METODE SIMPLEKS KASUS MEMAKSIMUMKAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE SIMPLEKS KASUS MEMAKSIMUMKAN"

Transkripsi

1 TUGAS KELOMPOK RISET OPERASI METODE SIMPLEKS KASUS MEMAKSIMUMKAN KELOMPOK RINI ANGGRAINI S (H ) NURUL MUTHIAH (H 5) RAINA DIAH GRAHANI (H 68) FATIMAH ASHARA (H 78) PRODI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS HASANUDDIN MAKASSAR

2 METODE SIMPLEKS KASUS MEMAKSIMUMKAN Metode simpleks diperkenalkan oleh George Dantzig pada tahun 97. Metode ini menjadi terkenal ketika ditemukannya alat hitung elektronik dan menjadi popular ketika munculnya komputer. Proses perhitungan metode simpleks adalah dengan menggunakan iterasi berulang-ulang sampai tercapai hasil optimal. Proses perhitungan metode simpleks menjadi lebih mudah dengan menggunakan komputer, karena komputer dirancang untuk melakukan pekerjaan berulang-ulang yang mungkin akan membosankan jika dilakukan oleh manusia. Metode simpleks merupakan pengembangan metode aljabar yang hanya menguji sebagian dari jumlah solusi basis dalam bentuk tabel. Tabel simpleks hanya menggambarkan masalah program linier dalam bentuk koefisien saja, baik koefisien fungsi tujuan maupun koefisien fungsi kendala. Penentuan solusi optimal menggunakan metode simpleks didasarkan pada teknik eliminasi Gauss Jordan. Ada kasus yang dapat kita cari solusinya yaitu Kasus Memaksimumkan dan Kasus Meminimumkan, dalam pembahan ini kita akan membahas Kasus memamaksimumkan. Dalam kasus memaksimumkan kita harus memenuhi syarat yaitu model program linear harus diubah dulu ke dalam suatu bentuk umum yang dinamakan bentuk baku. Perlu diperhatikan bahwa Metode Simpleks hanya bisa dipakai (diaplikasikan) pada bentuk standar, sehingga jika tidak dalam bentuk standar harus ditransformasikan dahulu ke bentuk standar. Untuk memudahkan dalam melakukan transformasi ke bentuk standar, ada beberapa hal yang perlu diperhatikan : a. Fungsi pembatas, suatu fungsi pembatas yang mempunyai tanda diubah menjadi suatu bentuk persamaan (bentuk standar) dengan cara menambahkan suatu variabel baru yang dinamakan slack variabel (variable pengurang). b. Fungsi Tujuan, dengan adanya slack variable pada fungsi pembatas, maka fungsi tujuan juga harus disesuaikan dengan memasukkan unsur slack variable ini, karena slack variable tidak mempunyai kontribusi apa-apa terhadap fungsi tujuan, maka konstanta untuk slack variable tersebut dituliskan nol.

3 Contoh soal. Fungsi tujuan: Maksimumkan Z = 85x + 75x + 7x Fungsi pembatas: x + x + x 7 x + x + x x + x + x x, x, x Langkah Ubah system pertidaksamaan ke dalam system persamaan linear dengan menambahkan variable tiruan atau disebut slack. Fungsi tujuan: Maksimumkan Z = 85x + 75x + 7x Fungsi pembatas: x + x + x + s = 7 x + x + x + s = x + x + x + s = Langkah. Menyusun semua persamaan ke dalam table simpleks. Iterasi CB VDB NK x x x s s s s s s c j Keterangan. CB : koefisien variable basis yang masuk pada fungsi tujuan VDB : variabel basis yang masuk

4 NK : nilai kanan persamaan, yaitu nilai di belakang tanda = c j : nilai fungsi tujuan, yaitu jumlah dari hasil kali variable ke-j dan CB : koefisien variable pada fungsi tujuan (bilangan yang terletak di atas variabel) Hitung nilai dan c j sebagai berikut. VARIABEL c j NK = x + + = 85 = 85 x + + = 75 = 75 x + + = 7 = 7 s + + = = s + + = = s + + = = Selanjutnya kita input nilai-nilai tersebut ke dalam tabel simpleks. Iterasi CB VDB NK x x x s s s s 7 s s c j Langkah. Menentukan kolom kunci, baris kunci, bilangan kunci, dan rasio. Kolom kunci : suatu kolom yang nilai c j paling kecil Baris kunci : baris yang memiliki rasio positif paling kecil Bilangan kunci : bilangan yang terletak pada pertemuan antara kolom kunci dan baris kunci : bilangan yang ditentukan oleh perbandingan antara NK dan kolom kunci

5 untuk baris pada variabel: s = 7 = 7 s = = 7 s = = Iterasi CB VDB NK x x x s s s s 7 7 s s c j Kolom berwarna biru dipilih sebagai kolom kunci. Baris berwarna kuning dipilih sebagai baris kunci. Bilangan kunci adalah perpotongan antara kolom kunci dan baris kunci, yaitu (bilangan dengan text berwarna merah). Langkah. Mengubah nilai-nilai pada baris kunci dengan cara membaginya dengan bilangan kunci. Selanjuntya x menggantikan s, CB pada baris ketiga kita isi dengan 85. Iterasi CB VDB NK x x x s s s s s 85 x c j Baris berwarna kuning dapat disebut sebagai nilai baris baru kunci.

6 Langkah 5. Membuat baris baru dengan mengubah nilai-nilai baris selain baris kunci melalui operasi baris elementer (OBE),sehingga nilai-nilai kolom kunci=. Dapat juga melalui perhitungan sebagai berikut. nilai baris baru = nilai baris lama (KAKK x NBKK) Dimana, KAKK : Koefisien Angka Kolom Kunci (nilai setiap baris kolom kunci) NBBK : Nilai Baris Baru Kunci Dari langkah sebelumnya kita dapat mengetahui KAKK dan NBBK, seperti yang tertera pada tabel berikut. Iterasi CB VDB NK x x x s s s s 7 s 85 x c j Kuning untuk NBBK dan biru untuk KAKK. Baris baru s Baris lama 7 KAKK x NBBK [ ] Baris baru 7 5

7 Baris baru s Baris lama KAKK x NBBK [ ] Baris baru Input nilai baris baru s dan s ke dalam tabel simpleks, sehingga tabel menjadi seperti berikut. Iterasi CB VDB NK x x x s s s s 7 s 85 s c j Selanjutnya kita hitung nilai dan c j sebagai berikut. VARIABEL c j NK = 85 x = = x x = = = 55 7 = s = = s = = s = 85 = 85 6

8 Lalu kita input nilai-nilai tersebut ke dalam tabel simpleks. Iterasi CB VDB NK x x x s s s s 7 s 85 x c j Mengulangi langkah sampai langkah 5 Langkah Menentukan kolom kunci, baris kunci, bilangan kunci, dan rasio. untuk baris pada variabel: s = 7 s = s = = = = 5 7

9 Iterasi CB VDB NK x x x s s s s 7 s 85 x c j Kolom berwarna biru dipilih sebagai kolom kunci. Baris berwarna kuning dipilih sebagai baris kunci. Bilangan kunci adalah perpotongan antara kolom kunci dan baris kunci, yaitu (bilangan dengan text berwarna merah). Langkah. Mengubah nilai-nilai pada baris kunci dengan cara membaginya dengan bilangan kunci. Selanjutya x menggantikan s, CB pada baris kedua kita isi dengan 75. Iterasi CB VDB NK x x x s s s s 75 x 85 x c j Baris berwarna kuning dapat disebut sebagai nilai baris baru kunci. 8

10 Langkah 5. Membuat baris baru. Dari langkah sebelumnya kita dapat mengetahui KAKK dan NBBK, seperti yang tertera pada tabel berikut. Iterasi CB VDB NK x x x s s s s 7 75 x 85 x c j Kuning untuk NBBK dan biru untuk KAKK. Baris baru s Baris lama 7 KAKK x NBBK [ Baris baru 6 ] Baris barus Baris lama KAKK x NBBK [ Baris baru 8 ] 9

11 Input nilai baris baru s dan s ke dalam tabel simpleks, sehingga tabel menjadi seperti berikut. Iterasi CB VDB NK x x x s s s s 6 75 x 85 x 8 c j Selanjutnya kita hitung nilai dan c j sebagai berikut. VARIABEL c j NK = 95 x = = x = = x + ( ) = = 5 s = = s ( ) 85 = = 75 s + ( ) = = Lalu kita input nilai-nilai tersebut ke dalam table simpleks. Iterasi CB VDB NK x x x s s s s 6 75 x 85 x c j 5 75

12 Ulangi kembali langkah sampai langkah 5 Langkah Menentukan kolom kunci, baris kunci, bilangan kunci, dan rasio. untuk baris pada variabel: s = 6 = s = = 6 s = 8 = 8 Iterasi CB VDB NK x x x s s s s 6 75 x 85 x c j Kolom berwarna biru dipilih sebagai kolom kunci. Baris berwarna kuning dipilih sebagai baris kunci. Bilangan kunci adalah perpotongan antara kolom kunci dan baris kunci, yaitu (bilangan dengan text berwarna merah).

13 Langkah. Mengubah nilai-nilai pada baris kunci dengan cara membaginya dengan bilangan kunci. Selanjutnya x menggantikan s, CB pada baris kedua kita isi dengan 7. Iterasi CB VDB NK x x x s s s 7 x 75 x 85 x c j Baris berwarna kuning dapat disebut sebagai nilai baris baru kunci. Langkah 5. Membuat baris baru. Dari langkah sebelumnya kita dapat mengetahui KAKK dan NBBK, seperti yang tertera pada tabel berikut. Iterasi CB VDB NK x x x s s s 7 x 75 x 85 x 8 c j Kuning untuk NBBK dan biru untuk KAKK.

14 Baris baru s Baris lama KAKK x NBBK [ ] Barisbaru Baris baru s Baris lama 8 KAKK x NBBK [ ] Barisbaru Input nilai baris baru s dan s ke dalam tabel simpleks, sehingga tabel menjadi seperti berikut. Iterasi CB VDB NK x x x s s s 7 x 75 x x c j

15 Selanjutnya kita hitung nilai dan c j sebagai berikut. VARIABEL c j NK = 995 x = = x = = x = = s ( ) 85 = 5 5 = 5 s ( ) 85 = = 65 s 7 + ( ) = = Kemudian kita input nilai-nilai tersebut ke dalam table simpleks. Iterasi CB VDB NK x x x s s s 7 x 75 x x c j 5 65 Dari tabel di atas terlihat bahwa baris evaluasi c j sudah tidak ada yang negatif, maka program telah optimal. Dengan demikian, dari tabel di atas dapat disimpulkan bahwa x =, x = 5, dan x = dengan nilai maksimum z = 995.

Metode Simpleks M U H L I S T A H I R

Metode Simpleks M U H L I S T A H I R Metode Simpleks M U H L I S T A H I R PENDAHULUAN Metode Simpleks adalah metode penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan

Lebih terperinci

METODE SIMPLEKS DALAM PROGRAM LINIER

METODE SIMPLEKS DALAM PROGRAM LINIER METODE SIMPLEKS DALAM PROGRAM LINIER Metode Simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahn yang berhubungan

Lebih terperinci

METODE SIMPLEKS DALAM PROGRAM LINIER

METODE SIMPLEKS DALAM PROGRAM LINIER Staf Gunadarma Gunadarma University METODE SIMPLEKS DALAM PROGRAM LINIER Metode Simpleks merupakan salah satu teknik pengambilan keputusan dalam permasalahan yang berkaitan dengan pengalokasian sumber

Lebih terperinci

METODE SIMPLEKS DALAM PROGRAM LINIER

METODE SIMPLEKS DALAM PROGRAM LINIER METODE SIMPLEKS DALAM PROGRAM LINIER Metode Simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahn yang berhubungan

Lebih terperinci

BAB IV. METODE SIMPLEKS

BAB IV. METODE SIMPLEKS BAB IV. METODE SIMPLEKS Penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan dengan memeriksa titik ekstrim (ingat kembali solusi

Lebih terperinci

Model umum metode simpleks

Model umum metode simpleks Model umum metode simpleks Fungsi Tujuan: Z C X C 2 X 2 C n X n S S 2 S n = NK FungsiPembatas: a X + a 2 X 2 + + a n X n + S + S 2 + + S n = b a 2 X + a 22 X 2 + + a 2n X n + S + S 2 + + S n = b 2 a m

Lebih terperinci

BAB II METODE SIMPLEKS

BAB II METODE SIMPLEKS BAB II METODE SIMPLEKS 2.1 Pengantar Salah satu teknik penentuan solusi optimal yang digunakan dalam pemrograman linier adalah metode simpleks. Penentuan solusi optimal menggunakan metode simpleks didasarkan

Lebih terperinci

BAB III. METODE SIMPLEKS

BAB III. METODE SIMPLEKS BAB III. METODE SIMPLEKS 3.1. PENGANTAR Metode grafik tidak dapat menyelesaikan persoalan linear program yang memilki variabel keputusan yang cukup besar atau lebih dari dua, maka untuk menyelesaikannya

Lebih terperinci

PROGRAM LINEAR DENGAN METODE SIMPLEX

PROGRAM LINEAR DENGAN METODE SIMPLEX PROGRAM LINEAR DENGAN METODE SIMPLEX PENDAHULUAN Metode simpleks ini adalah suatu prosedur aljabar yang bukan secara grafik untuk mencari nilai optimal dari fungsi tujuan dalam masalah-masalah optimisasi

Lebih terperinci

PROGRAM LINEAR: METODE SIMPLEX

PROGRAM LINEAR: METODE SIMPLEX PROGRAM LINEAR: METODE SIMPLEX Latar Belakang Sulitnya menggambarkan grafik berdimensi banyak atau kombinasi lebih dari dua variabel. Metode grafik tidak mungkin dapat dilakukan untuk menyelesaikan masalah

Lebih terperinci

Perhatikan model matematika berikut ini. dapat dibuat tabel

Perhatikan model matematika berikut ini. dapat dibuat tabel 4. Metode Simpleks Maks/min : h.m Perhatikan model matematika berikut ini. simpleksnya yaitu. dapat dibuat tabel Cb VDB Q M M Penilai an Z Keterangan: = variabel ke-j (termasuk variabel slack dan surplus)..

Lebih terperinci

Taufiqurrahman 1

Taufiqurrahman 1 PROGRAM LINEAR: METODE SIMPLEX Latar Belakang Sulitnya menggambarkan grafik berdimensi banyak atau kombinasi lebih dari dua variabel. Metode grafik tidak mungkin dapat dilakukan untuk menyelesaikan masalah

Lebih terperinci

Riset Operasional LINEAR PROGRAMMING

Riset Operasional LINEAR PROGRAMMING Bahan Kuliah Riset Operasional LINEAR PROGRAMMING Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 25 1 ANALISA SISTEM Agar lebih mendekati langkah-langkah operasional, Hall & Dracup

Lebih terperinci

MATA KULIAH RISET OPERASIONAL

MATA KULIAH RISET OPERASIONAL MATA KULIAH RISET OPERASIONAL [KODE/SKS : KK023311/ 2 SKS] METODE SIMPLEKS Pengubahan ke dalam bentuk baku Untuk menyempurnakan metode grafik. Diperkenalkan oleh : George B Dantzig Ciri ciri : 1. Semua

Lebih terperinci

METODE SIMPLEKS DALAM PROGRAM LINIER

METODE SIMPLEKS DALAM PROGRAM LINIER METODE SIMPLEKS DALAM PROGRAM LINIER Dian Wirdasari Abstrak Metode simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahan

Lebih terperinci

Metode Simpleks (Simplex Method) Materi Bahasan

Metode Simpleks (Simplex Method) Materi Bahasan Metode Simpleks (Simplex Method) Kuliah 03 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Rumusan Pemrograman linier dalam bentuk baku 2 Pemecahan sistem persamaan linier 3 Prinsip-prinsip metode simpleks

Lebih terperinci

Algoritma Simplex. Algoritma Simplex adalah algoritma yang digunakan untuk mengoptimalkan fungsi objektif dan memperhatikan semua persamaan

Algoritma Simplex. Algoritma Simplex adalah algoritma yang digunakan untuk mengoptimalkan fungsi objektif dan memperhatikan semua persamaan Algoritma Simplex Algoritma Simplex adalah algoritma yang digunakan untuk mengoptimalkan fungsi objektif dan memperhatikan semua persamaan kendala. (George Dantizg, USA, 1950) Contoh Kasus Suatu perusahaan

Lebih terperinci

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi Lecture 4: (B) Supaya terdapat penyelesaian basis awal yang fisibel, pada kendala berbentuk = dan perlu ditambahkan variabel semu (artificial variable) pada ruas kiri bentuk standarnya, untuk siap ke tabel

Lebih terperinci

PROGRAM LINIER METODE SIMPLEKS

PROGRAM LINIER METODE SIMPLEKS PROGRAM LINIER METODE SIMPLEKS Merupakan metode yang biasanya digunakan untuk memecahkan setiap permasalahan pada pemrogramman linear yang kombinasi variabelnya terdiri dari tiga variabel atau lebih. Metode

Lebih terperinci

OPTIMALISASI KEUNTUNGAN PADA PERUSAHAAN KERIPIK BALADO MAHKOTA DENGAN METODE SIMPLEKS

OPTIMALISASI KEUNTUNGAN PADA PERUSAHAAN KERIPIK BALADO MAHKOTA DENGAN METODE SIMPLEKS OPTIMALISASI KEUNTUNGAN PADA PERUSAHAAN KERIPIK BALADO MAHKOTA DENGAN METODE SIMPLEKS Muhammad Muzakki Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas Padang,

Lebih terperinci

contoh soal metode simplex dengan minimum

contoh soal metode simplex dengan minimum contoh soal metode simplex dengan minimum Perusahaan Maju Terus merencanakan untuk menginvestasikan uang paling banyak $ 1.200.000. uang ini akan ditanamkan pada 2 buah cabang usaha yaitu P dan Q. setiap

Lebih terperinci

Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan

Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan Fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tetapi juga oleh pertidaksamaan dan/atau persamaan =. Fungsi kendala dengan pertidaksamaan mempunyai variabel surplus, tidak ada variabel slack.

Lebih terperinci

BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS

BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS A. Metode Simpleks Metode simpleks yang sudah kita pelajari, menunjukkan bahwa setiap perpindahan tabel baru selalu membawa semua elemen yang terdapat dalam

Lebih terperinci

Metode Simpleks Minimum

Metode Simpleks Minimum Metode Simpleks Minimum Perhatian Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan caranya BERBEDA. Perhatian Model matematika dari

Lebih terperinci

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah

Lebih terperinci

METODE dan TABEL SIMPLEX

METODE dan TABEL SIMPLEX METODE dan TABEL SIMPLEX Mengubah bentuk baku model LP ke dalam bentuk tabel akan memudahkan proses perhitungan simplex. Langkah-langkah perhitungan dalam algoritma simplex adalah :. Berdasarkan bentuk

Lebih terperinci

Metode Simpleks Kasus Minimisasi

Metode Simpleks Kasus Minimisasi Metode Simpleks Kasus Minimisasi Penyimpangan-penyimpangan dari Bentuk Standar 1. Minimisasi Fungsi tujuan dari permasalahan linear programming yang bersifat minimisasi, harus diubah menjadi maksimisasi,

Lebih terperinci

Ir. Tito Adi Dewanto

Ir. Tito Adi Dewanto Ir. Tito Adi Dewanto Cara dan formulasi masalah ke dalam persamaan linier sama dengan metode grafik. Perbedaan pada langkah-langkah untuk pemecahan optimal. Kelebihan metode Simpleks dibanding dengan metode

Lebih terperinci

BAB II KAJIAN TEORI. Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program

BAB II KAJIAN TEORI. Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program BAB II KAJIAN TEORI Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program linear, metode simpleks, dan program linear fuzzy untuk membahas penyelesaian masalah menggunakan metode fuzzy

Lebih terperinci

mempunyai tak berhingga banyak solusi.

mempunyai tak berhingga banyak solusi. Lecture 4: A. Introduction Jika suatu masalah LP hanya melibatkan 2 kegiatan (variabel keputu-san) saja, maka dapat diselesaikan dengan metode grafik. Tetapi, jika melibatkan lebih dari 2 kegiatan, maka

Lebih terperinci

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks

Lebih terperinci

Teknik Riset Operasi. Oleh : A. AfrinaRamadhani H. Teknik Riset Operasi

Teknik Riset Operasi. Oleh : A. AfrinaRamadhani H. Teknik Riset Operasi Oleh : A. AfrinaRamadhani H. 1 PERTEMUAN 7 2 METODE BIG M Sering kita menemukan bahwa fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tapi juga oleh pertidakasamaan dan/atau persamaan (=). Fungsi

Lebih terperinci

PEMROGRAMAN LINIER. Metode Simpleks

PEMROGRAMAN LINIER. Metode Simpleks PEMROGRAMAN LINIER Metode Simpleks Metode Simpleks Metode simpleks digunakan untuk memecahkan permasalahan PL dengan dua atau lebih variabel keputusan. Prosedur Metode Simpleks: Kasus Maksimisasi a. Formulasi

Lebih terperinci

BahanKuliahKe-3 Penelitian Operasional VARIABEL ARTIFISIAL. (Metode Penalty & Teknik Dua Fase) Oleh: Darmansyah Tjitradi, MT.

BahanKuliahKe-3 Penelitian Operasional VARIABEL ARTIFISIAL. (Metode Penalty & Teknik Dua Fase) Oleh: Darmansyah Tjitradi, MT. BahanKuliahKe-3 Penelitian Operasional VARIABEL ARTIFISIAL (Metode Penalty & Teknik Dua Fase) Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 2006 1 TEKNIK VARIABEL ARTIFISIAL Dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Program Linear Program Linear adalah suatu cara yang digunakan untuk menyelesaikan masalah optimasi suatu model linear dengan berbagai kendala yang dihadapinya. Masalah program

Lebih terperinci

Pengubahan Model Ketidaksamaan Persamaan

Pengubahan Model Ketidaksamaan Persamaan METODA SIMPLEKS Metoda Simpleks Suatu metoda yang menggunakan prosedur aljabar untuk menyelesaikan programa linier. Proses penyelesaiannya dengan melakukan iterasi dari fungsi pembatasnya untuk mencapai

Lebih terperinci

Modul Pendalaman Materi Program Linear, PPG Dalam Jabatan hal 1

Modul Pendalaman Materi Program Linear, PPG Dalam Jabatan hal 1 5. Dualitas Contoh 14. Misalkan kita mempunyai program linear masalah maksimum dalam bentuk baku sebagai berikut. Misalkan kita mempunyai program linear masalah minimum dalam bentuk baku sebagai berikut.

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Program linier merupakan metode matematika dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan, seperti memaksimumkan keuntungan dan meminimumkan

Lebih terperinci

METODE SIMPLEKS. Obyektif 1. Memahami cara menyelesaikan permasalahan menggunakan solusi grafik 2. Mengetahui fungsi kendala dan fungsi tujuan

METODE SIMPLEKS. Obyektif 1. Memahami cara menyelesaikan permasalahan menggunakan solusi grafik 2. Mengetahui fungsi kendala dan fungsi tujuan METODE SIMPLEKS 2 Obyektif 1. Memahami cara menyelesaikan permasalahan menggunakan solusi grafik 2. Mengetahui fungsi kendala dan fungsi tujuan Untuk menggunakan Metode Simpleks dalam masalah Program Linier

Lebih terperinci

Pemrograman Linier (3)

Pemrograman Linier (3) Pemrograman Linier () Metode Big-M Ahmad Sabri Universitas Gunadarma, Indonesia Pada model PL di mana semua kendala memiliki relasi, variabel basis pada solusi awal (tabel simpleks awal) adalah Z dan semua

Lebih terperinci

Pemrograman Linier (2)

Pemrograman Linier (2) Solusi model PL dengan metode simpleks Ahmad Sabri Universitas Gunadarma, Indonesia 2 Bentuk umum model PL Ingat kembali bentuk umum model PL maksimum Maks Z = c x + c 2 x 2 +... + c n x n Dengan kendala:

Lebih terperinci

Pemrograman Linier (2)

Pemrograman Linier (2) Solusi model PL dengan metode simpleks Ahmad Sabri Universitas Gunadarma, Indonesia 2 Bentuk umum model PL Ingat kembali bentuk umum model PL maksimum Maks Z = c 1 x 1 + c 2 x 2 +... + c n x n Dengan kendala:

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses

Lebih terperinci

PRAKTIKUM II PEMROGRAMAN LINIER (METODE SIMPLEKS)

PRAKTIKUM II PEMROGRAMAN LINIER (METODE SIMPLEKS) PRAKTIKUM II PEMROGRAMAN LINIER (METODE SIMPLEKS) A. Tujuan Praktikum 1. Memahami bagaimana merumuskan/ memformulasikan permasalahan yang terdapat dalam dunia nyata. 2. Memahami dan dapat memformulasikan

Lebih terperinci

METODE BIG M. Metode Simpleks, oleh Hotniar Siringoringo, 1

METODE BIG M. Metode Simpleks, oleh Hotniar Siringoringo, 1 METODE BIG M Sering kita menemukan bahwa fungsi kendala tidak hanya dibentuk oleh pertidaksamaan tapi juga oleh pertidakasamaan dan/atau persamaan (=). Fungsi kendala dengan pertidaksamaan mempunyai surplus

Lebih terperinci

ANALISIS MAKSIMALISASI KEUNTUNGAN PADA PABRIK TAHU BANDUNG DENGAN PENDEKATAN METODE SIMPLEKS. Rully Nourmalisa N

ANALISIS MAKSIMALISASI KEUNTUNGAN PADA PABRIK TAHU BANDUNG DENGAN PENDEKATAN METODE SIMPLEKS. Rully Nourmalisa N ANALISIS MAKSIMALISASI KEUNTUNGAN PADA PABRIK TAHU BANDUNG DENGAN PENDEKATAN METODE SIMPLEKS Rully Nourmalisa N. 28213130 Latar Belakang Setiap perusahaan dibangun dan didirikan mempunyai tujuan untuk

Lebih terperinci

BAB III PEMBAHASAN. linear yang dinyatakan dengan fungsi tujuan dan fungsi kendala yang memiliki

BAB III PEMBAHASAN. linear yang dinyatakan dengan fungsi tujuan dan fungsi kendala yang memiliki BAB III PEMBAHASAN Masalah Fuzzy Linear Programming (FLP) merupakan masalah program linear yang dinyatakan dengan fungsi tujuan dan fungsi kendala yang memiliki parameter fuzzy dan ketidaksamaan fuzzy

Lebih terperinci

Manajemen Sains. Pemrograman Linier (Metode Simpleks) Eko Prasetyo Teknik Informatika Univ. Muhammadiyah Gresik 2011

Manajemen Sains. Pemrograman Linier (Metode Simpleks) Eko Prasetyo Teknik Informatika Univ. Muhammadiyah Gresik 2011 Manajemen Sains Pemrograman Linier (Metode Simpleks) Eko Prasetyo Teknik Informatika Univ. Muhammadiyah Gresik 2011 Komponen dasar Variabel keputusan yang kita cari untuk ditentukan Objective (tujuan)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Program Linier Para ahli mendefinisikan program linier sebagai sebuah teknik analisa yang digunakan untuk memecahkan segala persoalan atau masalah-masalah keputusan yang ada

Lebih terperinci

MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT / 2 SKS]

MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT / 2 SKS] MATA KULIAH MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT011215 / 2 SKS] LINIER PROGRAMMING Formulasi Masalah dan Pemodelan Pengertian Linear Programming Linear Programming (LP) adalah salah satu teknik

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci

BAB I PENGANTAR PROGRAM LINIER

BAB I PENGANTAR PROGRAM LINIER BAB I PENGANTAR PROGRAM LINIER Pengertian Program linier merupakan kata benda dari pemogramman linier (linear programming), muncul dalam penelitian operasional (operational research) Menurut George B Dantzing

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN Pada bab ini, akan dijelaskan metode-metode yang penulis gunakan dalam penelitian ini. Adapun metode yang akan digunakan dalam penelitian ini adalah Metode Simpleks dan Metode Branch

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

Penyelesaian Program Linier Menggunakan Algoritma Interior Point dan Metode Simpleks

Penyelesaian Program Linier Menggunakan Algoritma Interior Point dan Metode Simpleks Penyelesaian Program Linier Menggunakan Algoritma Interior Point dan Metode Simpleks Sri Basriati, Elfira Safitri 2,2) Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau ) [email protected]

Lebih terperinci

BAB V PROGRAMA LINIER : METODE SIMPLEKS

BAB V PROGRAMA LINIER : METODE SIMPLEKS BAB V PROGRAMA LINIER : METODE SIMPLEKS 5.1 Metode Simpleks Metode simpleks ialah suatu cara penyelesaian masalah programa linier yang diperkenalkan pertama kali oleh Dantzig pada tahun 1947, yakni suatu

Lebih terperinci

Operations Management

Operations Management 6s-1 LP Metode Simpleks Operations Management MANAJEMEN SAINS William J. Stevenson 8 th edition 6s-2 LP Metode Simpleks Bentuk Matematis Maksimumkan Z = 3X 1 + 5X 2 Batasan (constrain) (1) 2X 1 8 (2) 3X

Lebih terperinci

18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2

18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2 PENERAPAN PROGRAM LINIER dalam OPTIMASI PRODUKSI Ekonomi Teknik / Sigit Prabawa / 1 MASALAH yg banyak dihadapi oleh INDUSTRI adalah BAGAIMANA MENGGUNAKAN atau MENENTUKAN ALOKASI PENGGUNAAN SUMBER DAYAYG

Lebih terperinci

Metode Simpleks Dengan Tabel. Tabel simpleks bentuk umum

Metode Simpleks Dengan Tabel. Tabel simpleks bentuk umum Metode Simpleks Dengan Tabel Tabel simpleks bentuk umum Pendahuluan Bentuk program linier yang ada bukan hanya bentuk standar. Bentuk program linier yang mungkin dapat berupa: Fungsi tujuan diminimalkan

Lebih terperinci

Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat

Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat Muhlis Tahir Ada beberapa kasus khusus dalam simpleks. Kadangkala kita akan menemukan bahwa iterasi tidak berhenti, karena syarat optimalitas atau syarat kelayakan tidak pernah dapat terpenuhi. Adakalanya

Lebih terperinci

Pertemuan 2 Metode Simplex

Pertemuan 2 Metode Simplex Pertemuan 2 Metode Simplex Objektif : 1. Mahasiswa dapat mengidentifikasi tujuan pokok dari masalah. 2. Mahasiswa dapat mendefinisikan variabel keputusan. 3. Mahasiswa dapat menentukan fungsi tujuan apakah

Lebih terperinci

RISET OPERASIONAL MINGGU KE-2. Disusun oleh: Nur Azifah., SE., M.Si. Linier Programming: Formulasi Masalah dan Model

RISET OPERASIONAL MINGGU KE-2. Disusun oleh: Nur Azifah., SE., M.Si. Linier Programming: Formulasi Masalah dan Model RISET OPERASIONAL MINGGU KE- Linier Programming: Formulasi Masalah dan Model Disusun oleh: Nur Azifah., SE., M.Si Pengertian Linear Programming Linear Programming (LP) adalah salah satu teknik riset operasi

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

Metode Simpleks. Program linier bentuk standar Pengantar metode simpleks

Metode Simpleks. Program linier bentuk standar Pengantar metode simpleks Metode Simpleks Program linier bentuk standar Pengantar metode simpleks Metode-metode Grafis; Jumlah variable yang sedikit Simpleks; Jumlah variable: small - large Interior-point Jumlah variable: etra

Lebih terperinci

OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong)

OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong) OPTIMALISASI PRODUKSI MENGGUNAKAN MODEL LINEAR PROGRAMMING (Studi Kasus : Usaha Kecil Menengah Kue Semprong) Ai Nurhayati 1, Sri Setyaningsih 2,dan Embay Rohaeti 2. Program Studi Matematika Fakultas Matematika

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL

Lebih terperinci

Pengambilan Keputusan dalam keadaan ada kepastian. IRA PRASETYANINGRUM, S.Si,M.T

Pengambilan Keputusan dalam keadaan ada kepastian. IRA PRASETYANINGRUM, S.Si,M.T Pengambilan Keputusan dalam keadaan ada kepastian IRA PRASETYANINGRUM, S.Si,M.T Model Pengambilan Keputusan dikaitkan Informasi yang dimiliki : Ada 3 (tiga) Model Pengambilan keputusan. 1. Model Pengambilan

Lebih terperinci

BAB 2 LANDASAN TEORI. Semua perusahaan menjalankan bisnisnya dengan memproduksi suatu barang

BAB 2 LANDASAN TEORI. Semua perusahaan menjalankan bisnisnya dengan memproduksi suatu barang BAB 2 LANDASAN TEORI 2.1 Produksi Semua perusahaan menjalankan bisnisnya dengan memproduksi suatu barang atau menyediakan jasa. Khusus bagi perusahaan yang bergerak di sektor industri dan berbentuk pabrik,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bagian ini diberikan beberapa konsep dasar yang menjadi landasan berpikir dalam penelitian ini, seperti pengertian persediaan, metode program linier. 2.1. Persediaan 2.1.1. Pengertian

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Program linier (Linier Programming) Pemrograman linier merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

ALGORITMA METODE SIMPLEKS (PRIMAL)

ALGORITMA METODE SIMPLEKS (PRIMAL) ALGORITMA METODE SIMPLEKS (PRIMAL) Artificial Variable Algoritma Simpleks Metode M (Method of penalty) Metode dua fase Tabel Simpleks dalam bentuk matriks Artificial Variable (AV) Apabila terdapat satu

Lebih terperinci

METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Metode simpleks merupakan sebuah prosedur matematis

Lebih terperinci

METODE AFFINE SCALING SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PROGRAM LINEAR. Asep Teguh Suhanda, Shantika Martha, Helmi

METODE AFFINE SCALING SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PROGRAM LINEAR. Asep Teguh Suhanda, Shantika Martha, Helmi Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 5, No. 1 (216), hal 45 52 METODE AFFINE SCALING SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PROGRAM LINEAR Asep Teguh Suhanda, Shantika Martha, Helmi

Lebih terperinci

BAB II LANDASAN TEORI. A. Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear

BAB II LANDASAN TEORI. A. Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear 5 BAB II LANDASAN TEORI A Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear Persamaan linear adalah bentuk kalimat terbuka yang memuat variabel dengan derajat tertinggi adalah satu Sedangkan sistem

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. tentang keguruan. Batas wilayah Fakultas Tarbiyah dan Keguruan adalah sebagai

BAB IV HASIL DAN PEMBAHASAN. tentang keguruan. Batas wilayah Fakultas Tarbiyah dan Keguruan adalah sebagai 33 BAB IV HASIL DAN PEMBAHASAN A. Kondisi Umum FTK Fakultas Tarbiyah dan Keguruan (FTK) UIN Raden Intan Lampung adalah fakultas yang membuka program studi berbagai macam dengan disiplin ilmu tentang keguruan.

Lebih terperinci

PENYEDERHANAAN OPERASI PERHITUNGAN PADA METODE SIMPLEKS

PENYEDERHANAAN OPERASI PERHITUNGAN PADA METODE SIMPLEKS PENYEDERHANAAN OPERASI PERHITUNGAN PADA METODE SIMPLEKS Yulia Yudihartanti ABSTRAKSI Metode simpleks merupakan salah satu teknik penyelesaian programasi linear dengan beberapa cara operasi perhitungan

Lebih terperinci

PERTEMUAN 5 METODE SIMPLEKS KASUS MINIMUM

PERTEMUAN 5 METODE SIMPLEKS KASUS MINIMUM PERTEMUAN 5 METODE SIMPLEKS KASUS MINIMUM PERTEMUAN 5 Metode Simpleks Kasus Minimum Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan

Lebih terperinci

Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Materi Bahasan

Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Materi Bahasan Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Kuliah 04 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Metode simpleks dalam bentuk tabel 2 Pemecahan untuk masalah minimisasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini akan diuraikan mengenai metode-metode ilmiah dari teori-teori yang digunakan dalam penyelesaian persoalan untuk menentukan model program linier dalam produksi.. 2.1 Teori

Lebih terperinci

Solusi Persamaan Linier Simultan

Solusi Persamaan Linier Simultan Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR

PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR T-11 RIVELSON PURBA 1 1 FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUSAMUS MERAUKE [email protected] ABSTRAK Purba, Rivelson. 01. Penerapan Logika

Lebih terperinci

MENENTUKAN JUMLAH PRODUKSI BATIK DENGAN MEMAKSIMALKAN KEUNTUNGAN MENGGUNAKAN METODE LINEAR PROGRAMMING PADA BATIK HANA

MENENTUKAN JUMLAH PRODUKSI BATIK DENGAN MEMAKSIMALKAN KEUNTUNGAN MENGGUNAKAN METODE LINEAR PROGRAMMING PADA BATIK HANA MENENTUKAN JUMLAH PRODUKSI BATIK DENGAN MEMAKSIMALKAN KEUNTUNGAN MENGGUNAKAN METODE LINEAR PROGRAMMING PADA BATIK HANA Indrayanti, S.T, M.Kom 1 Program Studi Manajemen Informatika,STMIK Widya Pratama Jl.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Produksi Produksi adalah setiap usaha atau kegiatan untuk menambah kegunaan suatu barang atau menciptakan barang yang baru baik langsung maupun tidak langsung, yang dapat memenuhi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang bersaing, dengan cara

Lebih terperinci

II LANDASAN TEORI. suatu fungsi dalam variabel-variabel. adalah suatu fungsi linear jika dan hanya jika untuk himpunan konstanta,.

II LANDASAN TEORI. suatu fungsi dalam variabel-variabel. adalah suatu fungsi linear jika dan hanya jika untuk himpunan konstanta,. II LANDASAN TEORI Pada pembuatan model penjadwalan pertandingan sepak bola babak kualifikasi Piala Dunia FIFA 2014 Zona Amerika Selatan, diperlukan pemahaman beberapa teori yang digunakan di dalam penyelesaiannya,

Lebih terperinci

Pemodelan dalam RO. Sesi XIV PEMODELAN. (Modeling)

Pemodelan dalam RO. Sesi XIV PEMODELAN. (Modeling) Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi XIV PEMODELAN (Modeling) e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Pemodelan dalam RO Outline:

Lebih terperinci

BAB I PENDAHULUAN. besar dan mampu membantu pemerintah dalam mengurangi tingkat pengangguran.

BAB I PENDAHULUAN. besar dan mampu membantu pemerintah dalam mengurangi tingkat pengangguran. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam menghadapi globalisasi dunia saat ini mendorong persaingan diantara para pelaku bisnis yang semakin ketat. Di Indonesia sebagai negara berkembang, pembangunan

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas

Lebih terperinci

Danang Triagus Setiyawan ST.,MT

Danang Triagus Setiyawan ST.,MT Danang Triagus Setiyawan ST.,MT Metode ini didasari atas gagasan pergerakan dari satu titik ekstrim ke titik ekstrim yang lain pada satu susunan konvek yang dibentuk oleh set fungsi kendala dan kondisi

Lebih terperinci

Sistem Persamaan Linier FTI-UY

Sistem Persamaan Linier FTI-UY BAB V Sistem Persamaan Linier Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear

Lebih terperinci

PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA MATEMATIK (METODE SIMPLEKS)

PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA MATEMATIK (METODE SIMPLEKS) Maximize or Minimize Subject to: Z = f (x,y) g (x,y) = c S1 60 4 2 1 0 S2 48 2 4 0 1 Zj 0-8 -6 0 0 PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA MATEMATIK (METODE SIMPLEKS) Prof. Dr. Ir. ZULKIFLI ALAMSYAH,

Lebih terperinci

BAB II LANDASAN TEORI. Pemrograman linear (PL) ialah salah satu teknik dari riset operasi untuk

BAB II LANDASAN TEORI. Pemrograman linear (PL) ialah salah satu teknik dari riset operasi untuk BAB II LANDASAN TEORI A. Pemrograman Linear Pemrograman linear (PL) ialah salah satu teknik dari riset operasi untuk memecahkan persoalan optimasi (maksimum atau minimum) dengan menggunakan persamaan dan

Lebih terperinci

METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-5

METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-5 METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-5 Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Metode simpleks merupakan sebuah prosedur matematis berulang

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR Persamaan Linear Pengertian Persamaan linear adalah persamaan yang mempunyai bentuk umum sebagai berikut. + + + Di mana:,,,, dan adalah konstanta-konstanta riil.,,,, adalah bilangan

Lebih terperinci

PERTEMUAN 5 Metode Simpleks Kasus Minimum

PERTEMUAN 5 Metode Simpleks Kasus Minimum PERTEMUAN 5 Metode Simpleks Kasus Minimum Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan caranya berbeda. Model matematika dari Permasalahan

Lebih terperinci

Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 3 PEMROGRAMAN LINIER METODE SIMPLEKS

Manajemen Sains. Eko Prasetyo. Teknik Informatika UMG Modul 3 PEMROGRAMAN LINIER METODE SIMPLEKS Modul 3 PEMROGRAMAN LINIER METODE SIMPLEKS Dalam menggunakan metode simpleks, hal yang perlu diperhatikan adalah mengonversi constraint yang masih dalam bentuk pertidaksamaan menjadi persamaan menggunakan

Lebih terperinci

Pemrograman Linier (4)

Pemrograman Linier (4) Pemrograman Linier (4) Metode dua fase Ahmad Sabri Universitas Gunadarma, Indonesia Sesuai dengan namanya, metode dua fase menyelesaikan problem PL dalam dua tahap (fase): 1 Ubah model PL ke dalam bentuk

Lebih terperinci