Integer (Bilangan Bulat)

Ukuran: px
Mulai penontonan dengan halaman:

Download "Integer (Bilangan Bulat)"

Transkripsi

1 Integer (Bilangan Bulat) Learning is not child's play, we cannot learn without pain. Aristotle 1

2 Tipe Data Integer Pada Bahasa Pemrograman Signed (bertanda +/- ) Unsigned (bulat non- negadf) Contoh: Misal suatu Dpe data integer berukuran 16- bit: 1. Jika signed, maka berisi: s/d Jika unsigned, maka berisi: 0 s/d

3 Pembagian Bilangan Bulat a b jika b = ac; c Z; a 0 a habis membagi b Contoh:

4 Teorema Sisa Pembagian (Quo:ent- remainder theorem) Diberikan sembarang bilangan bulat n dan bilangan bulat posidf d, maka ada bilangan bulat unik q dan r dimana: n = dq + r dan 0 < r < d LaDhan: Cari nilai bilangan bulat q dan r jika diketahui: a. n = 54, d = 4 b. n = - 54, d = 4 4

5 div dan mod Diberikan bilangan bulat n dan bilangan bulat posidf d, maka: n div d = q dan n mod d = r n = dq + r dimana q dan r adalah bilangan bulat dan 0 < r < d Contoh: 9 div 4 = 2; 9 mod 4 = 1 5

6 Greatest Common Divisor (1) Misal a dan b adalah bilangan bulat bukan nol, maka gcd(a,b), yaitu d, adalah: 1. d adalah common divisor untuk a dan b. Dengan kata lain: d a dan d b 2. Untuk semua bilangan bulat c, jika c adalah common divisor untuk semua a dan b, maka c lebih kecil atau sama dengan d. Dengan kata lain: Untuk semua bilangan bulat c, jika c a dan c b, maka c < d Contoh: GCD(45,36) = 9; GCD(80,12) = 4; GCD(12,8) = 4 6

7 Greatest Common Divisor (2) Lemma: 1. Jika r adalah bilangan bulat posidf, maka gcd(r,0) = r 2. Jika a dan b adalah bilangan bulat bukan nol, jika q dan r adalah bilangan bulat dimana a = bq + r, maka gcd(a,b) = gcd(b,r) 7

8 Algoritma Euclidean Bagaimana cara efisien dalam mencari GCD? Gunakan algoritma Euclidean. 1. Misal A dan B adalah bilangan bulat dimana A > B > Untuk mencari gcd dari A dan B, pertama cek apakah B = 0. Jika ya, maka gcd (A,B) = A (lihat lemma 1 pada slide sebelumnya). Jika Ddak, gunakan teorema quodent- remainder untuk mencari quodent q dan remainder r. Merujuk lemma 2 pada slide sebelumnya, maka gcd(a,b) = gcd(b, r). 3. Ulangi langkah nomor 2 sampai ditemukan hasil akhir. 8

9 Kongruensi Modulo n Ekivalensi modular: Misal a, b, c adalah sembarang bilangan bulat, dimana n > 1. Pernyataan berikut ini semuanya adalah ekivalen: 1. n (a b) 2. a b(mod n) 3. a = b + kn, dimana k adalah suatu bilangan bulat 4. a dan b memiliki sisa (non negadf) yang sama jika dibagi dengan n 5. a mod n = b mod n 9

10 AritmeDka Modular Misal a, b, c, d, dan n adalah bilangan bulat dengan n > 1 dan ditentukan bahwa a c(mod n) dan b d(mod n) Maka: 1. (a + b) (c + d)(mod n) 2. (a b) (c d)(mod n) 3. ab cd(mod n) 4. a m c m (mod n) untuk semua bilangan bulat m 10

11 Kombinasi Linier Suatu bilangan bulat d dikatakan sebagai kombinasi linier dari bilangan bulat a dan b, jika dan hanya jika ada bilangan bulat s dan t dimana as + bt = d. Menulis gcd dalam bentuk kombinasi linier: Untuk semua bilangan bulat a dan b bukan nol, jika d = gcd(a,b), maka ada bilangan bulat s dan t dimana as + bt = d. LaDhan: Nyatakan gcd(330,156) sebagai kombinasi linier dari 330 dan

12 RelaDf Prima (Coprime) GCD(a, b) = 1 12

13 Keberadaan Inverse Modulo n Untuk semua bilangan bulat a dan n, jika gcd(a,n) = 1, maka ada bilangan bulat s dimana as 1(mod n). Bilangan bulat s tersebut disebut inverse dari a modulo n. Contoh: 1. Tentukan inverse dari 43 modulo 660. (Dengan kata lain, tentukan bilangan bulat s dimana 43s 1(mod 660). 2. Tentukan inverse posidf dari 3 modulo 40. (Dengan kata lain, tentukan bilangan bulat posidf s dimana 3s 1(mod 40). 13

14 Keberadaan Inverse Modulo n Untuk semua bilangan bulat a dan n, jika gcd(a,n) = 1, maka ada bilangan bulat s dimana as 1(mod n). Bilangan bulat s tersebut disebut inverse dari a modulo n. Contoh: 1. Tentukan inverse dari 43 modulo 660. (Dengan kata lain, tentukan bilangan bulat s dimana 43s 1(mod 660). 14

15 Konsep Dasar Kriptografi Kriptografi adalah ilmu yang mempelajari pengiriman pesan rahasia. decryp(on 2 plaintext encryp(on 1 chipertext 15

16 Caesar Chiper A 01 B 02 C 03 D 04 E 05 F 06 G 07 H 08 I 09 J 10 K 11 L 12 M 13 N 14 O 15 P 16 Q 17 R 18 S 19 T 20 U 21 V 22 W 23 X 24 Y 25 Z 26 LaDhan: Gunakan Caesar chiper untuk mengenkripsi teks berikut: AYAS NAKAM OGES 16

17 RSA Cryptography Silahkan baca referensi dari buku teks masing masing secara mandiri. 17

18 Referensi Susanna S.Epp. Discrete Mathema4cs with Applica4ons 4 th Ed. Kenneth H. Rosen. Discrete Mathema4cs and Its Applica4ons 7 th Ed. Rinaldi Munir. Matema4ka Diskrit edisi ke4ga. 18

Matriks, Barisan (sequence), Deret (summa)ons)

Matriks, Barisan (sequence), Deret (summa)ons) Matriks, Barisan (sequence), Deret (summa)ons) Learning is not child's play, we cannot learn without pain. - Aristotle 1 Matriks 2 Aritme=ka Matriks Penjumlahan Syarat: matriks harus berukuran sama Contoh:!

Lebih terperinci

Pencacahan. Learning is not child's play, we cannot learn without pain. Aristotle. Matema(ka Komputasi - Pencacahan. Agi Putra Kharisma, ST., MT.

Pencacahan. Learning is not child's play, we cannot learn without pain. Aristotle. Matema(ka Komputasi - Pencacahan. Agi Putra Kharisma, ST., MT. Pencacahan Learning is not child's play, we cannot learn without pain. Aristotle 1 Berapakah jumlah bilangan bulat dari 5 sampai 12? Jawaban: 8 m n 5 6 7 8 9 10 11 12 m m+1 m+2 m+3 m+4 m+5 m+6 m+7 1 2

Lebih terperinci

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta Matematika Diskrit Reza Pulungan Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta March 31, 2011 Teori Bilangan (Number Theory) Keterbagian (Divisibility) Pada bagian ini kita hanya akan berbicara

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara 5 BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi adalah ilmu yang mempelajari bagaimana mengirim pesan secara rahasia sehingga hanya orang yang dituju saja yang dapat membaca pesan rahasia tersebut.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum kita membahas mengenai uji primalitas, terlebih dahulu kita bicarakan beberapa definisi yang diperlukan serta beberapa teorema dan sifat-sifat yang penting dalam teori bilangan

Lebih terperinci

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Oleh. Nikenasih B 1.1 SIFAT HABIS DIBAGI PADA BILANGAN BULAT Untuk dapat memahami sifat habis dibagi pada bilangan bulat, sebelumnya perhatikan

Lebih terperinci

Teori Pohon. Begin at the beginning and go on /ll you come to the end: then stop. Lewis Caroll, Alice s Adventures in Wonderland, 1865

Teori Pohon. Begin at the beginning and go on /ll you come to the end: then stop. Lewis Caroll, Alice s Adventures in Wonderland, 1865 Teori Pohon Begin at the beginning and go on /ll you come to the end: then stop. Lewis Caroll, Alice s Adventures in Wonderland, 1865 1 Pohon Suatu graf tak berarah terhubung yang Hdak memiliki sirkuit

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi 5 II. TINJAUAN PUSTAKA Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi penjumlahan dua bilangan kuadrat sempurna. Seperti, teori keterbagian bilangan bulat, bilangan prima, kongruensi

Lebih terperinci

Teori Bilangan (Number Theory)

Teori Bilangan (Number Theory) Bahan Kuliah ke-3 IF5054 Kriptografi Teori Bilangan (Number Theory) Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 3. Teori Bilangan Teori bilangan

Lebih terperinci

Aplikasi Teori Bilangan dalam Algoritma Kriptografi

Aplikasi Teori Bilangan dalam Algoritma Kriptografi Aplikasi Teori Bilangan dalam Algoritma Kriptografi Veren Iliana Kurniadi 13515078 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Bab 2: Kriptografi. Landasan Matematika. Fungsi

Bab 2: Kriptografi. Landasan Matematika. Fungsi Bab 2: Kriptografi Landasan Matematika Fungsi Misalkan A dan B adalah himpunan. Relasi f dari A ke B adalah sebuah fungsi apabila tiap elemen di A dihubungkan dengan tepat satu elemen di B. Fungsi juga

Lebih terperinci

Teori Graf. Matema(ka Komputasi - Teori Graf. Agi Putra Kharisma, ST., MT.

Teori Graf. Matema(ka Komputasi - Teori Graf. Agi Putra Kharisma, ST., MT. Teori Graf The whole of mathema,cs consists in the organiza,on of a series of aids to the imagina,on in the process of reasoning. Alfred North Whitehead 1 Struktur Graf Simpul (vertex // verbces) Sisi

Lebih terperinci

Teori Himpunan. Learning is not child's play, we cannot learn without pain. - Aristotle. Matema(ka Komputasi - Teori Himpunan

Teori Himpunan. Learning is not child's play, we cannot learn without pain. - Aristotle. Matema(ka Komputasi - Teori Himpunan Teori Himpunan Learning is not child's play, we cannot learn without pain. - Aristotle 1 Kilas Balik Negasi (1) Semua mobil di kota Malang memiliki plat nomor N. NEGASINYA: Ada mobil di bukan kota Malang

Lebih terperinci

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul Training of Trainer (TOT) Olimpiade Matematika Tingkat Sekolah Menengah Atas Untuk Guru-guru Sekolah Menengah Atas di Kabupaten Bantul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi atau Cryptography berasal dari kata kryptos yang artinya tersembunyi dan grafia yang artinya sesuatu yang tertulis (bahasa Yunani) sehingga kriptografi

Lebih terperinci

Aplikasi Teori Bilangan Dalam Algoritma Enkripsi-Dekripsi Gambar Digital

Aplikasi Teori Bilangan Dalam Algoritma Enkripsi-Dekripsi Gambar Digital Aplikasi Teori Bilangan Dalam Algoritma Enkripsi-Dekripsi Gambar Digital Harry Alvin Waidan Kefas 13514036 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis III.1.1 Analisis Masalah Secara umum data dikategorikan menjadi dua, yaitu data yang bersifat rahasia dan data yang bersifat tidak rahasia. Data yang

Lebih terperinci

TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa :

TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa : TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa : 1 Menggunakan algoritma Euclid untuk menyelesaikan masalah. 2 Menggunakan notasi kekongruenan. 3 Menggunakan teorema Fermat dan teorema

Lebih terperinci

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Faktor Persekutuan Terbesar (FPB) dan Kelipatan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sejak tiga abad yang lalu, pakar-pakar matematika telah menghabiskan banyak waktu untuk mengeksplorasi dunia bilangan prima. Banyak sifat unik dari bilangan prima yang menakjubkan.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Bilangan 2.1.1 Keterbagian Jika a dan b Z (Z = himpunan bilangan bulat) dimana b 0, maka dapat dikatakan b habis dibagi dengan a atau b mod a = 0 dan dinotasikan dengan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep II. TINJAUAN PUSTAKA Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan bulat, bilangan prima,modular, dan kekongruenan. 2.1 Bilangan Bulat Sifat Pembagian

Lebih terperinci

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan umur hingga habis, dan yang tersisa tinggal catatan

Lebih terperinci

Pembagi Persekutuan Terbesar dan Teorema Bezout

Pembagi Persekutuan Terbesar dan Teorema Bezout Latest Update: March 10, 2017 Pengantar Teori Bilangan (Bagian 3): Pembagi Persekutuan Terbesar dan Teorema Bezout M. Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga

Lebih terperinci

MAKALAH KRIPTOGRAFI CHINESE REMAINDER

MAKALAH KRIPTOGRAFI CHINESE REMAINDER MAKALAH KRIPTOGRAFI CHINESE REMAINDER Disusun : NIM : 12141424 Nama : Ristiana Prodi : Teknik Informatika B SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN ILMU KOMPUTER EL RAHMA YOGYAKARTA 2016 1. Pendahuluan

Lebih terperinci

PERANAN ARITMETIKA MODULO DAN BILANGAN PRIMA PADA ALGORITMA KRIPTOGRAFI RSA (Rivest-Shamir-Adleman)

PERANAN ARITMETIKA MODULO DAN BILANGAN PRIMA PADA ALGORITMA KRIPTOGRAFI RSA (Rivest-Shamir-Adleman) Media Informatika Vol. 9 No. 2 (2010) PERANAN ARITMETIKA MODULO DAN BILANGAN PRIMA PADA ALGORITMA KRIPTOGRAFI RSA (Rivest-Shamir-Adleman) Dahlia Br Ginting Sekolah Tinggi Manajemen Informatika dan Komputer

Lebih terperinci

Modifikasi Algoritma RSA dengan Chinese Reamainder Theorem dan Hensel Lifting

Modifikasi Algoritma RSA dengan Chinese Reamainder Theorem dan Hensel Lifting Modifikasi Algoritma RSA dengan Chinese Reamainder Theorem dan Hensel Lifting Reyhan Yuanza Pohan 1) 1) Jurusan Teknik Informatika ITB, Bandung 40132, email: if14126@students.if.itb.ac.id Abstract Masalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kriptografi Kriptografi secara etimologi berasal dari bahasa Yunani kryptos yang artinya tersembunyi dan graphien yang artinya menulis, sehingga kriptografi merupakan metode

Lebih terperinci

Kongruen Lanjar dan Berbagai Aplikasi dari Kongruen Lanjar

Kongruen Lanjar dan Berbagai Aplikasi dari Kongruen Lanjar Kongruen Lanjar dan Berbagai Aplikasi dari Kongruen Lanjar Mario Tressa Juzar (13512016) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 7 TEORI BILANGAN JUMLAH PERTEMUAN : 1

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi Ditinjau dari segi terminologinya, kata kriptografi berasal dari bahasa Yunani yaitu crypto yang berarti secret (rahasia) dan graphia yang berarti writing (tulisan).

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

ALGORITMA DAN BILANGAN BULAT

ALGORITMA DAN BILANGAN BULAT ALGORITMA DAN BILANGAN BULAT A. ALGORITMA Sebuah masalah dipecahkan dengan mendeskripsikan langkah-langkah penyelesaiannya. Urutan penyelesaian masalah ini dinamakan Algoritma. Definisi 5.1 : Algoritma

Lebih terperinci

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY Induksi Matematika Induksi matematika adalah : Salah satu metode pembuktian untuk proposisi perihal bilangan bulat Induksi matematika merupakan teknik

Lebih terperinci

Aplikasi Chinese Remainder Theorem dalam Secret Sharing

Aplikasi Chinese Remainder Theorem dalam Secret Sharing Aplikasi Chinese Remainder Theorem dalam Secret Sharing Dimas Gilang Saputra - 13509038 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi, penjelasan, dan teorema yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang diberikan diantaranya adalah definisi

Lebih terperinci

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang?

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang? Pada bab ini dipelajari aritmatika modular yaitu aritmatika tentang kelas-kelas ekuivalensi, dimana permasalahan dalam teori bilangan disederhanakan dengan cara mengganti setiap bilangan bulat dengan sisanya

Lebih terperinci

Lembar Kerja Mahasiswa 1: Teori Bilangan

Lembar Kerja Mahasiswa 1: Teori Bilangan Lembar Kerja Mahasiswa 1: Teori Bilangan N a m a : NIM/Kelas : Waktu Kuliah : Kompetensi Dasar dan Indikator: 1. Memahami pengertian faktor dan kelipatan bilangan bulat. a) Menuliskan denisi faktor suatu

Lebih terperinci

BAB 1 PENDAHULUAN Latar belakang

BAB 1 PENDAHULUAN Latar belakang BAB 1 PENDAHULUAN 1.1. Latar belakang Seiring berkembangnya zaman, diikuti juga dengan perkembangan teknologi sampai saat ini, sebagian besar masyarakat melakukan pertukaran atau saling membagi informasi

Lebih terperinci

HASIL DAN PEMBAHASAN. Algoritma Modular Exponentiation mempunyai kompleksitas sebesar O((lg n) 3 ) (Menezes et al. 1996).

HASIL DAN PEMBAHASAN. Algoritma Modular Exponentiation mempunyai kompleksitas sebesar O((lg n) 3 ) (Menezes et al. 1996). pengukuran running time dari setiap perlakuan. Ulangan setiap perlakuan dilakukan sebanyak 10 kali untuk masing-masing RSA dan RSA-. Lingkungan Penelitian Perangkat keras dan perangkat lunak yang digunakan

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan Kuliah 2 2/2/2014 Yanita, FMIPA Matematika Unand 1 Materi Kuliah 2 Teori Pembagian dalam Bilangan Bulat Algoritma Pembagian Pembagi Persekutuan Terbesar 2/2/2014 2 Algoritma Pembagian

Lebih terperinci

BAB III PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM

BAB III PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM BAB III PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM 3.1 Pengembangan Teorema Pada penelitian dan perancangan algoritma ini, akan dibahas mengenai beberapa teorema uji primalitas yang telah ditemukan baru

Lebih terperinci

BAB 2 TINJAUAN TEORETIS

BAB 2 TINJAUAN TEORETIS BAB 2 TINJAUAN TEORETIS 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani, yaitu cryptos yang berarti rahasia dan graphein yang berarti tulisan. Jadi, kriptografi adalah tulisan rahasia. Namun, menurut

Lebih terperinci

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori dalam aljabar dan teori bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan carmichael akan dibutuhkan definisi

Lebih terperinci

Algoritma Kriptografi Kunci-publik RSA menggunakan Chinese Remainder Theorem

Algoritma Kriptografi Kunci-publik RSA menggunakan Chinese Remainder Theorem Algoritma Kriptografi Kunci-publik RSA menggunakan Chinese Remainder Theorem Muhamad Reza Firdaus Zen NIM : 13504048 Sekolah Teknik Elektro dan Informatika ITB, Bandung, email: if14048@students.if.itb.ac.id

Lebih terperinci

BAB II BAB II TINJAUAN PUSTAKA

BAB II BAB II TINJAUAN PUSTAKA BAB II BAB II TINJAUAN PUSTAKA Dalam penyusunan tesis ini perlu dilakukan tinjauan pustaka sebagai dasar untuk melakukan penelitian. Adapun hal-hal yang perlu ditinjau sebagai dasar penyusunannya ialah

Lebih terperinci

Penyelesaian Persamaan Linear Dalam Bentuk Kongruen

Penyelesaian Persamaan Linear Dalam Bentuk Kongruen Penyelesaian Persamaan Linear Dalam Bentuk Kongruen Yayat Priyatna Jurusan Matematika FMIPA UNPAD Jl. Raya Jatinangor Bdg Smd Km 11 E mail : yatpriyatna@yahoo.com Tlp / Fax : 022 4218676 HP :08122334508

Lebih terperinci

BAB 2 LANDASAN TEORI. Berikut ini akan dijelaskan pengertian, tujuan dan jenis kriptografi.

BAB 2 LANDASAN TEORI. Berikut ini akan dijelaskan pengertian, tujuan dan jenis kriptografi. BAB 2 LANDASAN TEORI 2.1. Kriptografi Berikut ini akan dijelaskan pengertian, tujuan dan jenis kriptografi. 2.1.1. Pengertian Kriptografi Kriptografi (cryptography) berasal dari bahasa Yunani yang terdiri

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field.

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. BAB 2 LANDASAN TEORI Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. Hal ini dimulai dengan memberikan pengertian dari group

Lebih terperinci

Studi dan Implementasi Sistem Kriptografi Rabin

Studi dan Implementasi Sistem Kriptografi Rabin Studi dan Implementasi Sistem Kriptografi Rabin Anugrah Adeputra Program Studi Teknik Informatika, Institut Teknologi Bandung, Jl.Ganesha No.10 Email: if15093@students.if.itb.ac.id Abstraksi Sistem Kriptografi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Kriptografi 2.1.1 Pengertian kriptografi Kriptografi (Cryptography) berasal dari Bahasa Yunani. Menurut bahasanya, istilah tersebut terdiri dari kata kripto dan graphia. Kripto

Lebih terperinci

Penerapan Matriks dalam Kriptografi

Penerapan Matriks dalam Kriptografi Penerapan Matriks dalam Kriptografi Malvin Juanda/13514044 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia 13514044@std.stei.itb.ac.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kriptografi Kriptografi adalah ilmu mengenai teknik enkripsi dimana data diacak menggunakan suatu kunci enkripsi menjadi sesuatu yang sulit dibaca oleh seseorang yang tidak

Lebih terperinci

BAB II DASAR TEORI. membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda

BAB II DASAR TEORI. membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda BAB II DASAR TEORI Pada Bab II ini akan disajikan beberapa teori yang akan digunakan untuk membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda tangan digital yang meliputi: keterbagian

Lebih terperinci

Implementasi Kriptografi Kunci Publik dengan Algoritma RSA-CRT pada Aplikasi Instant Messaging

Implementasi Kriptografi Kunci Publik dengan Algoritma RSA-CRT pada Aplikasi Instant Messaging Scientific Journal of Informatics Vol. 3, No. 1, Mei 2016 p-issn 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-issn 2460-0040 Implementasi Kriptografi Kunci Publik dengan Algoritma RSA-CRT pada

Lebih terperinci

Perhitungan dan Implementasi Algoritma RSA pada PHP

Perhitungan dan Implementasi Algoritma RSA pada PHP Perhitungan dan Implementasi Algoritma RSA pada PHP Rini Amelia Program Studi Teknik Informatika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sunan Gunung Djati Bandung. Jalan A.H Nasution No.

Lebih terperinci

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan prima, bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas (square free), keterbagian,

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Kriptografi (cryptography) merupakan ilmu dan seni penyimpanan pesan, data, atau informasi secara aman. Kriptografi (cryptography) berasal dari bahasa Yunani yaitu dari kata Crypto

Lebih terperinci

PENERAPAN METODA CHINESE REMAINDER THEOREM PADA RSA

PENERAPAN METODA CHINESE REMAINDER THEOREM PADA RSA PENERAPAN METODA CHINESE REMAINDER THEOREM PADA RSA Yuri Andri Gani 13506118 Sekolah Teknik Elektro dan Informatika ITB, Bandung, 40132, email: if16118@students.if.itb.ac.id Abstrak Algoritma RSA merupakan

Lebih terperinci

Algoritma. Begin at the beginning and go on /ll you come to the end: then stop. Lewis Caroll, Alice s Adventures in Wonderland, 1865

Algoritma. Begin at the beginning and go on /ll you come to the end: then stop. Lewis Caroll, Alice s Adventures in Wonderland, 1865 Algoritma Begin at the beginning and go on /ll you come to the end: then stop. Lewis Caroll, Alice s Adventures in Wonderland, 1865 1 Algoritma Abu Ja far Mohammed Ibn Musa Al- Khowarizmi (Sumber: Kenneth

Lebih terperinci

TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0.

TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. TEORI BILANGAN Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Sifat Pembagian pada Bilangan Bulat Misalkan a dan b adalah dua buah bilangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Bab II ini berisi tentang pembahasan teori-teori tentang Kriptografi algoritma Affine Cipher dan Advanced Encrytpion Standard 2.1. Kriptografi Kata Cryptography berasal dari bahasa

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses penelitian untuk penyelesaian persamaan Diophantine dengan relasi kongruensi modulo m mengenai aljabar dan

Lebih terperinci

Bilangan Prima dan Teorema Fundamental Aritmatika

Bilangan Prima dan Teorema Fundamental Aritmatika Pembaharuan Terakhir: 28 Maret 2017 Pengantar Teori Bilangan (Bagian 5): Bilangan Prima dan Teorema Fundamental Aritmatika M. Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan

Lebih terperinci

BAB III ANALISA DAN PERANCANGAN 3.1 Analisis Sistem Analisis sistem merupakan uraian dari sebuah sistem kedalam bentuk yang lebih sederhana dengan maksud untuk mengidentifikasi dan mengevaluasi permasalahan-permasalahan

Lebih terperinci

BAB 2 LANDASAN TEORI Kriptografi

BAB 2 LANDASAN TEORI Kriptografi 14 BAB 2 LANDASAN TEORI 2.1. Kriptografi Kriptografi memiliki sejarah yang sangat panjang di mana kriptografi telah ditemukan sejak 3600 tahun yang lalu di lihat dari sudah di temukannya simbol - simbol

Lebih terperinci

Tanda Tangan Digital Majemuk dengan Kunci Publik Tunggal dengan Algoritma RSA dan El Gamal

Tanda Tangan Digital Majemuk dengan Kunci Publik Tunggal dengan Algoritma RSA dan El Gamal Tanda Tangan Digital Majemuk dengan Kunci Publik Tunggal dengan Algoritma RSA dan El Gamal Muhamad Fajrin Rasyid 1) 1) Program Studi Teknik Informatika ITB, Bandung 40132, email: if14055@students.if.itb.ac.id

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Kriptografi 2.1.1 Definisi Kriptografi Kriptografi berasal dari bahasa Yunani, crypto dan graphia. Crypto berarti secret (rahasia) dan graphia berarti writing (tulisan)[10]. Beberapa

Lebih terperinci

Teori Bilangan. Bahan Kuliah IF2151 Matematika Diskrit. Rinaldi M/IF2151 Mat. Diskrit 1

Teori Bilangan. Bahan Kuliah IF2151 Matematika Diskrit. Rinaldi M/IF2151 Mat. Diskrit 1 Teori Bilangan Bahan Kuliah IF2151 Matematika Diskrit Rinaldi M/IF2151 Mat. Diskrit 1 Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0 Berlawanan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Kriptografi Kriptografi berasal dari bahasa Yunani. Menurut bahasa tersebut kata kriptografi dibagi menjadi dua, yaitu kripto dan graphia. Kripto berarti secret (rahasia) dan

Lebih terperinci

Penerapan algoritma RSA dan Rabin dalam Digital Signature

Penerapan algoritma RSA dan Rabin dalam Digital Signature Penerapan algoritma RSA dan Rabin dalam Digital Signature Gilang Laksana Laba / 13510028 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 11, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

Aplikasi Aljabar Lanjar untuk Penyelesaian Persoalan Kriptografi dengan Hill Cipher

Aplikasi Aljabar Lanjar untuk Penyelesaian Persoalan Kriptografi dengan Hill Cipher Aplikasi Aljabar Lanjar untuk Penyelesaian Persoalan Kriptografi dengan Hill Cipher Nursyahrina - 13513060 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

MEMBANGUN APLIKASI KEAMANAN DATA TEKS DENGAN METODE RSA CRT BERBASIS ANDROID

MEMBANGUN APLIKASI KEAMANAN DATA TEKS DENGAN METODE RSA CRT BERBASIS ANDROID KARYA ILMIAH MAHASISWA TEKNIK INFORMATIKA 1 MEMBANGUN APLIKASI KEAMANAN DATA TEKS DENGAN METODE RSA CRT BERBASIS ANDROID Herix Saputra Budihani Abstrak Keamanan data merupakan sesuatu yang harus diperhatikan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi memberi pengaruh besar bagi segala aspek kehidupan. Begitu banyak manfaat teknologi tersebut yang dapat diimplementasikan dalam kehidupan. Teknologi

Lebih terperinci

Algoritma dan Bilangan Bulat Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Algoritma dan Bilangan Bulat Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Algoritma dan Bilangan Bulat Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Algoritma Masalah. Kemiripan substansi masalah.

Lebih terperinci

Perangkat Lunak Pembelajaran Protokol Secret Sharing Dengan Algoritma Asmuth Bloom

Perangkat Lunak Pembelajaran Protokol Secret Sharing Dengan Algoritma Asmuth Bloom Perangkat Lunak Pembelajaran Protokol Secret Sharing Dengan Algoritma Asmuth Bloom Marto Sihombing 1), Erich Gunawan 2) STMIK IBBI Jl. Sei Deli No. 18 Medan, Telp. 061-4567111 Fax. 061-4527548 E-mail :

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Problema logaritma diskrit adalah sebuah fundamental penting untuk proses pembentukan kunci pada berbagai algoritma kriptografi yang digunakan sebagai sekuritas dari

Lebih terperinci

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritma Pembagian............................. 3 1.2 Pembagi persekutuan terbesar......................... 6 1.3 Algoritma Euclides............................... 11

Lebih terperinci

IMPLEMENTASI KRIPTOGRAFI DAN STEGANOGRAFI DENGAN MENGGUNAKAN ALGORITMA RSA DAN MEMAKAI METODE LSB

IMPLEMENTASI KRIPTOGRAFI DAN STEGANOGRAFI DENGAN MENGGUNAKAN ALGORITMA RSA DAN MEMAKAI METODE LSB IMPLEMENTASI KRIPTOGRAFI DAN STEGANOGRAFI DENGAN MENGGUNAKAN ALGORITMA RSA DAN MEMAKAI METODE LSB Imam Ramadhan Hamzah Entik insanudin MT. e-mail : imamrh@student.uinsgd.ac.id Universitas Islam Negri Sunan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA.1 Kriptografi Kriptografi pada awalnya dijabarkan sebagai ilmu yang mempelajari bagaimana menyembunyikan pesan. Namun pada pengertian modern kriptografi adalah ilmu yang bersandarkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1 Jenis Sistem Kriptografi Sistem kriptografi ( cryptographic system atau cryptosystem) adalah kumpulan yang terdiri dari algoritma kriptografi, semua plaintext dan ciphertext

Lebih terperinci

Kegunaan Chinese Remainder Theorem dalam Mempercepat dan Meningkatkan Efisiensi Peforma Sistem Kriptografi RSA

Kegunaan Chinese Remainder Theorem dalam Mempercepat dan Meningkatkan Efisiensi Peforma Sistem Kriptografi RSA Kegunaan Chinese Remainder Theorem dalam Mempercepat dan Meningkatkan Efisiensi Peforma Sistem Kriptografi RSA Shauma Hayyu Syakura NIM : 13507025 Program Studi Teknik Informatika Sekolah Teknik Elektro

Lebih terperinci

APLIKASI TEORI BILANGAN UNTUK AUTENTIKASI DOKUMEN

APLIKASI TEORI BILANGAN UNTUK AUTENTIKASI DOKUMEN APLIKASI TEORI BILANGAN UNTUK AUTENTIKASI DOKUMEN Mohamad Ray Rizaldy - 13505073 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung, Jawa Barat e-mail: if15073@students.if.itb.ac.id

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1 Pengenalan Kriptografi II.1.1 Sejarah Kriptografi Kriptografi mempunyai sejarah yang panjang. Informasi yang lengkap mengenai sejarah kriptografi dapat di temukan di dalam buku

Lebih terperinci

Algoritma Pendukung Kriptografi

Algoritma Pendukung Kriptografi Bahan Kuliah ke-20 IF5054 Kriptografi Algoritma Pendukung Kriptografi Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 20. Algoritma Pendukung Kriptografi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Kriptografi Kata Cryptography berasal dari bahasa Yunani yang terdiri dari dua kata yaitu kryptos yang berarti rahasia dan graphein yang berarti tulisan (Mollin, 2007). Kriptografi

Lebih terperinci

BAB III METODOLOGI PENELITIAN. ditemukan oleh Rivest, Shamir dan Adleman (RSA) pada tahun

BAB III METODOLOGI PENELITIAN. ditemukan oleh Rivest, Shamir dan Adleman (RSA) pada tahun BAB III METODOLOGI PENELITIAN 3.1 Analisis Algoritma Kriptografi RSA Algoritma kriptografi RSA adalah algoritma untuk keamanan data yang ditemukan oleh Rivest, Shamir dan Adleman (RSA) pada tahun 1977-1978.

Lebih terperinci

PENERAPAN SISTEM KRIPTOGRAFI ELGAMAL ATAS PEMBUATAN TANDA TANGAN DIGITAL SKRIPSI

PENERAPAN SISTEM KRIPTOGRAFI ELGAMAL ATAS PEMBUATAN TANDA TANGAN DIGITAL SKRIPSI PENERAPAN SISTEM KRIPTOGRAFI ELGAMAL ATAS PEMBUATAN TANDA TANGAN DIGITAL DALAM SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Untuk Memenuhi Sebagian

Lebih terperinci

METODE ENKRIPSI DAN DEKRIPSI DENGAN MENGGUNAKAN ALGORITMA ELGAMAL

METODE ENKRIPSI DAN DEKRIPSI DENGAN MENGGUNAKAN ALGORITMA ELGAMAL METODE ENKRIPSI DAN DEKRIPSI DENGAN MENGGUNAKAN ALGORITMA ELGAMAL Mukhammad Ifanto (13508110) Program Studi Informatika Institut Teknolgi Bandung Jalan Ganesha 10 Bandung e-mail: ifuntoo@yahoo.om ABSTRAK

Lebih terperinci

BAB I PENDAHULUAN. mempunyai makna. Dalam kriptografi dikenal dua penyandian, yakni enkripsi

BAB I PENDAHULUAN. mempunyai makna. Dalam kriptografi dikenal dua penyandian, yakni enkripsi BAB I PENDAHULUAN A. Latar Belakang Kemajuan dan perkembangan teknologi informasi dewasa ini telah berpengaruh pada seluruh aspek kehidupan manusia, termasuk bidang komunikasi. Pada saat yang sama keuntungan

Lebih terperinci

Minggu I PERSAMAAN DIOPHANTNE LINEAR

Minggu I PERSAMAAN DIOPHANTNE LINEAR Minggu I PERSAMAAN DIOPHANTNE LINEAR Budi Surodjo dan Yeni Susanti June 6, 2014 Budi Surodjo dan Yeni Susanti Minggu I PERSAMAAN DIOPHANTNE LINEAR June 6, 2014 1 / 15 Outline Outline 1 PDL Bagian I Contoh

Lebih terperinci

Gambar 2.1 Egyptian Hieroglyphs

Gambar 2.1 Egyptian Hieroglyphs BAB 2 LANDASAN TEORI 2.1 Sejarah Kriptografi Kriptografi memiliki sejarah yang panjang. Penulisan rahasia ini dapat dilacak kembali ke 3000 tahun SM saat digunakan oleh bangsa Mesir. Mereka menggunakan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Kriptografi Kriptografi digunakan sebagai alat untuk menjamin keamanan dan kerahasiaan informasi. Karena itu kriptografi menjadi ilmu yang berkembang pesat, terbukti dengan banyaknya

Lebih terperinci

Implementasi dan Perbandingan Algoritma Kriptografi Kunci Publik

Implementasi dan Perbandingan Algoritma Kriptografi Kunci Publik Implementasi dan Perbandingan Algoritma Kriptografi Kunci Publik RSA, ElGamal, dan ECC Vincent Theophilus Ciputra (13513005) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

FAST EXPONENTIATION. 1. Konsep Modulo 2. Perpangkatan Cepat

FAST EXPONENTIATION. 1. Konsep Modulo 2. Perpangkatan Cepat FAST EXPONENTIATION 1. Konsep Modulo 2. Perpangkatan Cepat Fast Exponentiation Algoritma kunci-publik seperti RSA, Elgamal, Rabin-Williams Cryptosystem, DSA, dan sebagainya, sederhana dalam perhitungannya

Lebih terperinci

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan DIKTAT KULIAH ( sks) MX 17 Teori Bilangan (Revisi Terakhir: Juli 009 ) Oleh: Didit Budi Nugroho, S.Si., M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA

Lebih terperinci

Perbandingan Sistem Kriptografi Kunci Publik RSA dan ECC

Perbandingan Sistem Kriptografi Kunci Publik RSA dan ECC Perbandingan Sistem Kriptografi Publik RSA dan ECC Abu Bakar Gadi NIM : 13506040 1) 1) Jurusan Teknik Informatika ITB, Bandung, email: abu_gadi@students.itb.ac.id Abstrak Makalah ini akan membahas topik

Lebih terperinci

IMPLEMENTASI CHINESE REMAINDER THEOREM DALAM MEMBENTUK VARIAN RSA (RIVEST-SHAMIR-ADLEMAN) UNTUK PENGAMANAN DATA DIGITAL

IMPLEMENTASI CHINESE REMAINDER THEOREM DALAM MEMBENTUK VARIAN RSA (RIVEST-SHAMIR-ADLEMAN) UNTUK PENGAMANAN DATA DIGITAL IMPLEMENTASI CHINESE REMAINDER THEOREM DALAM MEMBENTUK VARIAN RSA (RIVEST-SHAMIR-ADLEMAN) UNTUK PENGAMANAN DATA DIGITAL Putri Erivani NIM 13505033 Program Studi Teknik Informatika,Sekolah Teknik Elektro

Lebih terperinci