAN LINIER Metode Simpleks Metode Simpleks Metode simpleks digunakan untuk memecahkan permasalahan PL dengan dua atau lebih variabel keputusan. Prosedur Metode Simpleks: Kasus Maksimisasi a. Formulasi
BahanKuliahKe-3 Penelitian Operasional VARIABEL ARTIFISIAL. (Metode Penalty & Teknik Dua Fase) Oleh: Darmansyah Tjitradi, MT.
BahanKuliahKe-3 Penelitian Operasional VARIABEL ARTIFISIAL (Metode Penalty & Teknik Dua Fase) Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 2006 1 TEKNIK VARIABEL ARTIFISIAL Dalam
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Program Linear Program Linear adalah suatu cara yang digunakan untuk menyelesaikan masalah optimasi suatu model linear dengan berbagai kendala yang dihadapinya. Masalah program
Pengubahan Model Ketidaksamaan Persamaan
METODA SIMPLEKS Metoda Simpleks Suatu metoda yang menggunakan prosedur aljabar untuk menyelesaikan programa linier. Proses penyelesaiannya dengan melakukan iterasi dari fungsi pembatasnya untuk mencapai
Modul Pendalaman Materi Program Linear, PPG Dalam Jabatan hal 1
5. Dualitas Contoh 14. Misalkan kita mempunyai program linear masalah maksimum dalam bentuk baku sebagai berikut. Misalkan kita mempunyai program linear masalah minimum dalam bentuk baku sebagai berikut.
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Program linier merupakan metode matematika dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan, seperti memaksimumkan keuntungan dan meminimumkan
METODE SIMPLEKS. Obyektif 1. Memahami cara menyelesaikan permasalahan menggunakan solusi grafik 2. Mengetahui fungsi kendala dan fungsi tujuan
METODE SIMPLEKS 2 Obyektif 1. Memahami cara menyelesaikan permasalahan menggunakan solusi grafik 2. Mengetahui fungsi kendala dan fungsi tujuan Untuk menggunakan Metode Simpleks dalam masalah Program Linier
Pemrograman Linier (3)
Pemrograman Linier () Metode Big-M Ahmad Sabri Universitas Gunadarma, Indonesia Pada model PL di mana semua kendala memiliki relasi, variabel basis pada solusi awal (tabel simpleks awal) adalah Z dan semua
Pemrograman Linier (2)
Solusi model PL dengan metode simpleks Ahmad Sabri Universitas Gunadarma, Indonesia 2 Bentuk umum model PL Ingat kembali bentuk umum model PL maksimum Maks Z = c x + c 2 x 2 +... + c n x n Dengan kendala:
Pemrograman Linier (2)
Solusi model PL dengan metode simpleks Ahmad Sabri Universitas Gunadarma, Indonesia 2 Bentuk umum model PL Ingat kembali bentuk umum model PL maksimum Maks Z = c 1 x 1 + c 2 x 2 +... + c n x n Dengan kendala:
Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik
Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses
PRAKTIKUM II PEMROGRAMAN LINIER (METODE SIMPLEKS)
PRAKTIKUM II PEMROGRAMAN LINIER (METODE SIMPLEKS) A. Tujuan Praktikum 1. Memahami bagaimana merumuskan/ memformulasikan permasalahan yang terdapat dalam dunia nyata. 2. Memahami dan dapat memformulasikan
METODE BIG M. Metode Simpleks, oleh Hotniar Siringoringo, 1
METODE BIG M Sering kita menemukan bahwa fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tapi juga oleh pertidakasamaan dan/atau persamaan (=). Fungsi kendala dengan pertidaksamaan mempunyai surplus
ANALISIS MAKSIMALISASI KEUNTUNGAN PADA PABRIK TAHU BANDUNG DENGAN PENDEKATAN METODE SIMPLEKS. Rully Nourmalisa N
ANALISIS MAKSIMALISASI KEUNTUNGAN PADA PABRIK TAHU BANDUNG DENGAN PENDEKATAN METODE SIMPLEKS Rully Nourmalisa N. 28213130 Latar Belakang Setiap perusahaan dibangun dan didirikan mempunyai tujuan untuk
BAB III PEMBAHASAN. linear yang dinyatakan dengan fungsi tujuan dan fungsi kendala yang memiliki
BAB III PEMBAHASAN Masalah Fuzzy Linear Programming (FLP) merupakan masalah program linear yang dinyatakan dengan fungsi tujuan dan fungsi kendala yang memiliki parameter fuzzy dan ketidaksamaan fuzzy
Manajemen Sains. Pemrograman Linier (Metode Simpleks) Eko Prasetyo Teknik Informatika Univ. Muhammadiyah Gresik 2011
Manajemen Sains Pemrograman Linier (Metode Simpleks) Eko Prasetyo Teknik Informatika Univ. Muhammadiyah Gresik 2011 Komponen dasar Variabel keputusan yang kita cari untuk ditentukan Objective (tujuan)
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Program Linier Para ahli mendefinisikan program linier sebagai sebuah teknik analisa yang digunakan untuk memecahkan segala persoalan atau masalah-masalah keputusan yang ada
MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT / 2 SKS]
MATA KULIAH MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT011215 / 2 SKS] LINIER PROGRAMMING Formulasi Masalah dan Pemodelan Pengertian Linear Programming Linear Programming (LP) adalah salah satu teknik
SISTEM PERSAMAAN LINEAR
Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan
BAB I PENGANTAR PROGRAM LINIER
BAB I PENGANTAR PROGRAM LINIER Pengertian Program linier merupakan kata benda dari pemogramman linier (linear programming), muncul dalam penelitian operasional (operational research) Menurut George B Dantzing
BAB 3 METODE PENELITIAN
BAB 3 METODE PENELITIAN Pada bab ini, akan dijelaskan metode-metode yang penulis gunakan dalam penelitian ini. Adapun metode yang akan digunakan dalam penelitian ini adalah Metode Simpleks dan Metode Branch
5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.
1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y
Penyelesaian Program Linier Menggunakan Algoritma Interior Point dan Metode Simpleks
Penyelesaian Program Linier Menggunakan Algoritma Interior Point dan Metode Simpleks Sri Basriati, Elfira Safitri 2,2) Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau ) [email protected]
BAB V PROGRAMA LINIER : METODE SIMPLEKS
BAB V PROGRAMA LINIER : METODE SIMPLEKS 5.1 Metode Simpleks Metode simpleks ialah suatu cara penyelesaian masalah programa linier yang diperkenalkan pertama kali oleh Dantzig pada tahun 1947, yakni suatu
Operations Management
6s-1 LP Metode Simpleks Operations Management MANAJEMEN SAINS William J. Stevenson 8 th edition 6s-2 LP Metode Simpleks Bentuk Matematis Maksimumkan Z = 3X 1 + 5X 2 Batasan (constrain) (1) 2X 1 8 (2) 3X
18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2
PENERAPAN PROGRAM LINIER dalam OPTIMASI PRODUKSI Ekonomi Teknik / Sigit Prabawa / 1 MASALAH yg banyak dihadapi oleh INDUSTRI adalah BAGAIMANA MENGGUNAKAN atau MENENTUKAN ALOKASI PENGGUNAAN SUMBER DAYAYG
Metode Simpleks Dengan Tabel. Tabel simpleks bentuk umum
Metode Simpleks Dengan Tabel Tabel simpleks bentuk umum Pendahuluan Bentuk program linier yang ada bukan hanya bentuk standar. Bentuk program linier yang mungkin dapat berupa: Fungsi tujuan diminimalkan
Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat
Muhlis Tahir Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat kelayakan tidak pernah dapat terpenuhi. Adakalanya
Pertemuan 2 Metode Simplex
Pertemuan 2 Metode Simplex Objektif : 1. Mahasiswa dapat mengidentifikasi tujuan pokok dari masalah. 2. Mahasiswa dapat mendefinisikan variabel keputusan. 3. Mahasiswa dapat menentukan fungsi tujuan apakah
RISET OPERASIONAL MINGGU KE-2. Disusun oleh: Nur Azifah., SE., M.Si. Linier Programming: Formulasi Masalah dan Model
RISET OPERASIONAL MINGGU KE- Linier Programming: Formulasi Masalah dan Model Disusun oleh: Nur Azifah., SE., M.Si Pengertian Linear Programming Linear Programming (LP) adalah salah satu teknik riset operasi
Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :
Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi
Metode Simpleks. Program linier bentuk standar Pengantar metode simpleks
Metode Simpleks Program linier bentuk standar Pengantar metode simpleks Metode-metode Grafis; Jumlah variable yang sedikit Simpleks; Jumlah variable: small - large Interior-point Jumlah variable: etra
OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong)
OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong) Ai Nurhayati 1, Sri Setyaningsih 2,dan Embay Rohaeti 2. Program Studi Matematika Fakultas Matematika
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL
Pengambilan Keputusan dalam keadaan ada kepastian. IRA PRASETYANINGRUM, S.Si,M.T
Pengambilan Keputusan dalam keadaan ada kepastian IRA PRASETYANINGRUM, S.Si,M.T Model Pengambilan Keputusan dikaitkan Informasi yang dimiliki : Ada 3 (tiga) Model Pengambilan keputusan. 1. Model Pengambilan
BAB 2 LANDASAN TEORI. Semua perusahaan menjalankan bisnisnya dengan memproduksi suatu barang
BAB 2 LANDASAN TEORI 2.1 Produksi Semua perusahaan menjalankan bisnisnya dengan memproduksi suatu barang atau menyediakan jasa. Khusus bagi perusahaan yang bergerak di sektor industri dan berbentuk pabrik,
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bagian ini diberikan beberapa konsep dasar yang menjadi landasan berpikir dalam penelitian ini, seperti pengertian persediaan, metode program linier. 2.1. Persediaan 2.1.1. Pengertian
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2. Program linier (Linier Programming) Pemrograman linier merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan
ALGORITMA METODE SIMPLEKS (PRIMAL)
ALGORITMA METODE SIMPLEKS (PRIMAL) Artificial Variable Algoritma Simpleks Metode M (Method of penalty) Metode dua fase Tabel Simpleks dalam bentuk matriks Artificial Variable (AV) Apabila terdapat satu
METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia
METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Metode simpleks merupakan sebuah prosedur matematis
METODE AFFINE SCALING SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PROGRAM LINEAR. Asep Teguh Suhanda, Shantika Martha, Helmi
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 5, No. 1 (216), hal 45 52 METODE AFFINE SCALING SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PROGRAM LINEAR Asep Teguh Suhanda, Shantika Martha, Helmi
BAB II LANDASAN TEORI. A. Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear
5 BAB II LANDASAN TEORI A Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear Persamaan linear adalah bentuk kalimat terbuka yang memuat variabel dengan derajat tertinggi adalah satu Sedangkan sistem
BAB IV HASIL DAN PEMBAHASAN. tentang keguruan. Batas wilayah Fakultas Tarbiyah dan Keguruan adalah sebagai
33 BAB IV HASIL DAN PEMBAHASAN A. Kondisi Umum FTK Fakultas Tarbiyah dan Keguruan (FTK) UIN Raden Intan Lampung adalah fakultas yang membuka program studi berbagai macam dengan disiplin ilmu tentang keguruan.
PENYEDERHANAAN OPERASI PERHITUNGAN PADA METODE SIMPLEKS
PENYEDERHANAAN OPERASI PERHITUNGAN PADA METODE SIMPLEKS Yulia Yudihartanti ABSTRAKSI Metode simpleks merupakan salah satu teknik penyelesaian programasi linear dengan beberapa cara operasi perhitungan
PERTEMUAN 5 METODE SIMPLEKS KASUS MINIMUM
PERTEMUAN 5 METODE SIMPLEKS KASUS MINIMUM PERTEMUAN 5 Metode Simpleks Kasus Minimum Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan
Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Materi Bahasan
Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Kuliah 04 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Metode simpleks dalam bentuk tabel 2 Pemecahan untuk masalah minimisasi
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Dalam bab ini akan diuraikan mengenai metode-metode ilmiah dari teori-teori yang digunakan dalam penyelesaian persoalan untuk menentukan model program linier dalam produksi.. 2.1 Teori
Solusi Persamaan Linier Simultan
Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem
SOLUSI SISTEM PERSAMAAN LINEAR
SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,
PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR
PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR T-11 RIVELSON PURBA 1 1 FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUSAMUS MERAUKE [email protected] ABSTRAK Purba, Rivelson. 01. Penerapan Logika
MENENTUKAN JUMLAH PRODUKSI BATIK DENGAN MEMAKSIMALKAN KEUNTUNGAN MENGGUNAKAN METODE LINEAR PROGRAMMING PADA BATIK HANA
MENENTUKAN JUMLAH PRODUKSI BATIK DENGAN MEMAKSIMALKAN KEUNTUNGAN MENGGUNAKAN METODE LINEAR PROGRAMMING PADA BATIK HANA Indrayanti, S.T, M.Kom 1 Program Studi Manajemen Informatika,STMIK Widya Pratama Jl.
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Produksi Produksi adalah setiap usaha atau kegiatan untuk menambah kegunaan suatu barang atau menciptakan barang yang baru baik langsung maupun tidak langsung, yang dapat memenuhi
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang bersaing, dengan cara
II LANDASAN TEORI. suatu fungsi dalam variabel-variabel. adalah suatu fungsi linear jika dan hanya jika untuk himpunan konstanta,.
II LANDASAN TEORI Pada pembuatan model penjadwalan pertandingan sepak bola babak kualifikasi Piala Dunia FIFA 2014 Zona Amerika Selatan, diperlukan pemahaman beberapa teori yang digunakan di dalam penyelesaiannya,
Pemodelan dalam RO. Sesi XIV PEMODELAN. (Modeling)
Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi XIV PEMODELAN (Modeling) e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Pemodelan dalam RO Outline:
BAB I PENDAHULUAN. besar dan mampu membantu pemerintah dalam mengurangi tingkat pengangguran.
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam menghadapi globalisasi dunia saat ini mendorong persaingan diantara para pelaku bisnis yang semakin ketat. Di Indonesia sebagai negara berkembang, pembangunan
Persamaan dan Pertidaksamaan Linear
MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai
Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT
Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui
BAB II KAJIAN PUSTAKA
BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas
Danang Triagus Setiyawan ST.,MT
Danang Triagus Setiyawan ST.,MT Metode ini didasari atas gagasan pergerakan dari satu titik ekstrim ke titik ekstrim yang lain pada satu susunan konvek yang dibentuk oleh set fungsi kendala dan kondisi
Sistem Persamaan Linier FTI-UY
BAB V Sistem Persamaan Linier Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear
PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA MATEMATIK (METODE SIMPLEKS)
Maximize or Minimize Subject to: Z = f (x,y) g (x,y) = c S1 60 4 2 1 0 S2 48 2 4 0 1 Zj 0-8 -6 0 0 PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA MATEMATIK (METODE SIMPLEKS) Prof. Dr. Ir. ZULKIFLI ALAMSYAH,
BAB II LANDASAN TEORI. Pemrograman linear (PL) ialah salah satu teknik dari riset operasi untuk
BAB II LANDASAN TEORI A. Pemrograman Linear Pemrograman linear (PL) ialah salah satu teknik dari riset operasi untuk memecahkan persoalan optimasi (maksimum atau minimum) dengan menggunakan persamaan dan
METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-5
METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-5 Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Metode simpleks merupakan sebuah prosedur matematis berulang
SISTEM PERSAMAAN LINEAR
SISTEM PERSAMAAN LINEAR Persamaan Linear Pengertian Persamaan linear adalah persamaan yang mempunyai bentuk umum sebagai berikut. + + + Di mana:,,,, dan adalah konstanta-konstanta riil.,,,, adalah bilangan
PERTEMUAN 5 Metode Simpleks Kasus Minimum
PERTEMUAN 5 Metode Simpleks Kasus Minimum Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan caranya berbeda. Model matematika dari Permasalahan
Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 3 PEMROGRAMAN LINIER METODE SIMPLEKS
Modul 3 PEMROGRAMAN LINIER METODE SIMPLEKS Dalam menggunakan metode simpleks, hal yang perlu diperhatikan adalah mengonversi constraint yang masih dalam bentuk pertidaksamaan menjadi persamaan menggunakan
Pemrograman Linier (4)
Pemrograman Linier (4) Metode dua fase Ahmad Sabri Universitas Gunadarma, Indonesia Sesuai dengan namanya, metode dua fase menyelesaikan problem PL dalam dua tahap (fase): 1 Ubah model PL ke dalam bentuk
