BAB 2 LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI Sejak tiga abad yang lalu, pakar-pakar matematika telah menghabiskan banyak waktu untuk mengeksplorasi dunia bilangan prima. Banyak sifat unik dari bilangan prima yang menakjubkan. Pada bab ini, akan dibahas teori bilangan prima serta sifatsifatnya dan teori uji primalitas. 2.1 Bilangan Prima Bilangan bulat positif 1 hanya mempunyai satu pembagi positif. Setiap bilangan bulat positif lainnya mempunyai minimal dua pembagi positif karena pasti dapat dibagi oleh 1 dan bilangan itu sendiri. Definisi Bilangan prima adalah bilangan bulat positif yang lebih besar dari 1 dan hanya dapat dibagi oleh 1 dan bilangan itu sendiri. Contoh : bilangan bulat positif 2, 3, 5, 89, dan 101 adalah bilangan-bilangan prima. 2.2 Greatest Common Divisor (Pembagi Persekutuan Terbesar)

2 7 Definisi Suatu bilangan bulat b dikatakan dapat habis dibagi oleh bilangan bulat a 0, ditulis dengan notasi a b, jika terdapat bilangan bulat c sedemikian sehingga b = ac. Kita tuliskan a b untuk menunjukkan bahwa b tidak habis dibagi a. Definisi Kita ambil bilangan bilangan bulat positif a dan b, dengan setidaknya salah satu dari keduanya tidak sama dengan 0. Greatest Common Divisor dari a dan b, ditandakan dengan gcd(a,b) adalah bilangan bulat positif d yang memenuhi syarat-syarat: i. d a dan d b. ii. Jika c a dan c b, maka c d. Definisi Dua bilangan bilangan bulat a dan b, di mana salah satu dari keduanya tidak sama dengan 0, dikatakan relatif prima jika gcd( a, b) = 1. Teorema Algoritma pembagian Diberikan bilangan bilangan bulat a dan b, di mana b > 0. Maka terdapatlah bilangan bulat yang tunggal q dan r yang memenuhi: a = qb + r, 0 r < b. Bilangan bilangan q dan r berturut turut disebut sebagai hasil bagi dan sisa dalam pembagian a oleh b.

3 8 Teorema di atas berlaku sebagai fondasi utama teorema teorema dan algoritma algoritma yang akan dikembangkan berikutnya. Di bawah ini diberikan beberapa sifat tentang divisibilitas dari bilangan bilangan bulat. Teorema Sifat bilangan Untuk bilangan bilangan bulat sembarang a, b, c berlaku: (i) a 0, 1 a, a a. (ii) a 1 jika dan hanya jika a = ±1. (iii) Jika a b dan c d, maka ac bd. (iv) Jika a b dan b c, maka a c. (v) a b dan b a jika dan hanya jika a = ±b. (vi) Jika a b dan b 0, maka a b. (vii) Jika a b dan a c, maka a (bx + cy) untuk semua bilangan bulat x, y. Teorema berikut ini menyatakan bahwa gcd( a, b) dapat dinyatakan sebagai kombinasi linear dari a dan b. Kombinasi linear dari a dan b adalah ekspresi dari ax + by, di mana x dan y adalah bilangan bilangan bulat sembarang. Teorema 2.2.3

4 9 Kita misalkan a dan b adalah bilangan bilangan bulat, di mana keduanya tidak bersama sama 0. Maka terdapatlah bilangan bilangan bulat x dan y sedemikian sehingga: gcd( a, b) = ax + by. Teorema berikut ini mengkarakterisasikan dua bilangan bulat yang relatif prima dengan kombinasi liniernya. Teorema Misalkan a dan b adalah bilangan - bilangan bulat, di mana keduanya tidak bersama - sama 0. Maka a dan b relatif prima jika dan hanya jika terdapat bilangan bilangan bulat x dan y yang memenuhi persamaan 1 = ax + by. Bukti: Jika a dan b adalah relatif prima maka gcd( a, b) = 1. Dengan Teorema terdapatlah bilangan bulat x dan y yang memenuhi 1 = ax + by. Dan untuk konversnya, kita misalkan bahwa 1 = ax + by untuk bilangan bulat x dan y, dan d = gcd( a, b). Karena d a dan d b, dengan Teorema (bagian vii) menghasilkan d (ax + by), atau d 1. Oleh karena d adalah bilangan bulat positif, kondisi terakhir ini mengharuskan d sama dengan 1, sehingga a dan b relatif prima. 2.3 Modulo

5 10 Definisi Diberikan suatu bilangan bulat positif m. Untuk bilangan bulat a dan b, maka a dikatakan kongruen terhadap b mod m jika m (a-b). Jika a kongruen terhadap b mod m, maka kita nyatakan dengan a b (mod m) (Atau, a b habis dibagi oleh m). Jika m (a-b), kita nyatakan dengan a b ( mod m), dibaca a tidak kongruen dengan b mod m. Bilangan bulat positif m disebut modulus. Bentuk jamak dari modulus adalah moduli. Teorema Untuk bilangan bulat a dan b, maka a b ( mod m) jika dan hanya jika terdapat bilangan bulat k yang memenuhi a = b + km. Bukti: Jika a b ( mod m), maka m (a-b). Dapat dikatakan bahwa terdapat bilangan bulat k yang memenuhi km = a b sehingga a = b + km. Untuk konversnya, jika terdapat bilangan bulat k yang memenuhi a = b + km, jelas bahwa km = a b, maka m (a-b) sehingga a b ( mod m). Contoh : 23 3 (mod 5) sehingga 23 = Teorema Sifat-sifat modulo Untuk sembarang bilangan bulat m, di mana m lebih besar dari 1 dan bilangan-bilangan bulat sembarang a, b, c, dan d berlaku : i. a a( mod m)

6 11 ii. Jika a b( mod m), maka b a( mod m) iii. Jika a b( mod m) dan b c( mod m), maka a c( mod m) iv. Jika a b( mod m) dan c d( mod m),maka a + c b + d ( mod m) v. Jika a b( mod m) dan c d( mod m),maka a c b d ( mod m) Bukti: vi. Jika a b( mod m) dan c d( mod m), maka ac bc (mod m) i. Karena m ( a a) = 0, kita dapatkan a a( mod m) ii. Jika a b( mod m), maka m ( a b).. Untuk itu, ada sebuah bilangan bulat k demikian sehingga km = a b. Hal ini menunjukkan bahwa ( k) m = b a, sehingga m ( a b) Akibatnya, b a( mod m).. iii. Jika a b( mod m) dan b c( mod m), maka m ( a b) dan m ( b c). Untuk itu, terdapat bilangan-bilangan bulat k dan l sedemikian sehingga km = a b dan lm = b c. Oleh karena itu, a c = ( a b) + ( b c) = km + lm = ( k + l)m, sehingga m ( a c) dan a c( mod m). iv. Karena a b( mod m) dan c d( mod m) bahwa m ( a b) dan m ( c d ), kita dapat mengetahui. Untuk itu, kita dapat bilangan-bilangan bulat k dan l dengan km = a b dan

7 12 lm = c d. Bukti ini juga dapat digunakan untuk membuktikan sifat (v) dan (vi). Karena ( a + c) ( b + d ) = ( a b) + ( c d ) = km + lm = ( k + l)m sehingga m [( a + c) ( b + d )]. Maka, a c b + d( mod m) v. Karena +. ( a c) ( b d ) = ( a b) ( c d ) = km lm = ( k l)m, didapat m [( a c) ( b d )], sehingga a ( mod m) c b d. vi. Karena ac bd = ac bc + bc bd = = = c ( a b) + b( c d ) ckm + blm ( + bl) m ck Didapat m ( ac bd ), sehingga ac bd( mod m). Definisi Order dari bilangan bulat modulo n Ambil n bilangan bulat dengan n lebih besar dari 1 dan gcd (a, n) = 1. Order dari a mod n adalah bilangan bulat positif terkecil k sedemikian sehingga a k 1 ( mod n). Teorema

8 13 Misalkan bilangan bulat a mempunyai order k mod n, maka a h 1 ( mod n) jika dan hanya jika k h. 2.4 Teorema Fundamental Aritmetika Teorema Setiap bilangan bulat positif p yang lebih besar dari 1 adalah bilangan prima atau hasil kali dari bilangan bilangan prima dengan penyajian atau penulisan yang tunggal, terlepas dari urutan faktor faktornya. 2.5 Teorema Euclid Terdapat beberapa versi pembuktian dari pernyataan bahwa terdapatlah tak berhingga banyak bilangan bilangan prima. Euclid secara elegan membuktikan peryataan tersebut yang ditampilkan pada bukti dari teorema ini. Teorema Terdapat tak berhingga banyak bilangan bilangan prima. Bukti: Kita urutkan bilangan bilangan prima dari yang terkecil ke yang lebih besar dan ditulis sebagai: p =, p = 3, p = 5, p 7, = Andaikan terdapat berhingga banyak bilangan bilangan prima yang banyaknya adalah n dan bilangan prima yang terbesar adalah p n. Dibentuklah bilangan bulat positif :

9 14 P = p1 p2... pn + 1. Karena P lebih besar dari 1, dengan Teorema Fundamental Aritmetika maka P habis dibagi oleh suatu bilangan prima misalnya p yang merupakan salah satu dari n bilangan prima di atas. Mengingat = P p p... p dengan p membagi n sekaligus P dan hasil kali p p... p 1 2 n maka dapat disimpulkan bahwa p juga membagi 1 yang jelas menimbulkan kontradiksi. 2.6 Metode Eratosthenes Uji primalitas adalah suatu masalah yang sangat penting dalam konsep bilangan. Metode klasik yang cukup dikenal untuk uji primalitas adalah dari Eratosthenes yang dikenal dengan nama Sieve of Eratosthenes yang digunakan untuk mencari semua bilangan prima yang lebih kecil dari bilangan bulat positif n. Metode tersebut berdasarkan pada proposisi berikut. Proposisi Bila bilangan bulat a > 1 tidak mempunyai pembagi prima p a, maka a adalah prima. Bukti Andaikan a bukan bilangan prima. Maka a dapat ditulis sebagai a = bc di mana 1 < b < a dan 1 < c < a. Misalkan b c kita peroleh b 2 bc = a sehingga

10 15 b a. Karena b > 1, berdasar pada Teorema Fundamental Aritmetika b mempunyai paling sedikit satu pembagi prima p. Sehingga diperoleh p b a. Selanjutnya mengingat p b dan b a maka p a yang menimbulkan suatu kontradiksi. Jadi yang benar bahwa a adalah prima. Untuk mencari semua bilangan prima dari 2 sampai dengan n metode Eratosthenes dapat dijelaskan sebagai berikut : Urutkan semua bilangan bulat positif dari 2 sampai dengan n dari yang paling kecil ke yang paling besar. Eliminir semua bilangan komposit yang berbentuk 2p,3p,4p,5p, di mana p adalah bilangan prima yang memenuhi p n. Yang tersisa adalah semua bilangan prima dari 2 sampai dengan n. Untuk n = 100, metode Eratosthenes secara sistematis mengeleminir bilangan - bilangan komposit yang merupakan kelipatan 2, kelipatan 3, kelipatan 5, atau kelipatan 7 dari semua bilangan bulat positif dari 2 sampai dengan Fungsi Euler Phi Definisi Untuk bilangan bulat n 1,φ (n) menyatakan banyaknya semua bilangan bulat positif yang lebih kecil atau sama dengan n, dan relatif prima terhadap n. Bila n merupakan bilangan prima makaφ (n) = n 1. Teorema 2.7.1

11 16 Fungsiφ merupakan fungsi multiplikatif. Teorema ini menunjukkan bahwa φ ( mn) = φ( m) φ( n) untuk semua bilangan bilangan bulat m 1 dan n 1. Contoh: Sebagai contoh kita ambil m = 5, n = 6, dan φ( mn ) = φ(30) = 8. Dari seluruh bilangan bulat yang tidak lebih dari 30 hanya terdapat 8 bilangan yang merupakan relatif prima terhadap 30, yaitu 1, 7, 11, 13, 17, 19, 23, 29. Sedangkan 30 = 5 6. Maka kita dapatkan pula φ( 5) = 4 yaitu 1, 2, 3, 4 dan φ ( 6) = 2 yaitu 1 dan 5. Sehingga φ ( 30) = φ(5 6) = φ(5) φ(6) = 4 2 = 8. Lemma Misalkan a dan n adalah bilangan bulat yang lebih besar dari 1 dan gcd( a, n) = 1. Jika a1, a1,..., aφ ( n) merupakan bilangan bilangan bulat positif yang lebih kecil dari n dan relatif prima terhadap n, maka aa1, aa2,..., aaφ ( n) kongruen modulo n terhadap a1, a2,..., aφ ( n) dalam suatu urutan tertentu. Teorema Teorema Euler φ ( ) Jika n bilangan bulat dengan n 1 dan gcd( a, n) = 1, maka a n 1(modn). Bukti Misalkan n bilangan bulat dengan n > 1, dan a1, a2,..., aφ ( n) adalah bilangan bilangan bulat positif yang lebih kecil daripada n dan relatif prima terhadap n.

12 17 Oleh karena gcd( a, n) = 1, dengan Lemma maka aa1, aa2,..., aaφ ( n) kongruen modulo n terhadap a1, a2,..., aφ ( n) dalam suatu urutan tertentu. Sehingga dapat ditulis aa aa 1 2 a (mod n) 1 a (modn) 2 aa φ ( n) a φ ( n) (modn di mana a 1, a 2,..., a adalah bilangan bilangan bulat φ ( n) a1, a2,..., aφ ( n) dalam suatu urutan tertentu. Hasil yang kita dapatkan dari kekongruensianφ (n) adalah aa1)( aa2 )...( aaφ ( n) ) a 1a 2... a φ ( n (mod n) ( ) a1a2... aφ ( n) (mod n). Sehingga a φ ( n) a a... a ) a a... a (mod n). ( 1 2 φ ( n) 1 2 φ ( n) Oleh karena gcd( a i, n) = 1untuk setiap i, berdasarkan Lemma ) gcd( a a2... aφ ( n), n) 1 = 1. Sehingga kita dapat membagi kedua ruas dari kongruensi sebelumnya dengan faktor persekutuan a1 a2... aφ ( n), dan kita dapatkan φ ( ) a n 1(modn). 2.8 Teorema Fermat Teorema Fermat Little Theorem

13 18 Jika p adalah prima dan a adalah bilangan bulat positif yang tidak habis dibagi dengan p, maka a p-1 1 ( mod p). Bukti : Misalkan p-1 adalah bilangan bulat yang pertama sebagai kelipatan dari a sehingga bilangan bulat tersebut adalah sebagai berikut a, 2a, 3a,, (p-1)a Tidak satupun dari bilangan bulat tersebut yang kongruen terhadap mod p atau kongruen terhadap nol. Jika persyaratan tersebut dipenuhi, maka ra sa ( mod p), di mana 1 r s p 1. Kemudian diperoleh r s ( mod p), di mana hal ini sangatlah tidak mungkin. Oleh karena itu, bilangan-bilangan bulat yang sebelumnya haruslah kongruen mod a, 2a, 3a,, (p-1)a terhadap p dalam suatu urutan tertentu. Dengan mengalikan semua kongruensian tersebut bersamasama, kita dapatkan bahwa di mana a 2a 3a... ( p 1) ( p 1) mod p ( p 1)! 1 a p ( p 1 )! ( mod p) Setelah (p-1)! dihilangkan dari kedua sisi persamaan kekongruensianan di atas ( hal ini dapat terjadi karena p relatif prima terhadap (p-1)! sehingga p (p- 1)! ), maka hasil terakhir dari persamaan tersebut adalah p 1 a 1 ( mod p) sehingga Teorema Fermat terbukti. Teorema Teorema Akibat

14 19 Jika p adalah bilangan prima, maka a p a(mod p) untuk suatu bilangan bulat a. Bukti : Jika p a, maka a p 0 a (mod p). Jika p a, maka menurut Teorema 1 Fermat, kita dapatkan a p 1(mod p). Ketika kekongruensian ini kita kalikan dengan a, akan kita dapatkan a p a(mod p). 2.9 Bilangan Mersenne Suatu bilangan bulat berbentuk 2 m 1 telah dipelajari secara mendalam oleh banyak matematikawan terdahulu. Pada tahun 1536, Hudalricus Regius menunjukkan bahwa bukan bilangan prima karena dapat difaktorkan menjadi Marin Mersenne pada tahun 1644 menyatakan bahwa 2 m 1 adalah bilangan prima untuk m = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, dan 257 dan merupakan bilangan komposit untuk m lainnya, dan hingga saat ini jika 2 m 1 merupakan bilangan prima dikatakan sebagai bilangan prima Mersenne. Definisi Jika m adalah bilangan bulat positif, maka M m = 2 m 1 disebut bilangan Mersenne ke-m; jika p adalah bilangan prima dan M p = 2 p 1 adalah prima, maka M p disebut sebagai bilangan prima Mersenne.

15 20 Teorema Jika p adalah bilangan prima ganjil, maka setiap pembagi dari bilangan Mersenne M p = 2 p - 1 berbentuk 2kp + 1, di mana k adalah bilangan bulat positif. Bukti : Ambil q sebagai bilangan prima yang membagi M p = 2 p 1. Dengan menggunakan teorema Fermat, kita tahu bahwa q (2 q-1 1). Karena q merupakan faktor pembagi dari 2 p 1 dan 2 q-1-1, kita tahu bahwa (2 p 1, 2 q-1-1) > 1. Dari yang telah dibuktikan pada teorema di atas, kita dapatkan p (q 1) sehingga ada sebuah bilangan bulat positif m sedemikian sehingga q 1 = mp. Karena q adalah bilangan ganjil, maka m haruslah bilangan genap, m = 2k, di mana k adalah suatu bilangan bulat positif. Kita dapatkan q = mp + 1 = 2kp + 1. Karena setiap pembagi dari M p adalah sebuah produk dari pembagi prima dari Mp, setiap pembagi prima dari M p berbentuk 2kp + 1, dan hasil dari bilangan yang berbentuk seperti ini akan memiliki bentuk yang sama, yaitu bilangan ganjil.

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum kita membahas mengenai uji primalitas, terlebih dahulu kita bicarakan beberapa definisi yang diperlukan serta beberapa teorema dan sifat-sifat yang penting dalam teori bilangan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi 5 II. TINJAUAN PUSTAKA Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi penjumlahan dua bilangan kuadrat sempurna. Seperti, teori keterbagian bilangan bulat, bilangan prima, kongruensi

Lebih terperinci

Teori Bilangan (Number Theory)

Teori Bilangan (Number Theory) Bahan Kuliah ke-3 IF5054 Kriptografi Teori Bilangan (Number Theory) Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 3. Teori Bilangan Teori bilangan

Lebih terperinci

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori dalam aljabar dan teori bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan carmichael akan dibutuhkan definisi

Lebih terperinci

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan prima, bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas (square free), keterbagian,

Lebih terperinci

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Oleh. Nikenasih B 1.1 SIFAT HABIS DIBAGI PADA BILANGAN BULAT Untuk dapat memahami sifat habis dibagi pada bilangan bulat, sebelumnya perhatikan

Lebih terperinci

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY Induksi Matematika Induksi matematika adalah : Salah satu metode pembuktian untuk proposisi perihal bilangan bulat Induksi matematika merupakan teknik

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses penelitian untuk penyelesaian persamaan Diophantine dengan relasi kongruensi modulo m mengenai aljabar dan

Lebih terperinci

BAB I INDUKSI MATEMATIKA

BAB I INDUKSI MATEMATIKA BAB I INDUKSI MATEMATIKA 1.1 Induksi Matematika Induksi matematika adalah suatu metode yang digunakan untuk memeriksa validasi suatu pernyataan yang diberikan dalam suku-suku bilangan asli. Dalam pembahasan

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan Kuliah 2 2/2/2014 Yanita, FMIPA Matematika Unand 1 Materi Kuliah 2 Teori Pembagian dalam Bilangan Bulat Algoritma Pembagian Pembagi Persekutuan Terbesar 2/2/2014 2 Algoritma Pembagian

Lebih terperinci

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta Matematika Diskrit Reza Pulungan Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta March 31, 2011 Teori Bilangan (Number Theory) Keterbagian (Divisibility) Pada bagian ini kita hanya akan berbicara

Lebih terperinci

BAB III PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM

BAB III PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM BAB III PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM 3.1 Pengembangan Teorema Pada penelitian dan perancangan algoritma ini, akan dibahas mengenai beberapa teorema uji primalitas yang telah ditemukan baru

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Aritmetika Modulo Misalkan a adalah bilangan

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 11, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

Lembar Kerja Mahasiswa 1: Teori Bilangan

Lembar Kerja Mahasiswa 1: Teori Bilangan Lembar Kerja Mahasiswa 1: Teori Bilangan N a m a : NIM/Kelas : Waktu Kuliah : Kompetensi Dasar dan Indikator: 1. Memahami pengertian faktor dan kelipatan bilangan bulat. a) Menuliskan denisi faktor suatu

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep II. TINJAUAN PUSTAKA Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan bulat, bilangan prima,modular, dan kekongruenan. 2.1 Bilangan Bulat Sifat Pembagian

Lebih terperinci

TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa :

TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa : TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa : 1 Menggunakan algoritma Euclid untuk menyelesaikan masalah. 2 Menggunakan notasi kekongruenan. 3 Menggunakan teorema Fermat dan teorema

Lebih terperinci

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima BAB II KETERBAGIAN 2.1 Pendahuluan Pada pertemuan minggu ke-3, dan 4 ini dibahas konsep keterbagian, algoritma pembagian dan bilangan prima pada bilangan bulat. Relasi keterbagian pada himpunan semua bilangan

Lebih terperinci

Pembagi Persekutuan Terbesar dan Teorema Bezout

Pembagi Persekutuan Terbesar dan Teorema Bezout Latest Update: March 10, 2017 Pengantar Teori Bilangan (Bagian 3): Pembagi Persekutuan Terbesar dan Teorema Bezout M. Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga

Lebih terperinci

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun

Lebih terperinci

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul Training of Trainer (TOT) Olimpiade Matematika Tingkat Sekolah Menengah Atas Untuk Guru-guru Sekolah Menengah Atas di Kabupaten Bantul

Lebih terperinci

TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0.

TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. TEORI BILANGAN Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Sifat Pembagian pada Bilangan Bulat Misalkan a dan b adalah dua buah bilangan

Lebih terperinci

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب

Lebih terperinci

MODUL PERSIAPAN OLIMPIADE. Oleh: MUSTHOFA

MODUL PERSIAPAN OLIMPIADE. Oleh: MUSTHOFA MODUL PERSIAPAN OLIMPIADE Oleh: MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2007 1 TEORI BILANGAN Dalam teori bilangan, semesta pembicaraan

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan I Bilangan Bulat dan Operasinya Pembekalan dan pemahaman dasar tentang bentuk bilangan pada suatu kelompok/set/himpunan salah satunya adalah bilangan bulat (yang lazim disebut

Lebih terperinci

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40 DAFTAR ISI 1 TEORI KETERBAGIAN 1 1.1 Algoritma Pembagian............................. 2 1.2 Pembagi persekutuan terbesar........................ 5 1.3 Algoritma Euclides.............................. 12

Lebih terperinci

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada II. LANDASAN TEORI Pada bilangan ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan sempurna, bilangan bulat, bilangan prima,faktor bilangan bulat dan kekongruenan. 2.1

Lebih terperinci

PERANCANGAN PROGRAM APLIKASI UJI PRIMALITAS BERDASARKAN TEOREMA POCKLINGTON

PERANCANGAN PROGRAM APLIKASI UJI PRIMALITAS BERDASARKAN TEOREMA POCKLINGTON PERANCANGAN PROGRAM APLIKASI UJI PRIMALITAS BERDASARKAN TEOREMA POCKLINGTON Andy Sumantri Harsono NIM : 0992980008 ABSTRAK Di era globalisasi seperti saat ini, arus dan perkembangan teknologi sangatlah

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA HANDOUT TEORI BILANGAN MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2011 1 RELASI KETERBAGIAN Dalam teori bilangan, semesta pembicaraan

Lebih terperinci

Contoh-contoh soal induksi matematika

Contoh-contoh soal induksi matematika Contoh-contoh soal induksi matematika Buktikan bahwa 2 n > n + 20 untuk setiap bilangan bulat n 5. (i) Basis induksi : Untuk n = 5, kita peroleh 2 5 > 5 + 20 adalah suatu pernyataan yang benar. (ii) Langkah

Lebih terperinci

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan DIKTAT KULIAH ( sks) MX 17 Teori Bilangan (Revisi Terakhir: Juli 009 ) Oleh: Didit Budi Nugroho, S.Si., M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field.

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. BAB 2 LANDASAN TEORI Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. Hal ini dimulai dengan memberikan pengertian dari group

Lebih terperinci

ANALISIS PERBANDINGAN TEOREMA LUCAS-LEHMER DAN TEOREMA POCKLINGTON DALAM UJI PRIMALITAS

ANALISIS PERBANDINGAN TEOREMA LUCAS-LEHMER DAN TEOREMA POCKLINGTON DALAM UJI PRIMALITAS ANALISIS PERBANDINGAN TEOREMA LUCAS-LEHMER DAN TEOREMA POCKLINGTON DALAM UJI PRIMALITAS Kelly Swandana NIM : 0500583315 ABSTRAK Di era globalisasi seperti saat ini, arus dan perkembangan teknologi sangatlah

Lebih terperinci

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritma Pembagian............................. 3 1.2 Pembagi persekutuan terbesar......................... 6 1.3 Algoritma Euclides............................... 11

Lebih terperinci

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai 1 TEORI KETERBAGIAN Bilangan 0 dan 1 adalah dua bilangan dasar yang digunakan dalam sistem bilangan real. Dengan dua operasi + dan maka bilangan-bilangan lainnya didenisikan. Himpunan bilangan asli (natural

Lebih terperinci

PENGUJIAN BILANGAN CARMICHAEL. (Skripsi) Oleh SELMA CHYNTIA SULAIMAN

PENGUJIAN BILANGAN CARMICHAEL. (Skripsi) Oleh SELMA CHYNTIA SULAIMAN PENGUJIAN BILANGAN CARMICHAEL Skripsi Oleh SELMA CHYNTIA SULAIMAN JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG 2016 ABSTRAK PENGUJIAN BILANGAN CARMICHAEL Oleh SELMA

Lebih terperinci

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan umur hingga habis, dan yang tersisa tinggal catatan

Lebih terperinci

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang?

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang? Pada bab ini dipelajari aritmatika modular yaitu aritmatika tentang kelas-kelas ekuivalensi, dimana permasalahan dalam teori bilangan disederhanakan dengan cara mengganti setiap bilangan bulat dengan sisanya

Lebih terperinci

Pertemuan 4 Pengantar Teori Bilangan

Pertemuan 4 Pengantar Teori Bilangan INSTITUT PERTANIAN BOGOR FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Jl. Meranti, Kampus IPB Dramaga, Telp./Fax 0251-8625481/8625708 Email: fmipa@apps.ipb.ac.id, https://www.fmipa.ipb.ac.id Pertemuan

Lebih terperinci

MAKALAH KRIPTOGRAFI CHINESE REMAINDER

MAKALAH KRIPTOGRAFI CHINESE REMAINDER MAKALAH KRIPTOGRAFI CHINESE REMAINDER Disusun : NIM : 12141424 Nama : Ristiana Prodi : Teknik Informatika B SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN ILMU KOMPUTER EL RAHMA YOGYAKARTA 2016 1. Pendahuluan

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara 5 BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi adalah ilmu yang mempelajari bagaimana mengirim pesan secara rahasia sehingga hanya orang yang dituju saja yang dapat membaca pesan rahasia tersebut.

Lebih terperinci

Bab 2: Kriptografi. Landasan Matematika. Fungsi

Bab 2: Kriptografi. Landasan Matematika. Fungsi Bab 2: Kriptografi Landasan Matematika Fungsi Misalkan A dan B adalah himpunan. Relasi f dari A ke B adalah sebuah fungsi apabila tiap elemen di A dihubungkan dengan tepat satu elemen di B. Fungsi juga

Lebih terperinci

Bilangan Prima dan Teorema Fundamental Aritmatika

Bilangan Prima dan Teorema Fundamental Aritmatika Pembaharuan Terakhir: 28 Maret 2017 Pengantar Teori Bilangan (Bagian 5): Bilangan Prima dan Teorema Fundamental Aritmatika M. Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan

Lebih terperinci

TEORI BILANGAN (3 SKS)

TEORI BILANGAN (3 SKS) BAHAN AJAR: TEORI BILANGAN (3 SKS) O l e h Drs. La Misu, M.Pd. (Dipakai dalam Lingkungan Sendiri) PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALU OLEO KENDARI

Lebih terperinci

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Faktor Persekutuan Terbesar (FPB) dan Kelipatan

Lebih terperinci

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan.

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan. Nama : Teori bilangan Kode /SKS : MAT- / 2 sks Program Studi : Pendidikan Matematika Semester : IV (Empat) TEORI BILANGAN Oleh : RINA AGUSTINA, M.Pd. NEGO LINUHUNG, M.Pd Mata kuliah ini masih merupakan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 24, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

Setelah mengikuti materi Bab ini mahasiswa diharapkan mampu: 2. Mendefinisikan factor persekutuan, kelipatan persekutuan, FPB, dan KPK.

Setelah mengikuti materi Bab ini mahasiswa diharapkan mampu: 2. Mendefinisikan factor persekutuan, kelipatan persekutuan, FPB, dan KPK. BAB II KETERBAGIAN PENDAHULUAN A. Deskripsi Singkat Mata Kuliah Mata kuliah ini dimaksudkan untuk memberikan kemampuan pada mahasiswa untuk belajar bukti matematika. Materi dalam mata kuliah ini sangat

Lebih terperinci

Kongruen Lanjar dan Berbagai Aplikasi dari Kongruen Lanjar

Kongruen Lanjar dan Berbagai Aplikasi dari Kongruen Lanjar Kongruen Lanjar dan Berbagai Aplikasi dari Kongruen Lanjar Mario Tressa Juzar (13512016) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi, penjelasan, dan teorema yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang diberikan diantaranya adalah definisi

Lebih terperinci

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE APOTEMA: Jurnal Pendidikan Matematika Volume 2 Nomor 2 Juli 2016 p 63-75 ISSN 2407-8840 BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE Moh Affaf Prodi Pendidikan Matematika STKIP PGRI BANGKALAN

Lebih terperinci

BAB 3 PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM

BAB 3 PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM BAB 3 PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM 3.1. Pengembangan Teorema Dalam enelitian dan erancangan algoritma ini, akan dibahas mengenai beberaa teorema uji rimalitas yang terbaru. Teorema-teorema

Lebih terperinci

METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA

METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 1 (2015), hal 85 94 METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA Sari Puspita, Evi Noviani, Bayu Prihandono INTISARI Bilangan prima

Lebih terperinci

Aplikasi Chinese Remainder Theorem dalam Secret Sharing

Aplikasi Chinese Remainder Theorem dalam Secret Sharing Aplikasi Chinese Remainder Theorem dalam Secret Sharing Dimas Gilang Saputra - 13509038 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

Faktor Persekutuan Terbesar (FPB)

Faktor Persekutuan Terbesar (FPB) Faktor Persekutuan Terbesar (FPB) Perlu diingat kembali bahwa suatu bilangan bulat a tidak nol adalah faktor dari suatu bilangan bulat b, ditulis a b, jika ada bilangan bulat c sedemikian sehingga b =

Lebih terperinci

Pemfaktoran prima (2)

Pemfaktoran prima (2) FPB dan KPK Konsep Habis Dibagi Definisi: Jika a suatu bilangan asli dan b suatu bilangan bulat, maka a membagi habis b (dinyatakan dengan a b) jika dan hanya jika ada sebuah bilangan bulat c demikian

Lebih terperinci

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 7 TEORI BILANGAN JUMLAH PERTEMUAN : 1

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 4

Pengantar Teori Bilangan. Kuliah 4 Pengantar Teori Bilangan Kuliah 4 Materi Kuliah Bilangan Prima dan Distribusinya Teorema Fundamental Aritmatika Saringan Eratosthenes 22/2/2014 Yanita, FMIPA Matematika Unand 2 Bilangan Prima dan Komposit

Lebih terperinci

Aplikasi Teori Bilangan Dalam Algoritma Enkripsi-Dekripsi Gambar Digital

Aplikasi Teori Bilangan Dalam Algoritma Enkripsi-Dekripsi Gambar Digital Aplikasi Teori Bilangan Dalam Algoritma Enkripsi-Dekripsi Gambar Digital Harry Alvin Waidan Kefas 13514036 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Integer (Bilangan Bulat)

Integer (Bilangan Bulat) Integer (Bilangan Bulat) Learning is not child's play, we cannot learn without pain. Aristotle 1 Tipe Data Integer Pada Bahasa Pemrograman Signed (bertanda +/- ) Unsigned (bulat non- negadf) Contoh: Misal

Lebih terperinci

BAB I NOTASI, KONJEKTUR, DAN PRINSIP

BAB I NOTASI, KONJEKTUR, DAN PRINSIP BAB I NOTASI, KONJEKTUR, DAN PRINSIP Kompetensi yang akan dicapai setelah mempelajari bab ini adalah sebagai berikut. (1) Dapat memberikan sepuluh contoh notasi dalam teori bilangan dan menjelaskan masing-masing

Lebih terperinci

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT. Pendahuluan Well-Ordering Principle Jika S himpunan bagian dari himpunan bilangan bulat positif yang tidak kosong, maka S memiliki sebuah unsur terkecil. Unsur

Lebih terperinci

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik.

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Induksi Matematika Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Contoh: 1. Buktikan bahwa jumlah n bilangan bilangan bulat positif pertama adalah n(n

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis berupa definisi teorema sifat-sifat yang berhubungan dengan teori bilangan integer modulo aljabar abstrak masalah logaritma diskret

Lebih terperinci

Sieve of Eratosthenes, Algoritma Bilangan Prima

Sieve of Eratosthenes, Algoritma Bilangan Prima Sieve of Eratosthenes, Bilangan Prima M. R. Al-ghazali NIM. 13509068 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

Jurnal Apotema Vol.2 No. 2 62

Jurnal Apotema Vol.2 No. 2 62 Jurnal Apotema Vol.2 No. 2 62 Sudjana. 2005). Metoda Statistika. Bandung: Tarsito. Sugianto, D. 2014). Perbedaan Penerapan Model Pembelajaran Kooperatif Tipe Jigsaw Dan Sta Ditinjau Dari Kemampuan Penalaran

Lebih terperinci

Keterbagian Pada Bilangan Bulat

Keterbagian Pada Bilangan Bulat Latest Update: March 8, 2017 Pengantar Teori Bilangan (Bagian 1): Keterbagian Pada Bilangan Bulat Muhamad Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Lebih terperinci

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar 4 II. TINJAUAN PUSTAKA Untuk melakukan penelitian ini terlebih dahulu harus memahami konsep yang terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar yang menunjang dan disajikan

Lebih terperinci

BAB V BILANGAN BULAT

BAB V BILANGAN BULAT BAB V BILANGAN BULAT PENDAHULUAN Dalam bab ini akan dibicarakan sistem bilangan bulat, yang akan dimulai dengan memperluas sistem bilangan cacah dengan menggunakan sifat-sifat baru tanpa menghilangkan

Lebih terperinci

Penyelesaian Persamaan Linear Dalam Bentuk Kongruen

Penyelesaian Persamaan Linear Dalam Bentuk Kongruen Penyelesaian Persamaan Linear Dalam Bentuk Kongruen Yayat Priyatna Jurusan Matematika FMIPA UNPAD Jl. Raya Jatinangor Bdg Smd Km 11 E mail : yatpriyatna@yahoo.com Tlp / Fax : 022 4218676 HP :08122334508

Lebih terperinci

Aplikasi Bilangan Prima dalam Pembentukan Basis Bilangan

Aplikasi Bilangan Prima dalam Pembentukan Basis Bilangan Aplikasi Bilangan Prima dalam Pembentukan Basis Bilangan Freddy Isman - 13513007 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

OLIMPIADE MATEMATIKA TINGKAT SEKOLAH MENENGAH ATAS MATERI : TEORI BILANGAN

OLIMPIADE MATEMATIKA TINGKAT SEKOLAH MENENGAH ATAS MATERI : TEORI BILANGAN OLIMPIADE MATEMATIKA TINGKAT SEKOLAH MENENGAH ATAS MATERI : TEORI BILANGAN Disajikan pada Pembimbingan Kompetisi Guru-Guru Matematika dalam pemecahan soal-soal OSN di lingkungan Sekolah Menengah Atas Kota

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis sebagai landasan teori dalam penelitian ini yaitu teori bilangan, bilangan bulat modulo?, struktur aljabar dan masalah logaritma

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 10

Pengantar Teori Bilangan. Kuliah 10 Pengantar Teori Bilangan Kuliah 10 Materi Kuliah Chinese Remainder Theorem (Teorema Sisa Cina) 2/5/2014 Yanita, FMIPA Matematika Unand 2 Pengantar Chinese Remainder Theorem (Teorema sisa Cina) adalah hasil

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 6

Pengantar Teori Bilangan. Kuliah 6 Pengantar Teori Bilangan Kuliah 6 Materi Kuliah Carl Friedrich Gauss Teori Dasar Kongruen 3/14/2014 Yanita FMIPA Matematika Unand 2 Carl Friedrich Gauss Hidup pada masa 1777 1855 Mengenalkan konsep Disquisitiones

Lebih terperinci

Sieve of Eratosthenes dan Aplikasinya Dalam Problem Solving

Sieve of Eratosthenes dan Aplikasinya Dalam Problem Solving Sieve of Eratosthenes dan Aplikasinya Dalam Problem Solving Christianto - NIM : 1350003 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

BAB II DASAR TEORI. membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda

BAB II DASAR TEORI. membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda BAB II DASAR TEORI Pada Bab II ini akan disajikan beberapa teori yang akan digunakan untuk membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda tangan digital yang meliputi: keterbagian

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo May 25, 2014 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Sangadji *

FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Sangadji * FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER Sangadji * ABSTRAK FUNGSI-FUNGSI PADA TEORI BILANGAN DAN APLIKASINYA PADA PERHITUNGAN KALENDER. Dalam makalah ini dibahas fungsi-fungsi

Lebih terperinci

BAB VI BILANGAN REAL

BAB VI BILANGAN REAL BAB VI BILANGAN REAL PENDAHULUAN Perluasan dari bilangan cacah ke bilangan bulat telah dibicarakan. Dalam himpunan bilangan bulat, pembagian tidak selalu mempunyai penyelesaian, misalkan 3 : 11. Timbul

Lebih terperinci

INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil

INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Email: cjacob@upi.edu 3. Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil pertama? Jumlah dari n bilangan bulat ganjil positif pertama

Lebih terperinci

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta

Lebih terperinci

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351) II. SISTEM BILANGAN RIIL Handout Analisis Riil I (PAM 351) Sifat Aljabar (Aksioma Lapangan) dari Bilangan Riil Bagian ini akan membicarakan struktur aljabar bilangan riil dengan terlebih dahulu memberikan

Lebih terperinci

ALGORITMA DAN BILANGAN BULAT

ALGORITMA DAN BILANGAN BULAT ALGORITMA DAN BILANGAN BULAT A. ALGORITMA Sebuah masalah dipecahkan dengan mendeskripsikan langkah-langkah penyelesaiannya. Urutan penyelesaian masalah ini dinamakan Algoritma. Definisi 5.1 : Algoritma

Lebih terperinci

BAHAN AJAR TEORI BILANGAN

BAHAN AJAR TEORI BILANGAN BAHAN AJAR TEORI BILANGAN PENYUSUN NURYADI, S.PD.SI, M.PD. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MERCU BUANA YOGYAKARTA 2014 FKIP UMB-Yogyakarta Page 1 KETERBAGIAN

Lebih terperinci

BAHAN AJAR TEORI BILANGAN

BAHAN AJAR TEORI BILANGAN BAHAN AJAR TEORI BILANGAN PENYUSUN NURYADI, S.PD.SI, M.PD. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MERCU BUANA YOGYAKARTA 2014 FKIP UMB-Yogyakarta Page 1 KETERBAGIAN

Lebih terperinci

STRUKTUR ALJABAR: GRUP

STRUKTUR ALJABAR: GRUP STRUKTUR ALJABAR: GRUP BAHAN AJAR Oleh: Rippi Maya Program Studi Pendidikan Matematika Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) SILIWANGI Bandung 2016 1 A. Pendahuluan Ilustrasi 1.1: Perhatikan

Lebih terperinci

TEORI KETERBAGIAN.

TEORI KETERBAGIAN. TEORI KETERBAGIAN 1 ALGORITMA PEMBAGIAN Teorema 2.1: (Algoritma Pembagian) Diberikan bilangan bulat a dan b, dengan b > 0, maka ada bilangan bulat tunggal q dan r yang memenuhi a = qb + r, 0 r < b. Bilangan

Lebih terperinci

Himpunan dan Fungsi. Modul 1 PENDAHULUAN

Himpunan dan Fungsi. Modul 1 PENDAHULUAN Modul 1 Himpunan dan Fungsi Dr Rizky Rosjanuardi P PENDAHULUAN ada modul ini dibahas konsep himpunan dan fungsi Pada Kegiatan Belajar 1 dibahas konsep-konsep dasar dan sifat dari himpunan, sedangkan pada

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar: DAERAH IDEAL UTAMA DAN DAERAH EUCLID

UNIVERSITAS GADJAH MADA. Bahan Ajar: DAERAH IDEAL UTAMA DAN DAERAH EUCLID UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN

Lebih terperinci

KEKONVERGENAN DERET RECIPROCALS PRIMA YANG BERHUBUNGAN DENGAN BILANGAN FERMAT ABSTRACT

KEKONVERGENAN DERET RECIPROCALS PRIMA YANG BERHUBUNGAN DENGAN BILANGAN FERMAT ABSTRACT KEKONVERGENAN DERET RECIPROCALS PRIMA YANG BERHUBUNGAN DENGAN BILANGAN FERMAT Apriadi, Sri Gemawati 2, Musraini 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

Sistem Bilangan Real

Sistem Bilangan Real TUGAS I ANALISIS REAL I Sistem Bilangan Real Tugas 1 Analisis Real I Disusun oleh : Nariswari Setya D. Kartini Marvina Puspito M0108022 M0108050 M0108056 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Bilangan Totient sempurna (Perpect Totient Number atau PTN) adalah suatu

IV. HASIL DAN PEMBAHASAN. Bilangan Totient sempurna (Perpect Totient Number atau PTN) adalah suatu IV. HASIL DAN PEMBAHASAN 4.1 Fungsi Euler Definisi 4.1 Bilangan Totient sempurna (Perpect Totient Number atau PTN) adalah suatu bilangan bulat yang sama dengan jumlah dari iterasi Totientnya. yaitu jika

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,

Lebih terperinci

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep GRUP Bab ini merupakan awal dari bagian pertama materi utama perkuliahan Struktur Aljabar I. Pada bab ini disajikan tentang pengertian grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

Tentukan semua bilangan bulat x sedemikian sehingga x 1 (mod 10). Jawab. x 1 (mod 10) jika dan hanya jika x 1 = 10 k untuk setiap k bilangan bulat.

Tentukan semua bilangan bulat x sedemikian sehingga x 1 (mod 10). Jawab. x 1 (mod 10) jika dan hanya jika x 1 = 10 k untuk setiap k bilangan bulat. Aritmatika Modular Banyak konsep aritmatika jam dapat digunakan untuk mengerjakan masalah-masalah yang berkenaan dengan kalender. Misalkan, hari minggu pada bulan Juli 2006 jatuh pada tanggal 2, 9, 16,

Lebih terperinci

KATA PENGANTAR. Yogyakarta, November Penulis

KATA PENGANTAR. Yogyakarta, November Penulis KATA PENGANTAR Puji syukur penulis panjatkan kepada Alloh SWT atas anugrah yang diberikan sehingga penulisan Buku Diktat yang dilengkapi dengan Rencana Program Kegiatan Pembelajaran Semester (RPKPS) dan

Lebih terperinci