METODE NUMERIK ROSENBERG

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE NUMERIK ROSENBERG"

Transkripsi

1 METODE NUMERIK ROSENBERG Mata Kuliah : Metode Numerik Dosen Pengampu : Rukmono Budi Utomo, M.Sc Disusun Oleh : Rizka Apriyanti 6 A PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH TANGERANG Jl. Perintis kemerdekaan I/33 Cikokol, Tangerang Tahun Ajaran 01/016 1

2 KATA PENGANTAR Puji syukur kehadirat Allah SWT atas rahmat dan karunia yang telah diberikan- Nya, sehingga saya dapat menyelesaikan Makalah Metode Numerik ini dengan baik. Makalah ini saya sajikan dalam bentuk yang sederhana. Makalah ini dibuat untuk memenuhi tugas UAS mata kuliah Metode Numerik di Universitas Muhammadiyah Tangerang. Selain itu saya juga berharap makalah ini mampu memberikan kontribusi dalam menunjang pengetahuan para mahasiswa dan pihak lain pada umumnya. Saya menyadari bahwa makalah ini masih jauh dari kesempurnaan. Oleh karena itu saran dan kritik yang membangun sangat saya harapkan demi kesempurnaan di masa yang akan datang. Tangerang, 07 Juni 016 Rizka Apriyanti

3 DAFTAR ISI KATA PENGANTAR... DAFTAR ISI... 3 BAB I. PENDAHULUAN... 4 A. Latar Belakang... 4 B. Rumusan Masalah... 4 C. Tujuan... 4 D. Manfaat... BAB II. PEMBAHASAN... 6 A. Pengertian Metode Numerik... 6 B. Pengertian Metode Numerik Roosenberg... 7 C. Algoritma Metode Numerik Roosenberg... 7 D. Contoh Penyelesaian Soal dengan Metode Numerik Roosenberg... 8 E. Contoh Pembuktian dengan Metode Analitik... 1 BAB III. PENUTUP DAFTAR PUSTAKA

4 BAB I PENDAHULUAN A. Latar Belakang Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan biasa (tambah, kurang, kali dan bagi). Metode numerik adalah teknik -teknik yang digunakan untuk merumuskan masalah matematika agar dapat diselesaikan han ya dengan operasi hitungan, yang terdiri dari operasi tambah, kurang, kali dan bagi (Susila, 1994 ; Ibraheem dan Hisyam, 003). Terdapat banyak jenis metode numerik, namun pada dasarnya, masing -masing metode tersebut memiliki karakteristik umum, yaitu selalu mencakup sejumlah kalkulasi aritmetika. Jadi metode numerik adalah suatu teknik untuk memformulasikan masalah matematika sehingga dapat diselesaikan dengan operasi aritmetika yang terdiri dari operasi tambah, kurang, kali dan bagi (Rochmad, 011). Metode numerik terbagi kepada beberapa macam metode dan salah satunnya adalah metode yang akan kita bahas dalam makalah ini yaitu Metode Numerik Roosenberg. Alasan penggunaan metode numerik ini karena tidak semua permasalahan matematis atau perhitungan matematis dapat diselesaikan dengan mudah. bahkan dalam prinsip matematika, suatu persoalan matematika yang paling pertama dilihat adalah apakah persoalan itu memiliki penyelesaian atau tidak. Jadi, jika suatu persoalan sudah sangat sulit atau tidak mungkin digunakan dengan metodematematis (analitik) maka kita dapat menggunakan metode numerik sebagai alternative penyelesaian persoalan tersebut. B. Rumusan Masalah a. Apa pengertian dari Metode Numerik? b. Apa pengertian dari Metode Numerik Roosenberg? c. Bagaimanakah Algoritma dari Metode Numerik Roosenberg? d. Bagaimana Contoh Soal dan Penyelesaiannya dengan menggunakan Metode Numerik Roosenberg? e. Bagaimanakah pembuktian dengan cara analitik? C. Tujuan a. Untuk mengetahui Pengertian dari Metode Numerik b. Untuk mengetahui Pengertian dari Metode Numerik Roosenberg 4

5 c. Untuk mengetahui Algoritma dari Metode Numerik Roosenberg d. Untuk mengetahui Contoh Soal dan Penyelesaiannya dengan menggunakan Metode Numerik Roosenberg? e. Untuk mengetahui contoh pembuktian dengan cara analitik D. Tujuan dan Manfaat Adapun tujuan dari penulisan makalah ini adalah untuk memenuhi tugas UAS mata kuliah Metode Numerik di semester 6, serta berbagi pengetahuan ke mahasiswa lainnya mengenai materi yang akan dibahas yaitu Metode Numerik Roosenberg. Manfaat yang dapat di petik dari tujuan tersebut yaitu diharapkan dapat menambah wawasan sebagai bekal menjadi seorang pendidik bagi pembaca dan khususnya untuk mahasiswa-mahasiswi Universitas Muhammadiyah Tangerang.

6 BAB II PEMBAHASAN A. Pengertian Metode Numerik Menurut bahasa, Metode adalah cara yang sistematis untuk menyelesaikan persoalan guna mencapai tujuan yang ditentukan. Sedangkan, Numerik adalah yang berhubungan dengan angka. Jadi, Metode Numerik adalah teknik atau cara sistematis untuk menyelesaikan persoalan matematika dengan operasi angka. Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan biasa seperti tambah, kurang, kali dan bagi. Metode artinya cara, sedangkan numerik artinya angka. Jadi, Metode Numerik secara harfiah berarti cara berhitung dengan menggunakan angka-angka. Beberapa definisi metode numerik dikemukakan oleh ahli matematika, diantaranya : Metode Numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian aritmetika (Chapra dan Chanale, 1991). Menurut Susila (1994) ; Ibraheem dan Hisyam (003) Metode numerik adalah teknik -teknik yang digunakan untuk merumuskan masalah matematika agar dapat diselesaikan han ya dengan operasi hitungan, yang terdiri dari operasi tambah, kurang, kali dan bagi. Terdapat banyak jenis metode numerik, namun pada dasarnya, masing -masing metode tersebut memiliki karakteristik umum, yaitu selalu mencakup sejumlah kalkulasi aritmetika. Jadi metode numerik adalah suatu teknik untuk memformulasikan masalah matematika sehingga dapat diselesaikan dengan operasi aritmetika yang terdiri dari operasi tambah, kurang, kali dan bagi (Rochmad, 011). a. Prinsip-Prinsip Metode Numerik : Metode Numerik merupaan pendekatan untuk mendapatkan pemecahan masalah yang dapat dipertanggung jawabkan secara analitik. Pendekatannya merupakan analisis matematis. Metode Numerik terdiri atas algoritma-algoritma yang dapat dihitung secara cepat dan mudah. Karena berasal dari algoritma pendekatan, maka Metode Numerik ini akan memakai iterasi (pengulangan). 6

7 Nilai kesalahan merupakan hal paling utama untuk mengetahui seberapa baik metode yang digunakan. b. Penggunaan Metode Numerik : Penggunaan metode numerik biasanya digunakan untuk menyelesaikan persoalan matematis yang penyelesaiannya sulit didapatkan dengan menggunakan metode analitik, yaitu : a. Menyelesaikan persamaan non linear b. Menyelesaikan persamaan simultan c. Menyelesaikan differensial dan integral d. Menyelesaikan persamaan differensial e. Interpolasi dan Regresi f. Masalah multivariabel untuk menentukan nilai optimal yang tak bersyarat B. Pengertian Metode Numerik Rosenberg Metode Numerik Roosenberg diusulkan oleh Rosenbrock pada tahun Ia menekan sejumlah kesamaan dengan pencarian garis dan juga mencari beberapa arah tegak lurus dalam ruang. Metode numerik Rosenberg ini merupakan salah satu metode numerik yang dapat digunakan untuk menyelesaikan masalah optimisasi, yakni menentukan nilai x 1 = {x 1, x } R yang meminimumkan atau memaksimumkan fungsi Z = f( x). Metode untuk menyelesaikan masalah optimisasi ini juga dapat menggunakan metode Aksial, Steepest Descant, Hooke and Jeeves, Arah Konjugasi atau Newton. Namun, tentu saja setiap metode numerik masing-masing memiliki algoritma yang berbeda dengan kecepatan tingkat efektifitas pencarian yang berbeda serta tingkat kesalahan yang berbeda pula. Dalam metode numerik Rosenberg ini kita dapat menggunakan direction 1 dan direction yang sama dengan metode numerik lainnya. Akan tetapi, untuk direction ke-3 dan seterusnya kita tidak kembali ke direction 1 melainkan perlu dicari dengan menggunakan rumus d 3 seperti yang akan dipaparkan pada point berikut. C. Algoritma Metode Numerik Roosenberg Algoritma Metode Numerik Roosenberg adalah sebagai berikut : 1. Ditentukan fungsi Z = f( x) = f(x 1,x ) dan akan dicari nilai yang memini- 7

8 mumkan atau memaksimumkan nilai Z = f(x 1,x ) tersebut. Tentukan sebarang titik awal x 1 = {x 1, x } R (yang mengapit nilai (x 1, x ) yang sebenarnya) 3. Tentukan ε > 0 suatu konstanta positif yang menunjukkan kesalahan yang ditoleransi 4. Tentukan arah pencarian direction d 1 = (1, 0) dan d = (0, 1). Menentukan λ k dengan cara λ k = min Z ( x k + λ k d k ) 6. Menentukan x k+1 dengan cara x k+1 = x k + λ k d k 7. Menentukan d 3 dengan rumus d k+1 = b k, dengan b b k k = λ k d k + λ k+1 d k+1 8. Iterasi berhenti ketika x k x k+1 < ε 9. Lakukan pengecekan dengan cara analitik atau dengan cara menentukan turunan pertama dari tiap variabel dan disamadengankan nol untuk memperoleh titik kritisnya D. Contoh Penyelesaian Soal dengan Metode Numerik Roosenberg Soal : Diberikan fungsi Z = f(x 1, x ) = x 1 3x 1 + x 8x dengan ε = 0, 1 dan x 1 = {1, 3}. Tentukan nilai x 1 = {x 1, x } yang meminimumkan fungsi tersebut! Penyelesaian : Diketahui : Z = f(x 1, x ) = x 1 3x 1 + x 8x ε = 0, 1 x 1 = {1, 3} d 1 = 1, 0 d = 0, 1 d 3 = b 1 b 1 ITERASI 1 : λ 1 = min Z( x 1 + λ 1 d 1 ) λ 1 = min Z((1, 3) + λ 1 (1, 0)) λ 1 = min Z((1, 3) + (λ 1,0)) λ 1 = min Z (1 + λ 1,3) Z(x 1, x ) = x 1 3x 1 + x 8x Z(1 + λ 1, 3) = (1 + λ 1 ) 3(1 + λ 1 ) + (3) 8(3) Z(1 + λ 1, 3) = 1 + λ 1 + λ 1 3 3λ Z(1 + λ 1, 3) = λ 1 λ 1 8 8

9 Z = 0 λ 1 1 = 0 λ 1 = 1 λ 1 = 1 mencari x : x = x 1 + λ 1 d 1 x = (1, 3) + 1 (1, 0) x = (1, 3) + ( 1, 0) x = ( 3, 3) Pengecekan: x k x k 1 < ε ( 3, 3) (1, 3) < ε ( 3 1) + (3 3) 1 = 1 = 0, > ε 4 Karena x k - x k 1 > ε maka iterasi dilanjutkan ITERASI : λ = min Z( x + λ d ) λ = min Z(( 3, 3) + λ (0, 1)) λ = min Z(( 3, 3) + (0, λ )) λ = min Z ( 3, 3 + λ ) Z(x 1, x ) = x 1 3x 1 + x 8x Z( 3, 3 + λ ) = ( 3 ) 3( 3 ) + (3 + λ ) 8(3 + λ ) Z( 3, 3 + λ ) = λ + λ 4 8λ Z( 3, 3 + λ ) = λ + 4λ 33 4 Z = 0 4λ + 4 = 0 4λ = 4 λ = 1 mencari x 3 : 9

10 x 3 = x + λ d x 3 = ( 3, 3) + ( 1)(0, 1) x 3 = ( 3, 3) + (0, 1) x 3 = ( 3, ) Pengecekan: x k x k 1 < ε ( 3, ) ( 3, 3) < ε ( 3 3 ) + ( 3) 1 = 1 > ε Karena x k - x k 1 > ε maka iterasi dilanjutkan ITERASI 3 : mencari d 3 : d 3 = b 1 b 1 menentukan b 1 : b 1 = λ 1 d 1 + λ d b 1 = 1 (1, 0) + ( 1)(0, 1) b 1 = ( 1, 0) + (0, 1) b 1 = ( 1, 1) menentukan b 1 : b 1 = a + b b 1 = b 1 = b 1 = 4 b 1 = Maka, d 3 = b 1 = ( 1, 1) b 1 λ 3 = min Z( x 3 + λ 3 d 3 ) λ = min Z(( 3, ) + λ ( 1, ) λ = min Z(( 3, ) + ( 1 λ 3, λ 3 )) =( 1 x, 1x ) = ( 1, ) 10

11 λ = min Z ( λ 3, λ 3 ) Z(x 1, x ) = x 1 3x 1 + x 8x Z( λ 3, λ 3 ) = ( λ 3 ) 3( λ 3 )+( λ 3 ) 8( λ 3 ) Z( λ 3, λ 3 ) = λ λ λ λ λ λ 3 Z( λ 3, λ 3 ) = 9 λ Z = 0 18 λ 3 = 0 λ 3 = 0 mencari x 4 : x 4 = x 3 + λ 3 d 3 x 4 = ( 3, ) + (0)( 1, ) x 4 = ( 3, ) Pengecekan: x k x k 1 < ε ( 3, ) ( 3, ) < ε ( 3 3 ) + ( ) 0 = 0 < ε Karena x k - x k 1 < ε maka iterasi berhenti TABEL ITERASI : Dari perhitungan diatas, maka diperoleh tabel iterasi sebagai berikut : Iterasi x k dj λ j x j+1 x k x k 1 < ε 1 I 1,3 1,0 ( 3, 3) 0, > ε II ( 3, 3) 0,1-1 ( 3, ) 1 > ε III ( 3, ) ( 1, ) 0 ( 3, ) 0 < ε 3 Jadi diperoleh nilai x 1 adalah x = ( 3, ) = {x 1, x } yang meminimumkan fungsi tersebut 11

12 E. Contoh Pembuktian dengan Metode Analitik Soal : Diberikan fungsi Z = f(x 1, x ) = x 1 3x 1 + x 8x dengan ε = 0, 1 dan x 1 = {1, 3}. Tentukan nilai x 1 = {x 1, x } yang meminimumkan fungsi tersebut! Penyelesaian : Z = f(x 1, x ) = x 1 3x 1 + x 8x Menentukan turunan x 1 dan x : f x 1 = x 1-3 f x = 4x - 8 Mencari titik kritisnya : f x 1 = 0 x 1 3 = 0 x 1 = 3 x 1 = 3 f x = 0 4x 8 = 0 4x = 8 x = Pengecekan : f = x 1 f x = 4 f x 1 x = 0 Maka ( f ) ( f ) - ( f x 1 x x 1 x ) = (4) - 0 = 8 > 0 Jadi, terbukti bahwa nilai x = ( 3, ) meminimumkan fungsi tersebut. 1

13 BAB III PENUTUP A. Kesimpulan Metode numerik Rosenberg dapat mengatasi berbagai kelemahan-kelemahan pada metode yang ada sebelumnya. Dapat dipahami pula bahwa pada umumnya permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika. Persamaan ini sulit diselesaikan dengan metode analitik sehingga diperlukan penyelesaian pendekatan numerik. Dengan metode numerik Rosenberg, kita dapat menyelesaikan permasalahan optimasi yang menggunakan n variabel bebas. Namun contoh dimakalah ini dibatasi hanya sampai variabel. Metode numerik Rosenberg ini memiliki beberapa kesamaan dengan metodemetode numerik lainnya seperti Metode numerik Aksial, Dichotomus, Secant, Hooke and Jeeves, Steepest Descant dan Arah Konjugasi yaitu dapat digunakan untuk menyelesaikan permasalahan optimasi yang menggunakan n variabel bebas. Metode ini hampir sama dengan Metode numerik Hooke and Jeeves. Hanya saja bedanya, dalam metode ini direction ketiganya dan seterusnya memiliki rumus sendiri. 13

14 DAFTAR PUSTAKA

METODE STEEPEST DESCENT

METODE STEEPEST DESCENT METODE STEEPEST DESCENT Dosen Pengampu: Rukmono Budi Utomo M.Sc. Disusun Oleh : Linna Tri Lestari 6A1 1384202140 Diajukan sebagai tugas Ujian Akhir Semester UAS Metode Numerik UNIVERSITAS MUHAMMADIYAH

Lebih terperinci

ARAH KONJUGAT. dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni Dadang Supriadi A2

ARAH KONJUGAT. dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni Dadang Supriadi A2 ARAH KONJUGAT dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni 2016 Dadang Supriadi 1384202098 6A2 UNIVERSITAS MUHAMMADIYAH TANGERANG FAKULTAS KEGURUAN ILMU

Lebih terperinci

Metode Numerik Roosenberg

Metode Numerik Roosenberg Metode Numerik Roosenberg Rukmono Budi Utomo, M.Sc. Prodi S1 Pendikan Matematika UMT email: rukmono.budi.u@students.itb.ac.id May 4, 2016 Metode Numerik Roosenberg Metode Numerik Roosenberg Algoritma Roosenberg

Lebih terperinci

Metode Numerik Arah Konjugasi

Metode Numerik Arah Konjugasi Contoh Penyelesaian Masalah Optimisasi dengan Metode Numerik Rukmono Budi Utomo, M.Sc. Prodi S1 Pendikan Matematika UMT email: rukmono.budi.u@students.itb.ac.id May 2, 2016 Contoh Penyelesaian Masalah

Lebih terperinci

METODE NUMERIK ARAH KONJUGASI

METODE NUMERIK ARAH KONJUGASI METODE NUMERIK ARAH KONJUGASI 14 Mei 2016 Diajukan untuk Memenuh Tugas Ujian Akhir Semester Mata kuliah Metode Numerik Dosen Pengampu Bapak Rukmono Budi Utomo,M.Sc Nur Aliyah 1384202043 6A1 Fakultas Keguruan

Lebih terperinci

METODE NUMERIK STEEPEST DESCENT

METODE NUMERIK STEEPEST DESCENT METODE NUMERIK STEEPEST DESCENT 1 Juni 2016 Ujian Akhir Semester Untuk memenuhi ujian alhir semester mata kuliah metode numerik Selvi Kusdwi Lestari (1384202138 6A1 Pendidikan Matematika Fakultas Keguruan

Lebih terperinci

SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016

SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016 Halaman 1/4 SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016 KODE DOSEN NAMA DOSEN KODE MATA KULIAH NAMA MATA KULIAH SEMESTER/KELAS F 220 MAT RUKMONO BUDI UTOMO, M.Sc. MKP010 METODE NUMERIK VI/A1,A2,B1,B2

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

Metode Numerik Newton

Metode Numerik Newton 1. March 1, 2016 1. 1. 1. Berbeda dengan Metode numerik Golden Rasio dan Fibonacci yang tidak memerlukan f (x), metode numerik Newton memerlukan turunan dari fungsi f (x) tersebut. 1. Berbeda dengan Metode

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

Metode Numerik Dichotomus

Metode Numerik Dichotomus Algoritma Prodi S1 Pendidikan Matematika UMT April 4, 016 Algoritma Algoritma Algoritma adalah salah satu metode numerik yang dapat digunakan untuk menentukan nilai x yang meminimumkan suatu fungsi dari

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

METODE NUMERIK SECANT

METODE NUMERIK SECANT Prodi S1 Pendidikan Matematika UMT FKIP UMT April 4, 2016 Metode Numerik Secant Metode Numerik Secant Metode Numerik Secant Metode numerik Secant merupakan turunan dari metode Newton dan digunakan untuk

Lebih terperinci

Kata Pengantar. Medan, 11 April Penulis

Kata Pengantar. Medan, 11 April Penulis Kata Pengantar Puji syukur penulis panjatkan kepada Tuhan YME, bahwa penulis telah menyelesaikan tugas mata kuliah Matematika dengan membahas Numerical Optimization atau Optimasi Numerik dalam bentuk makalah.

Lebih terperinci

OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE. Dwi Suraningsih (M ), Marifatun (M ), Nisa Karunia (M )

OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE. Dwi Suraningsih (M ), Marifatun (M ), Nisa Karunia (M ) OPTIMASI FUNGSI MULTI VARIABEL DENGAN METODE UNIVARIATE Dwi Suraningsih (M2, Marifatun (M53, Nisa Karunia (M6 I. Pendahuluan Latar Belakang. Dalam kehidupan sehari-hari disa maupun tidak, sebenarnya manusia

Lebih terperinci

METODE NUMERIK BISEKSI

METODE NUMERIK BISEKSI February 24, 2016 Metode Biseksi 1. Metode Biseksi 1 1. Metode Biseksi 2 Metode Biseksi Metode Biseksi memberikan alternatif perhitungan numerik menentukan x yang meminimumkan atau memaksimumkan suatu

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

Oleh : Anna Nur Nazilah Chamim

Oleh : Anna Nur Nazilah Chamim Oleh : Anna Nur Nazilah Chamim 1. Silabus 2. Referensi 3. Kriteria Penilaian 4. Tata Tertib Perkuliahan 5. Pembentukan Kelompok 6. Materi 1 : pengantar Analisa Numerik Setelah mengikuti mata kuliah metode

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan

Lebih terperinci

KEMAMPUAN MAHASISWA DALAM MENYELESAIKAN MASALAH AKAR PERSAMAAN TAK LINEARPADA MATA KULIAH METODE NUMERIK DI PROGRAM STUDI PENDIDIKAN MATEMATIKA

KEMAMPUAN MAHASISWA DALAM MENYELESAIKAN MASALAH AKAR PERSAMAAN TAK LINEARPADA MATA KULIAH METODE NUMERIK DI PROGRAM STUDI PENDIDIKAN MATEMATIKA KEMAMPUAN MAHASISWA DALAM MENYELESAIKAN MASALAH AKAR PERSAMAAN TAK LINEARPADA MATA KULIAH METODE NUMERIK DI PROGRAM STUDI PENDIDIKAN MATEMATIKA Reni Wahyuni Program Studi Pendidikan Matematika Fakultas

Lebih terperinci

Persamaan yang kompleks, solusinya susah dicari. Contoh :

Persamaan yang kompleks, solusinya susah dicari. Contoh : AKAR PERSAMAAN NON LINEAR Persamaan hingga derajat dua, masih mudah diselesaikan dengan cara analitik. Contoh : a + b + c = 0 Solusi : 1 = b ± b 4 ac a Persamaan yang kompleks, solusinya susah dicari.

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro

Lebih terperinci

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1 METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS Metode Numerik 1 Materi yang diajarkan : 1. Pendahuluan - latar belakang - mengapa dan kapan menggunakan metode numerik - prinsip penyelesaian persamaan 2. Sistim

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON

OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON Susi Ranangga [M008067], Aeroni Dwijayanti [M008078] Hamdani Citra P. [M0003], Nafi Nur Khasana [M00058]. Pendahuluan Dalam kehidupan sehari-hari

Lebih terperinci

BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta

BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta BAB I PENDAHULUAN A. Latar Belakang Matematika adalah cabang ilmu pengetahuan yang dapat digunakan dalam kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta tidak merupakan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini semakin banyak permasalahan pada kehidupan sehari-hari yang memerlukan pendekatan optimisasi dalam penyelesaiannya. Sebagai contoh, misalkan sebuah perusahaan

Lebih terperinci

TJUKUP MARNOTO. Carl Friedrich Gauss. Leonhard Euler. Isaac Newton. ANALISA NUMERIK dan PEMPROGRAMAN dengan BAHASA SCILAB

TJUKUP MARNOTO. Carl Friedrich Gauss. Leonhard Euler. Isaac Newton. ANALISA NUMERIK dan PEMPROGRAMAN dengan BAHASA SCILAB TJUKUP MARNOTO Carl Friedrich Gauss Leonhard Euler Isaac Newton ANALISA NUMERIK dan PEMPROGRAMAN dengan BAHASA SCILAB ANALISA NUMERIK dan PEMROGRAMAN dengan BAHASA SCILAB Penulis Tjukup Marnoto Desain

Lebih terperinci

Modifikasi Kontrol untuk Sistem Tak Linier Input Tunggal-Output Tunggal

Modifikasi Kontrol untuk Sistem Tak Linier Input Tunggal-Output Tunggal Vol 7, No2, 118-123, Januari 2011 Modifikasi Kontrol untuk Sistem Tak Linier Input Tunggal-Output Tunggal Abstrak Dalam tulisan ini diuraikan sebuah kontrol umpan balik dinamik Dari kontrol yang diperoleh

Lebih terperinci

FUZZY LINIER PROGRAMMING UNTUK PEMILIHAN JENIS KENDARAAN DALAM MENGANTISIPASI KEMACETAN LALU LINTAS DI KOTA MEDAN

FUZZY LINIER PROGRAMMING UNTUK PEMILIHAN JENIS KENDARAAN DALAM MENGANTISIPASI KEMACETAN LALU LINTAS DI KOTA MEDAN FUZZY LINIER PROGRAMMING UNTUK PEMILIHAN JENIS KENDARAAN DALAM MENGANTISIPASI KEMACETAN LALU LINTAS DI KOTA MEDAN Zulfikar Sembiring 1* 1 Fakultas Teknik, Universitas Medan Area * Email : zoelsembiring@gmail.com

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK oleh Tim Dosen Mata Kuliah Metode Numerik Fakultas Teknik Universitas Indonesia Maret 2016 1 DAFTAR ISI hlm. PENGANTAR BAB 1 BAB 2 INFORMASI UMUM KOMPETENSI

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Tidak semua permasalahan matematis atau perhitungan dapat diselesaikan dengan mudah. Bahkan dalam prinsip matematik, dalam memandang permasalahan, terlebih dahulu

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN : 3 & 4 PENYELESAIAN PERSAMAAN NON LINIER METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar

Lebih terperinci

Media Pembelajaran Integrasi Numerik Dengan Metode Kuadratur Gauss

Media Pembelajaran Integrasi Numerik Dengan Metode Kuadratur Gauss Media Pembelajaran Integrasi Numerik Dengan Metode Kuadratur Gauss Puji Catur Siswipraptini 1, Rifarhan 2 Jurusan Teknik Informatika Sekolah Tinggi Teknik PLN Jakarta JL. Lingkar Luar Barat, Menara PLN,

Lebih terperinci

oleh : Edhy Suta tanta

oleh : Edhy Suta tanta ALGORITMA TEKNIK PENYELESAIAN PERMASALAHAN UNTUK KOMPUTASI oleh : Edhy Sutanta i KATA PENGANTAR Puji syukur kami panjatkan ke hadirat Tuhan Yang Maha Esa atas limpahan rahmat dan karunia-nya sehingga buku

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) IKG2E3 KOMPUTASI NUMERIK Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

Staff Pengajar Jurusan Teknik Mesin, FT-Universitas Sebelas Maret Surakarta

Staff Pengajar Jurusan Teknik Mesin, FT-Universitas Sebelas Maret Surakarta DESAIN OPTIMASI UNGSI TAK LINIER MENGGUNAKAN METODE PENYELIDIKAN IBONACCI Yemi Kuswardi Nurul Muhayat Abstract: optimum design is an action to design the best product based on the problem. Theoretically,

Lebih terperinci

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1 Studi Kasus Penyelesaian Pers.Non Linier Studi Kasus Non Linier 1 Contoh Kasus Penyelesaian persamaan non linier terkadang muncul sebagai permasalahan yang terpisah, tetapi terkadang pula muncul sebagai

Lebih terperinci

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Tommy Gunardi / 13507109 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat

BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat 1 BAB I PENDAHULUAN 1.1 Latar Belakang Sistem persamaan dapat dipandang F(x) = 0 [5], merupakan kumpulan dari beberapa persamaan nonlinear dengan fungsi tujuannya saja atau bersama fungsi kendala berbentuk

Lebih terperinci

BAB I PENDAHULUAN. ilmu pengetahuan lain untuk menyelesaikan berbagai persoalan kehidupan karena

BAB I PENDAHULUAN. ilmu pengetahuan lain untuk menyelesaikan berbagai persoalan kehidupan karena BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sangat berguna bagi ilmu pengetahuan lain untuk menyelesaikan berbagai persoalan kehidupan karena dalam

Lebih terperinci

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant Penyelesaian Persa amaan Non Linier Metode Iterasi Sederhana Metode Newton Raphson Permasalahan Titik Kritis pada Newton Raphson Metode Secant Iterasi/NewtonRaphson/Secant Metode Numerik - Metode Iter

Lebih terperinci

Pendahuluan Metode Numerik

Pendahuluan Metode Numerik Pendahuluan Metode Numerik Obyektif : 1. Mengerti Penggunaan metode numerik dalam penyelesaian masalah. 2. Mengerti dan memahami penyelesaian masalah menggunakan grafik maupun metode numeric. Pendahuluan

Lebih terperinci

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SYIAH KUALA Darussalam, Banda Aceh

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SYIAH KUALA Darussalam, Banda Aceh 08/02/2017 Nama Mata Kuliah : Metode Numerik Kode Mata Kuliah : KMM 090 Bobot SKS : 2 (dua) Semester : Ganjil Hari Pertemuan : 1 (pertama) Tempat Pertemuan : Ruang kuliah Koordinator MK : Khairul Umam,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, sebenarnya orang selalu melakukan optimasi untuk memenuhi kebutuhannya. Tetapi optimasi yang dilakukan masyarakat

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari baik disadari maupun tidak, optimasi selalu dilakukan untuk memenuhi kebutuhan. Tetapi optimasi yang dilakukan masyarakat awam lebih banyak

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN. Kode Komputer : 068 Kode Mata Kuliah : MMP Dosen Pengampu : Sisca Octarina, M.Sc Eka Susanti, M.

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN. Kode Komputer : 068 Kode Mata Kuliah : MMP Dosen Pengampu : Sisca Octarina, M.Sc Eka Susanti, M. GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Optimasi Kode Komputer : 068 Kode Mata Kuliah : MMP 33308 SKS : 3 sks Dosen Pengampu : Sisca Octarina, M.Sc Eka Susanti, M.Sc I. Deskripsi Mata Kuliah

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK Mata Kuliah: Metode Numerik Semester: 7, Kode: KMM 090 Program Studi: Pendidikan Matematika Dosen: Khairul Umam, S.Si, M.Sc.Ed Capaian Pembelajaran: SKS:

Lebih terperinci

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan

Lebih terperinci

ISBN. PT SINAR BARU ALGENSINDO

ISBN. PT SINAR BARU ALGENSINDO Drs. HERI SUTARNO, M. T. DEWI RACHMATIN, S. Si., M. Si. METODE NUMERIK DENGAN PENDEKATAN ALGORITMIK ISBN. PT SINAR BARU ALGENSINDO PRAKATA Segala puji dan syukur penulis panjatkan kepada Alloh SWT yang

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier MK: METODE NUMERIK Oleh: Dr. I GL Bagus Eratodi FTI Undiknas University Denpasar Persamaan Non Linier Metode Tabulasi Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode

Lebih terperinci

BAB I PENDAHULUAN. Analisis regresi merupakan sebuah alat statistik yang memberi penjelasan

BAB I PENDAHULUAN. Analisis regresi merupakan sebuah alat statistik yang memberi penjelasan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analisis regresi merupakan sebuah alat statistik yang memberi penjelasan tentang pola hubungan (model) antara dua peubah atau lebih (Draper dan Smith, 1992).

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada suatu eksperimen atau pengamatan terhadap suatu keadaan, pengambilan data merupakan salah satu bagian terpenting, agar hasil dari eksperimen dapat lebih

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) PENDIDIKAN KARAKTER

RENCANA PEMBELAJARAN SEMESTER (RPS) PENDIDIKAN KARAKTER RENCANA PEMBELAJARAN SEMESTER (RPS) PENDIDIKAN KARAKTER Mata Kuliah: Metode Numerik Semester : 7 (tujuh); Kode : KMM 090; SKS : 2 (dua) Program Studi : Pendidikan Matematika Dosen : Khairul Umam, S.Si,

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER

RENCANA PEMBELAJARAN SEMESTER RENCANA PEMBELAJARAN SEMESTER F-0653 Issue/Revisi : A0 Tanggal Berlaku : 1 Juli 2015 Untuk Tahun Akademik : 2015/2016 Masa Berlaku : 4 (empat) tahun Jml Halaman : 17 halaman Mata Kuliah : Analisis Numerik

Lebih terperinci

PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR

PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR T-11 RIVELSON PURBA 1 1 FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUSAMUS MERAUKE etong_extreme@yahoo.com ABSTRAK Purba, Rivelson. 01. Penerapan Logika

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Bagi Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 20 Rumusan Masalah Bagi Tentukan solusi dengan f fungsi nonlinear.

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

METODE STEEPEST DESCENT

METODE STEEPEST DESCENT METODE STEEPEST DESCENT DENGAN UKURAN LANGKAH BARU UNTUK PENGOPTIMUMAN NIRKENDALA D. WUNGGULI 1, B. P. SILALAHI 2, S. GURITMAN 3 Abstrak Metode steepest descent adalah metode gradien sederhana untuk pengoptimuman.

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54812 / Metode Numerik 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen Mulai dengan terkaan awal yang mengurung atau memuat akar

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik. Disusun oleh: Rafki Imani, MT

RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik. Disusun oleh: Rafki Imani, MT RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik Disusun oleh: Rafki Imani, MT PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS PUTRA INDONESIA YPTK PADANG 2017 LEMBAR

Lebih terperinci

OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI

OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Regresi Linier Berganda untuk Penentuan Nilai Konstanta pada Fungsi Konsekuen di Logika Fuzzy Takagi-Sugeno

Regresi Linier Berganda untuk Penentuan Nilai Konstanta pada Fungsi Konsekuen di Logika Fuzzy Takagi-Sugeno Regresi Linier Berganda untuk Penentuan Nilai Konstanta pada Fungsi Konsekuen di Logika Fuzzy Takagi-Sugeno Zaenal Abidin (23515015) Program Studi Magister Informatika Sekolah Teknik Elektro dan Informatika

Lebih terperinci

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen

Lebih terperinci

Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg

Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg Numerical Analysis of Double Integral of Trigonometric Function Using Romberg Method ABSTRAK Umumnya penyelesaian integral

Lebih terperinci

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR Metode Biseksi Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari

Lebih terperinci

Panduan Belajar. Selamat Belajar. iii

Panduan Belajar. Selamat Belajar. iii Panduan Belajar Buku ini disusun berdasarkan Standar Kompetensi dan Kompetensi Dasar kurikulum, terdiri atas 3 bab, yaitu Program Linear, Matriks, serta Barisan dan Deret. Materi pembelajaran disajikan

Lebih terperinci

KONTRAK PEMBELAJARAN

KONTRAK PEMBELAJARAN KONTRAK PEMBELAJARAN RISET OPERASI PROBABILISTIK Semester Jurusan : VI / 2 sks : Matematika Oleh: Dra. RR Sri Sulistijowati H., M.Si NIP. 19690116199022001 Nughthoh Arfawi Kurdhi, S.Si., M.Sc NIP. 19850717

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Optimasi (Optimization) adalah aktivitas untuk mendapatkan hasil terbaik di dalam suatu keadaan yang diberikan. Tujuan akhir dari semua aktivitas tersebut adalah meminimumkan

Lebih terperinci

esaian Pers.Non Linier Studi Kasus Penyele S. Hadi, ST. MSc. Muhammad Zen Studi Kasus Non Linier

esaian Pers.Non Linier Studi Kasus Penyele S. Hadi, ST. MSc. Muhammad Zen Studi Kasus Non Linier Studi Kasus Penyele esaian Pers.Non Linier 1 Muhammad Zen S. Hadi, ST. MSc. Contoh Kasus Penyelesaian persamaan non linier permasalahan yang terpisah, tetapi 2 terkadang muncul sebagai terkadang pula muncul

Lebih terperinci

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva

Lebih terperinci

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di BAB II TINJAUAN PUSTAKA 2.1 Pemrograman Linier (Linear Programming) Pemrograman linier (linear programming) merupakan salah satu teknik riset operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan

Lebih terperinci

BAB 1 PENDAHULUAN. hal, persamaan ini timbul langsung dari perumusan mula dari persoalannya, didalam hal

BAB 1 PENDAHULUAN. hal, persamaan ini timbul langsung dari perumusan mula dari persoalannya, didalam hal BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan Simultan timbul hampir disetiap cabang matematik, dalam beberapa hal, persamaan ini timbul langsung dari perumusan mula dari persoalannya, didalam hal lain

Lebih terperinci

MAKALAH KALKULUS Integral Turunan Limit

MAKALAH KALKULUS Integral Turunan Limit MAKALAH KALKULUS Integral Turunan Limit KATA PENGANTAR Puji dan syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa karena atas rahmat dan karunianya penulis dapat menyelesaiakan makalah ini tepat waktu

Lebih terperinci

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik.

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik. SILABUS MATAKULIAH Matakuliah Jurusan : Metode Numerik : Matematika Deskripsi Matakuliah :Metode Numerik membahas permasalahan matematika yang bersifat numerik. Penyelesaian persamaan khususnya non liner,

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1 UMUM Masalah yang dihadapi oleh perusahaan jasa angkutan adalah merencanakan dan menentukan rute yang optimal untuk dioperasikan didalam wilayah kajian. Wilayah kajian dapat dikarakteristikkan

Lebih terperinci

Jurnal MIPA 36 (2): (2013) Jurnal MIPA.

Jurnal MIPA 36 (2): (2013) Jurnal MIPA. Jurnal MIPA 36 (2): 193-200 (2013) Jurnal MIPA http://journalunnesacid/nju/indexphp/jm APLIKASI METODE NEWTON-RAPHSON UNTUK MENGHAMPIRI SOLUSI PERSAMAAN NON LINEAR Rochmad Jurusan Matematika, FMIPA, Universitas

Lebih terperinci

MATA KULIAH ANALISIS NUMERIK

MATA KULIAH ANALISIS NUMERIK BAHAN AJAR MATA KULIAH ANALISIS NUMERIK Oleh: M. Muhaemin Muhammad Saukat JURUSAN TEKNIK DAN MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN 2009 Bahan Ajar Analisis

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Program linier (Linier Programming) Pemrograman linier merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini METODE NUMERIK, oleh Sri Adi Widodo, M.Pd. Hak Cipta 2015 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-882262; 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin

Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin Metode Numerik Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat 2 Metode Numerik & Teknik Komputasi - Intro 3 Tujuan Pembelajaran Mahasiswa

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54812 / Metode Numerik Revisi - Satuan Kredit Semester : 3 SKS Tgl revisi : - Jml Jam kuliah dalam seminggu : 3 x 50

Lebih terperinci

Bab 2. Penyelesaian Persamaan Non Linier

Bab 2. Penyelesaian Persamaan Non Linier Bab 2. Penyelesaian Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier penentuan

Lebih terperinci

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Bernardino Madaharsa Dito Adiwidya - 13507089 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

1) Untuk menentukan ketepatan (accuracy) hasil penghitungan numerik. 2) Untuk membuat kriteria stop pada

1) Untuk menentukan ketepatan (accuracy) hasil penghitungan numerik. 2) Untuk membuat kriteria stop pada Analisa Terapan: Metode Numerik Pertemuan ke-1 Pengukuran Kesalahan (Measuring Error) 13 September 2012 Department of Civil Engineering 1 Mengapa mengukur kesalahan? 1) Untuk menentukan ketepatan (accuracy)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pemrograman Non Linier Pemrograman Non linier merupakan pemrograman dengan fungsi tujuannya saja atau bersama dengan fungsi kendala berbentuk non linier yaitu pangkat dari variabelnya

Lebih terperinci

Dr. Ir. Bib Paruhum Silalahi, M.Kom

Dr. Ir. Bib Paruhum Silalahi, M.Kom Metode Descent Oleh : Andaikan fungsi tujuan kita adalah minf(x);x R n. Secara umum f(x) dapat berupa fungsi nonlinear. Metode-metode descent adalah metode iteratif untuk memperoleh solusi pendekatan dari

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Banyak ditemukan masalah nyata di alam ini yang dapat dibuat model matematikanya. Persamaan integral merupakan salah satu model matematika yang banyak digunakan

Lebih terperinci

I. PENDAHULUAN. kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini

I. PENDAHULUAN. kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini 1 I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus mengalami kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini mengalami

Lebih terperinci