BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN"

Transkripsi

1 BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015

2 KATA PENGANTAR ب س م االله الر ح م ن الر ح ي م Segala puji bagi Allah SWT yang telah memberikan kehidupan bagi kita dan memberkahi kita dengan hidayah dan karunia-nya yang begitu melimpah. Shalawat serta salam tetap tercurah kepada Nabi Besar Muhammad SAW yang selalu menjadi panutan untuk kehidupan semua umat Islam. Adapun isi bahan ajar ini meliputi materi Strategi Pembuktian, Keterbagian, Algoritma Pembagian, Kongruensi dan Sistem Residu. Semoga bahan ajar ini dapat memberikan manfaat dalam bidang pendidikan khususnya dalam pembelajaran Teori Bilangan bagi mahasiswa Pendidikan Matematika Metro, September 2015 Penyusun

3 BAB I STRATEGI PEMBUKTIAN Teknik Pembuktian: 1. Pembuktian Langsung 2. Pembuktian Tidak Langsung 2.1 Pembuktian dengan kontraposisi 2.2 Pembuktian dengan kontradiksi 3. Induksi Matematika Teknik Pembuktian Langsung: Misalkan P dan Q merupakan pernyataan-pernyataan. Pernyataan bahwa P dapat mengambil pernyatan P sebagai pernyataan yang diketahui dan pernyataan Q yang akan dibuktikan. Contoh: Jika n suatu bilangan bulat genap, maka suatu bilangan bulat genap! Misalkan n bulat genap, yaitu n = 2k, maka = = karena k bilangan bulat, maka bilangan bulat. Pembuktian Tidak Langsung: Ada 2 tipe dasar dari pembuktian tidak langsung, yaitu : pembuktian dengan kontraposisi dan pembuktian dengan kontradiksi. 1. Pembuktian dengan kontraposisi Dalam pembuktian P kita akan membuktikan dengan kontraposisinya yaitu:

4 Contoh: Jika n suatu bilangan bulat, dan adalah ganjil, maka n adalah ganjil! Akan dibuktikan denga kontraposisi, Andaikan n bukan ganjil, maka n genap yaitu n = 2p Maka = = Karena n genap, maka juga genap. Sehingga terbukti bahwa bukan ganjil. II. Pembuktian dengan kontradiksi Metode pembuktian ini menggunakan pernyataan bahwa jika C suatu kontradiksi, maka pernyataan ekuivalen dengan P Contoh: Misalkan a > 0 merupakan bilangan real. Jika a > 0, maka > 0! Andaikan < 0, maka bernilai negatif. Karena 1 positif, maka a bernilai negatif. Dengan kata lain, a < 0 Maka kontradiksi dengan a > 0. Induksi Matematika: Induksi matematika merupakan metode yang digunakan untuk membangun kevalidan pernyataan yang diberikan dalam istilah-istilah bilangan asli. Prinsip induksi matematika menyatakan bahwa: Misalkan yang mempunyai sifat-sifat : (1)

5 (2) K, maka k + 1 Contoh: Buktikan n = n + n! Untuk n = 1, maka 2 n = n (1 + n) 2. 1 = 1 (1 + 1) 2 = 2 (terbukti) Selanjutnya, asumsikan benar untuk n = k, maka k = k + k Maka akan dibuktikan benar untuk n = k + 1, bukti: k + k + = k + k + k + = k + + 2k + 2 = + 3k + 2 = (k + 1) (k + 2) = (k + 1)[ + k + ] Sehingga terbukti bahwa : n = n + n

6 KETERBAGIAN DEFINISI Suatu bilangan bulat b adalah habis dibagi oleh suatu bilangan bulat jika = dan dituliskan dengan a b. Jika tidak habis dibagi oleh a, maka dituliskan a. a b dibaca a membagi b berarti bahwa a adalah pembagi dari b, dengan kata lain bahwa b adalah kelipatan dari a. Teorema 2.1 (1) maka (2) dan b c maka (3) dan maka + (4) dan maka = (5) maka (6) Pembuktian: (1) maka a b berdasarkan definisi =. Akibatnya berlaku pula bahwa: = =. Karena pada bilangan bulat berlaku sifat tertutup pada perkalian, maka berarti : = berlaku = =. Sehingga berdasarkan definisi: =. Maka dapat disimpulkan bahwa.

7 (2) dan b c maka maka = maka = Sehingga = = = =, dengan = Sehingga berdasarkan definisi terbukti bahwa (3) dan maka + maka = maka = Akibatnya berlaku : = = Sehingga : + = + = + = dengan = + Berdasarkan definisi, maka dapat disimpulkan bahwa : + (4) dan maka = maka = maka = Akibatnya berlaku: = = = atau = =

8 Karena maka = 0 atau =1 Persamaan =1 dipenuhi untuk: = = atau = = Sehingga didapatkan bahwa: = Contoh: Buktikan bahwa merupakan suatu kelipatan dari 169,! Ambil P(n) adalah pernyataan = n. (1) Untuk n =1, maka = = yang berarti dapat dibagi oleh 169. jadi P(n) benar untuk n = 1. (2) Asumsikan benar untuk n = k 1, k >1 diperoleh = k = 169M sehingga untuk n = k, diperoleh: = = + = M k Yang dapat dibagi oleh 169, yang berarti bahwa: P(n) benar untuk n = k. Dari (1) dan (2) disimpulkan terbukti bahwa merupakan suatu kelipatan dari 169,

9 Teorema 2.2 Algoritma Pembagian Jika dengan maka = + Jika, maka r memenuhi ketaksamaan. Dalam situasi ini, q dinamakan hasil bagi, r dinamakan sisa ketika b dibagi a. (i) Adib : = + Untuk dan >0 dapat dibentuk barisan aritmatika:, b 2a,, + yang mempunyai bentuk umum suku adalah. Ambil himpunan S yang anggotanya adalah suku-suku yang tidak negatif, yaitu: S = { } Menurut prinsip urutan, S mempunyai anggota terkecil yaitu r Maka r dapat dinyatakan dalam bentuk r = = + Jadi terbukti = +. (ii) Adib : Andaikan Karena tidak benar. ( tidak negatif), maka Dipihak lain, = = = + = = +

10 Karena dan =, Maka sehingga ( ) merupakan anggota S yang lebih kecil dari. Hal ini kontradiksi dengan pengambilan r sebagai anggota terkecil S. Jadi terbukti bahwa (iii) Adib : q dan r tunggal Andaikan q dan tidak tunggal, yaitu dan memenuhi: = + = + sehingga : + = + + = 0 ( = Yang berarti Dipihak lain dan Berakibat atau Dengan demikian berakibat = 0, sehingga = Dari ( = diperoleh = 0 Karena maka = atau =. Jadi terbukti bahwa q dan r tunggal. Dari (i), (ii), dan (iii) maka terbukti algoritma pembagian. Contoh: 1. Tunjukkan bahwa +, maka = + Berarti r = 0 atau r = 1 (i) Untuk r = 0, berarti = sehingga + = + = { + } = 2k

11 Untuk suatu k = + Karena maka = +. Karena ada k, sehingga + = maka + (ii) Untuk r = 1, berarti = + sehingga + = = = ( + ). ( + = + + = Untuk t = + + Karena = + + Karena ada t, sehingga + = maka + Berdasarkan (i) dan (ii), terbukti bahwa : + 2. Tunjukkan bahwa habis dibagi 8, (i) Untuk n = 1, maka 8,(benar) (ii) Asumsikan benar untuk n = k, 8 Selanjutnya akan dibuktikan untuk n = k + 1 maka : 8 maka = 8 maka = = + Karena n k, maka: 8 = 8 = 8 = 8 9( + ) 1 = = = x + = 8 8(9x + 1) = 8 8m, untuk m = 9x+1 Terbukti bahwa n = k+1 maka 8. Dari (i) dan (ii), terbukti bahwa : habis dibagi 8,

12 KONGRUENSI DEFINISI Jika sebuah bilangan bulat m yang tidak nol, membagi selisih a b, maka dikatakan a kongruen dengan b modulo m, dan ditulis: Jika a b tidak habis dibagi oleh m, maka dikatakan a tidak kongruen dengan b modulo m, dan ditulis: Selanjutnya b dinamakan sisa dari a ketika dibagi oleh m. Contoh: 1. 27, karena (27 2) terbagi oleh , karena (35 6) tidak terbagi 7 Dari definisi dan contoh diatas, dapat dikatakan bahwa: jika m > 0 dan m (a b) maka =. Sehingga, ini sama artinya dengan atau beda antara a dan b merupakan kelipatan m. Jadi dapat juga dinyatakan a = mt + b, yaitu a sama dengan b ditambah kelipatan m. Teorema 3.1 Andaikan a, b, c i. Refleksif, dan m bilangan asli, maka berlaku sifat: ii. Simetris, jika ( ) maka b ( ) iii. Transitif, jika dan b maka a Andaikan a, b, c dan m bilangan asli, maka berlaku sifat:

13 i. Refleksif, ( ) Akan dibuktikan: ( ) Jika m 0 maka m 0, berarti m (a a) Jadi ( ), dan m 0 Cara lain: ( ), sebab a a = 0 dan m 0. ii. Akan dibuktikan: jika ( ) maka b ( ) ( ) berarti m a b, menurut definisi keterbagian: m a b dapat dinyatakan a b = tm, t Jika kedua ruas dikalikan negatif, diperoleh: -(a b) = -tm b a = (-t)m, -t Jadi m b a atau b ( ) Teorema 3.2 Andaikan a, b, c dan m Jika maka + + berarti m (a b) Menurut definisi keterbagian: m a b dapat dinyatakan a b = tm, (a b) + 0 = tm (a +c) (b + c)= tm Jadi m (a + c) (b + c) atau a + c + Teorema 3.3 Andaikan a, b, c dan m

14 Jika maka berarti m (a b) Menurut definisi keterbagian m (a b) dapat dinyatakan: a b = tm, t a b = tm, t (a b)c = (tm)c ac bc = (tc) m Jadi m (ac bc) atau Contoh: 1. Tentukan sisa ketika dibagi oleh 37! Jawab: = 6. = 6. Karena = -1 (mod 37), maka: = 6. = 6 = -6 Jadi = -6 = -43 (mod 37) Sehingga sisa pembagian adalah Apakah dapat dibagi 3? Jawab : Karena 4 = 1 (mod 3) sehingga: = = 1 (mod 3) Jadi dapat dibagi 3 3. Selesaikan 6x ( )? Jawab : 6x = 15 (mod 33) 2x = 5 (mod 11) 2x = 16 (mod 11), x = 8 (mod 11)

15 Sehingga nilai x yang memenuhi adalah 8, 19, 30 Teorema 3.4 Andaikan dan Jika ( )dan c ( ) maka + + ( ) ( ) berarti m a - b c ( ) berarti m c - d Menurut definisi keterbagian: m a b dapat dinyatakan a b = m, m c d dapat dinyatakan c d = m, Jika dijumlahkan, maka diperoleh: (a+c) (b + d) = ( + )m, ( + ) Jadi m (a+c) (b+d) atau + + ( ) Teorema 3.5 Andaikan dan Jika ( ) dan c ( ) maka ( ) ( ) berarti m a - b c ( ) berarti m c - d Menurut definisi keterbagian: m a b dapat dinyatakan a b = m, m c d dapat dinyatakan c d = m, Jika dikurangi, maka diperoleh: (a - c) (b d) = ( )m, ( ) Jadi m (a - c) (b d) atau ( )

16 Teorema 3.6 Andaikan dan Jika ( ) dan d m maka ( ) ( ) berarti m a b Jika m a b dan d m, maka d a b Jadi d a b berarti ( ) Teorema 3.7 Andaikan dan Jika ( ) dan c ( ) maka + + ( ) ( ) berarti m a b ( ) berarti m c d Menurut definisi keterbagian: m a b dapat dinyatakan a b = m, ax bx = ( )m, (a b) x = ( m)x m c d dapat dinyatakan c d = m, (c d) y = ( m)y cy dy = ( )m, Apabila dijumlahkan, diperoleh: ax bx = ( cy dy = ( )m, )m, (ax + cy) (bx + dy) = ( + )m, + Jadi m (ax + cy) (bx + dy) atau a + c b + d (mod m)

17 Contoh: 1. Cari digit terakhir dari! Jawab: = 1 (mod 4) Bagian pangkat: =. 7 =. 7 = 7 = 3 (mod 4) Sehingga dengan definisi algortima pembagian diperoleh : Dipihak lain: = -1 (mod 10) =. 7 = = -7 = 3 (mod 10) = 3 + 4t Sehingga = =. =. 3 (mod 10) Jadi digit terakhir adalah 3. =. 3 (mod 10) = 3 (mod 10) 2. Tentukan bilangan-bilangan kuadrat sempurna di modulo 13! Jawab: Misal bilangan kuadrat tersebut adalah : Karena modulo 13, sehingga = Maka han a akan dipenuhi oleh r = 6. Diamati bahwa : = 0, = 1, = 4, dan = 9 = 3 (mod 13), = 12 (mod 13), dan = 10 (mod 13) Jadi kuadrat sempurna di modulo 13 yaitu, 0, 1, 4, 9, 3, 12, dan 10. Teorema 3.8 Andaikan dan Jika ( ) dan c ( ) maka ( ) ( ) berarti m - b c ( ) berarti m c - d

18 Menurut definisi keterbagian: m a b dapat dinyatakan a b = m, (a b)c = ( m)c ac bc = ( c)m, m c d dapat dinyatakan c d = m, (c d)b = ( m)b bc bd = ( b)m, Dari 1) dan 2) dijumlahkan sehingga didapat : ac bc = ( c)m bc bd = ( b)m ac bd = ( c + b)m, c + b Ini berarti m ac bd atau ac bd (mod m). Teorema 3.9 Andaikan dan Jika ( ) maka ( ) ( ) berarti m b Menurut definisi keterbagian: m a b dapat dinyatakan a b = m, (a b)c = ( m)c ac bc = ( )mc Ini berarti mc ac bc atau ac bc (mod mc).

19 Teorema 3.10 Andaikan dan Jika ( ), maka ( ) untuk n bilangan bulat positif. ( ) berarti m a b Menurut definisi keterbagian: m a b dapat dinyatakan a b = m, Kita kenal bahwa bentuk : = Karena a b a b, maka a b ( ) Ini berarti a b Menurut teorema keterbagian: Jika m a b dan a b, maka m Jadi m atau ( ) Teorema 3.11 Andaikan f suatu polinom dengan koefisien bilangan bulat. Jika ( ), maka f ( ) Andaikan f(x) = Dengan bilangan bulat = maka f(a) = = maka f(b) = Jika kedua dikurangkan, diperoleh: f( ) f(b) = Dengan menerapkan teorema: ( )

20 ( ) dst Dengan menggunakan teorema keterbagian, diperoleh: m Berarti m f( ) f(b) atau f ( ) Contoh: 1. Cari bilangan-bilangan bulat n sedemikian sehingga + 27 dapat dibagi 7! Jawab: Diamati bahwa = 2 = 4 = 1 (mod 7) = 2 (mod 7) = 4 (mod 7) = 1 (mod 7) Selain itu, = 1 (mod 7), Karena itu + 27 = = 0 (mod 7) 2. Tentukan semua penyelesaian tak negatif ( ) di modulo 16 jika = 1599 Jawab: Perlu diamati bahwa semua pangkat 4 sempurna di modulo 16 adalah 0, 1 (mod 16) Ini berarti bahwa Memiliki nilai paling besar adalah 14 (mod 16) Sedangkan 1599 = 15 (mod 16). Jadi terlihat tidak ada penyelesaian tak negatif di modulo 16.

21 SISTEM RESIDU DEFINISI Suatu bilangan bulat dikatakan suatu sistem residu lengkap modulo n jika setiap bilangan bulat kongruen dengan salah satu dari himpunan itu. Atau dengan kata lain Himpunan, dikatakan sistem residu lengkap modulo m, jika sehingga Contoh: Misalkan n = 4. Untuk sembarang bilangan bulat a, akan terdapat sisa tepat satu bilangan bulat q sehingga: a = 4 q a = 4q + 1 atau a = 4q + 2 a = 4q + 3 Hal itu mengatakan bahwa bilangan bulat dapat dibagi ke dalam empat kelas bagian, yaitu: {4q q B} = { -8, - } {4q + 1 q B} = { -7, - } {4q + 2 q B} = { -6, - } {4q + 3 q B} = { -5, - } Karena {0, 1, 2, 3} merupakan semua kemungkinan dari sisa pembagian dengan 4, maka keempat himpunan itu berturut-turut dapat dituliskan dalam pengertian kongruensi sebagai berikut: [0] = {k B k } [1] = {k B k } [2] = {k B k } [3] = {k B k } Perhatikan bahwa untuk setiap bilangan bulat akan tepat berada dalam salah satu himpunan [0], [1], [2] atau [3].

22 Atau dengan kata lain himpunan {0, 1, 2, 3} ini dinamakan sistem residu lengkap modulo 4. Teorema 4.1 Untuk sembarang bilangan bulat a dan b, a ( ) jika dan hanya jika a dan b memiliki sisa yang sama apabila dibagi dengan n. 1) Adib : a ( ) maka a dan b memiliki sisa yang sama apabila dibagi dengan n Misalkan a ( ) dan sisa pembagian b dengan n adalah r, yaitu b = qn + r dengan 0 Akan ditunjukkan bahwa r juga merupakan sisa pembagian dari bilangan bulat a dengan n. Untuk itu, dituliskan a = pn + r a ( ) dengan defini keterbagian diperoleh: a b = kn, k Dipihak lain: b = qn + r, sehingga: a (qn + r) = kn a = kn + qn + r = (k + q)n + r a = (k + q)n + r a = pn + r, dengan p = k + q Ini menunjukkan bahwa sisa pembagian a dengan n sama dengan sisa pembagian b dengan n, yaitu r. Sehingga terbukti: a ( ) maka a dan b memiliki sisa yang sama apabila dibagi dengan n ii) Adib: a dan b memiliki sisa yang sama jika dibagi dengan n, maka a ( )

23 Misalkan a = + dan = + dengan sisa pembagian yang sama yaitu r. maka akan ditunjukkan bahwa a b (mod n). a = + dan = +, jika dikurangkan diperoleh: a b = ( + ) ( + ) = ( a b = ( a b = k n, dengan k = Dengan kata lain bahwa a ( ) Dari i dan ii, disimpulkan bahwa a ( ) jika dan hanya jika a dan b memiliki sisa yang sama apabila dibagi dengan n.

24 1. Buktikan bahwa: LATIHAN n = + 2. Buktikan bahwa: n 1) = 3. Buktikan bahwa : = 4. Buktikan bahwa : selalu habis dibagi oleh 5! 5. Buktikan bahwa! 6. Buktikan maka 7. Buktikan 8. Tunjukkan bahwa 3 n! 9. Buktikan bahwa jika maka 10. Buktikan bahwa jika maka 11. Transitif, jika dan b maka a 12. Buktikan bahwa : 7 ( Selesaikan 26 x = 17 (mod 33)! 14. Buktikan bahwa : 7 ( Cari semua x yang memenuhi persamaan 7 + x = 4 (mod 5)!

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi 5 II. TINJAUAN PUSTAKA Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi penjumlahan dua bilangan kuadrat sempurna. Seperti, teori keterbagian bilangan bulat, bilangan prima, kongruensi

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep II. TINJAUAN PUSTAKA Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan bulat, bilangan prima,modular, dan kekongruenan. 2.1 Bilangan Bulat Sifat Pembagian

Lebih terperinci

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Oleh. Nikenasih B 1.1 SIFAT HABIS DIBAGI PADA BILANGAN BULAT Untuk dapat memahami sifat habis dibagi pada bilangan bulat, sebelumnya perhatikan

Lebih terperinci

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang?

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang? Pada bab ini dipelajari aritmatika modular yaitu aritmatika tentang kelas-kelas ekuivalensi, dimana permasalahan dalam teori bilangan disederhanakan dengan cara mengganti setiap bilangan bulat dengan sisanya

Lebih terperinci

MODUL PERSIAPAN OLIMPIADE. Oleh: MUSTHOFA

MODUL PERSIAPAN OLIMPIADE. Oleh: MUSTHOFA MODUL PERSIAPAN OLIMPIADE Oleh: MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2007 1 TEORI BILANGAN Dalam teori bilangan, semesta pembicaraan

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA HANDOUT TEORI BILANGAN MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2011 1 RELASI KETERBAGIAN Dalam teori bilangan, semesta pembicaraan

Lebih terperinci

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul Training of Trainer (TOT) Olimpiade Matematika Tingkat Sekolah Menengah Atas Untuk Guru-guru Sekolah Menengah Atas di Kabupaten Bantul

Lebih terperinci

BAB I INDUKSI MATEMATIKA

BAB I INDUKSI MATEMATIKA BAB I INDUKSI MATEMATIKA 1.1 Induksi Matematika Induksi matematika adalah suatu metode yang digunakan untuk memeriksa validasi suatu pernyataan yang diberikan dalam suku-suku bilangan asli. Dalam pembahasan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sejak tiga abad yang lalu, pakar-pakar matematika telah menghabiskan banyak waktu untuk mengeksplorasi dunia bilangan prima. Banyak sifat unik dari bilangan prima yang menakjubkan.

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

Keterbagian Pada Bilangan Bulat

Keterbagian Pada Bilangan Bulat Latest Update: March 8, 2017 Pengantar Teori Bilangan (Bagian 1): Keterbagian Pada Bilangan Bulat Muhamad Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Lebih terperinci

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada II. LANDASAN TEORI Pada bilangan ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan sempurna, bilangan bulat, bilangan prima,faktor bilangan bulat dan kekongruenan. 2.1

Lebih terperinci

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori dalam aljabar dan teori bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan carmichael akan dibutuhkan definisi

Lebih terperinci

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima BAB II KETERBAGIAN 2.1 Pendahuluan Pada pertemuan minggu ke-3, dan 4 ini dibahas konsep keterbagian, algoritma pembagian dan bilangan prima pada bilangan bulat. Relasi keterbagian pada himpunan semua bilangan

Lebih terperinci

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan prima, bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas (square free), keterbagian,

Lebih terperinci

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan DIKTAT KULIAH ( sks) MX 17 Teori Bilangan (Revisi Terakhir: Juli 009 ) Oleh: Didit Budi Nugroho, S.Si., M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 009 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 009 Bagian

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum kita membahas mengenai uji primalitas, terlebih dahulu kita bicarakan beberapa definisi yang diperlukan serta beberapa teorema dan sifat-sifat yang penting dalam teori bilangan

Lebih terperinci

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan.

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan. Nama : Teori bilangan Kode /SKS : MAT- / 2 sks Program Studi : Pendidikan Matematika Semester : IV (Empat) TEORI BILANGAN Oleh : RINA AGUSTINA, M.Pd. NEGO LINUHUNG, M.Pd Mata kuliah ini masih merupakan

Lebih terperinci

Contoh-contoh soal induksi matematika

Contoh-contoh soal induksi matematika Contoh-contoh soal induksi matematika Buktikan bahwa 2 n > n + 20 untuk setiap bilangan bulat n 5. (i) Basis induksi : Untuk n = 5, kita peroleh 2 5 > 5 + 20 adalah suatu pernyataan yang benar. (ii) Langkah

Lebih terperinci

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT. Pendahuluan Well-Ordering Principle Jika S himpunan bagian dari himpunan bilangan bulat positif yang tidak kosong, maka S memiliki sebuah unsur terkecil. Unsur

Lebih terperinci

Logika Pembuktian. Matematika Informatika 3 Onggo

Logika Pembuktian. Matematika Informatika 3 Onggo Logika Pembuktian Matematika Informatika 3 Onggo Wr @OnggoWr Metode Pembuktian 1. Metode Pembuktian Langsung (Direct Proof) 2. Metode Pembuktian Tak-Langsung (Indirect Proof) a. Proof by Contrapositive

Lebih terperinci

Tentukan semua bilangan bulat x sedemikian sehingga x 1 (mod 10). Jawab. x 1 (mod 10) jika dan hanya jika x 1 = 10 k untuk setiap k bilangan bulat.

Tentukan semua bilangan bulat x sedemikian sehingga x 1 (mod 10). Jawab. x 1 (mod 10) jika dan hanya jika x 1 = 10 k untuk setiap k bilangan bulat. Aritmatika Modular Banyak konsep aritmatika jam dapat digunakan untuk mengerjakan masalah-masalah yang berkenaan dengan kalender. Misalkan, hari minggu pada bulan Juli 2006 jatuh pada tanggal 2, 9, 16,

Lebih terperinci

Lembar Kerja Mahasiswa 1: Teori Bilangan

Lembar Kerja Mahasiswa 1: Teori Bilangan Lembar Kerja Mahasiswa 1: Teori Bilangan N a m a : NIM/Kelas : Waktu Kuliah : Kompetensi Dasar dan Indikator: 1. Memahami pengertian faktor dan kelipatan bilangan bulat. a) Menuliskan denisi faktor suatu

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan Kuliah 2 2/2/2014 Yanita, FMIPA Matematika Unand 1 Materi Kuliah 2 Teori Pembagian dalam Bilangan Bulat Algoritma Pembagian Pembagi Persekutuan Terbesar 2/2/2014 2 Algoritma Pembagian

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat Pembahasan OSN Matematika SMA Tahun 013 Seleksi Tingkat Provinsi Tutur Widodo Bagian Pertama : Soal Isian Singkat 1. Diberikan tiga lingkaran dengan radius r =, yang saling bersinggungan. Total luas dari

Lebih terperinci

OLIMPIADE MATEMATIKA TINGKAT SEKOLAH MENENGAH ATAS MATERI : TEORI BILANGAN

OLIMPIADE MATEMATIKA TINGKAT SEKOLAH MENENGAH ATAS MATERI : TEORI BILANGAN OLIMPIADE MATEMATIKA TINGKAT SEKOLAH MENENGAH ATAS MATERI : TEORI BILANGAN Disajikan pada Pembimbingan Kompetisi Guru-Guru Matematika dalam pemecahan soal-soal OSN di lingkungan Sekolah Menengah Atas Kota

Lebih terperinci

TEOREMA VIETA DAN JUMLAH NEWTON. 1. Pengenalan

TEOREMA VIETA DAN JUMLAH NEWTON. 1. Pengenalan TEOREMA VIETA DAN JUMLAH NEWTON TUTUR WIDODO. Pengenalan Sebelum berbicara banyak tentang Teorema Vieta dan Identitas Newton, terlebih dahulu saya beri penjelasan singkat mengenai polinomial. Di sekolah

Lebih terperinci

TEORI BILANGAN (3 SKS)

TEORI BILANGAN (3 SKS) BAHAN AJAR: TEORI BILANGAN (3 SKS) O l e h Drs. La Misu, M.Pd. (Dipakai dalam Lingkungan Sendiri) PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALU OLEO KENDARI

Lebih terperinci

TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa :

TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa : TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa : 1 Menggunakan algoritma Euclid untuk menyelesaikan masalah. 2 Menggunakan notasi kekongruenan. 3 Menggunakan teorema Fermat dan teorema

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses penelitian untuk penyelesaian persamaan Diophantine dengan relasi kongruensi modulo m mengenai aljabar dan

Lebih terperinci

1 INDUKSI MATEMATIKA

1 INDUKSI MATEMATIKA 1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua

Lebih terperinci

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar.

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar. SOAL 1. Diketahui bangun persegi panjang berukuran 4 dengan beberapa ruas garis, seperti pada gambar. Dengan menggunakan ruas garis yang sudah ada, tentukan banyak jajar genjang tanpa sudut siku-siku pada

Lebih terperinci

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan adalah bilangan bulat genap tak negatif. n = F P B(a, b + KP K(a, b a b Solusi. Misalkan d = F P B(a, b,

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo Tutur Widodo OSN Matematika SMA 01 Pembahasan OSN Matematika SMA Tahun 01 Seleksi Tingkat Nasional Tutur Widodo 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada

Lebih terperinci

PERANAN SISTEM MODULO DALAM PENENTUAN HARI DAN PASARAN

PERANAN SISTEM MODULO DALAM PENENTUAN HARI DAN PASARAN PERANAN SISTEM MODULO DALAM PENENTUAN HARI DAN PASARAN Agung Handayanto a a Program Studi Pendidikan Matematika FPMIPA IKIP PGRI Jl. Dr. Cipto-Lontar No1 Semarang Telp. (024)8316377 Faks (024) 8448217

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY Induksi Matematika Induksi matematika adalah : Salah satu metode pembuktian untuk proposisi perihal bilangan bulat Induksi matematika merupakan teknik

Lebih terperinci

BAB VI BILANGAN REAL

BAB VI BILANGAN REAL BAB VI BILANGAN REAL PENDAHULUAN Perluasan dari bilangan cacah ke bilangan bulat telah dibicarakan. Dalam himpunan bilangan bulat, pembagian tidak selalu mempunyai penyelesaian, misalkan 3 : 11. Timbul

Lebih terperinci

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40 DAFTAR ISI 1 TEORI KETERBAGIAN 1 1.1 Algoritma Pembagian............................. 2 1.2 Pembagi persekutuan terbesar........................ 5 1.3 Algoritma Euclides.............................. 12

Lebih terperinci

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun

Lebih terperinci

Teori Bilangan (Number Theory)

Teori Bilangan (Number Theory) Bahan Kuliah ke-3 IF5054 Kriptografi Teori Bilangan (Number Theory) Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 3. Teori Bilangan Teori bilangan

Lebih terperinci

Sistem Bilangan Real

Sistem Bilangan Real TUGAS I ANALISIS REAL I Sistem Bilangan Real Tugas 1 Analisis Real I Disusun oleh : Nariswari Setya D. Kartini Marvina Puspito M0108022 M0108050 M0108056 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com SMAN Bone-Bone, Luwu Utara, Sul-Sel Kesalahan terbesar yang dibuat manusia dalam kehidupannya adalah terus-menerus merasa takut bahwa mereka akan melakukan kesalahan (Elbert

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q.

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. Diskusi Kelompok (I) Waktu: 100 menit Selasa, 23 September 2008 Pengajar: Hilda Assiyatun, Djoko Suprijanto 1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. (a) Mahasiswa perlu membawakan

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2012 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2012 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 0 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 0 BIDANG STUDI

Lebih terperinci

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA)

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA) Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS KABUPATEN/KOTA SMA 018 OSK Matematika SMA (Olimpiade Sains Kabupaten/Kota Matematika SMA) Disusun oleh: Pak Anang Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS

Lebih terperinci

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai 1 TEORI KETERBAGIAN Bilangan 0 dan 1 adalah dua bilangan dasar yang digunakan dalam sistem bilangan real. Dengan dua operasi + dan maka bilangan-bilangan lainnya didenisikan. Himpunan bilangan asli (natural

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Tentang Mata Kuliah MA3231 Mata kuliah ini merupakan mata kuliah wajib bagi mahasiswa program studi S1 Matematika, dengan

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

Himpunan dan Fungsi. Modul 1 PENDAHULUAN

Himpunan dan Fungsi. Modul 1 PENDAHULUAN Modul 1 Himpunan dan Fungsi Dr Rizky Rosjanuardi P PENDAHULUAN ada modul ini dibahas konsep himpunan dan fungsi Pada Kegiatan Belajar 1 dibahas konsep-konsep dasar dan sifat dari himpunan, sedangkan pada

Lebih terperinci

BIDANG MATEMATIKA SMA

BIDANG MATEMATIKA SMA MATERI PENGANTAR OLIMPIADE SAINS NASIONAL BIDANG MATEMATIKA SMA DISUSUN OLEH: TIM PEMBINA OLIMPIADE MATEMATIKA TIM OLIMPIADE MATEMATIKA INDONESIA Juli 009 KATA PENGANTAR Olimpiade Sains Nasional (OSN)

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci

PERKONGRUENAN POLINOMIAL MODULO m

PERKONGRUENAN POLINOMIAL MODULO m PERKONGRUENAN POLINOMIAL MODULO m Nunung Fajar Kusuma Program Studi Pendidikan Matematika Pasca Sarjana Universitas Sebelas Maret Jl. Ir. Sutami 36A Kentingan Jebres Surakarta, e-mail: nfjar@yahoo.com

Lebih terperinci

PERSAMAAN KUADRAT. AC 0 P DAN Q SAMA TANDA. 2. DG. MELENGKAPKAN BENTUK KUADRAT ( KUADRAT SEMPURNA ) :

PERSAMAAN KUADRAT. AC 0 P DAN Q SAMA TANDA. 2. DG. MELENGKAPKAN BENTUK KUADRAT ( KUADRAT SEMPURNA ) : PERSAMAAN KUADRAT. AC 0 P DAN Q SAMA TANDA.. DG. MELENGKAPKAN BENTUK KUADRAT ( KUADRAT SEMPURNA ) : Bab 3 PERSAMAAN KUADRAT 1. Bentuk Umum : ax bx c 0, a 0, a, b, c Re al Menyelesaikan persamaan kuadrat

Lebih terperinci

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu BAB IV RELASI DAN FUNGSI Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu relasi, relasi invers, relasi identitas, pengertian fungsi, bayangan invers

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Waktu : 210 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritma Pembagian............................. 3 1.2 Pembagi persekutuan terbesar......................... 6 1.3 Algoritma Euclides............................... 11

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

Beberapa Uji Keterbagian Bilangan Bulat

Beberapa Uji Keterbagian Bilangan Bulat Beberapa Uji Keterbagian Bilangan Bulat Untuk menguji suatu bilangan bulat dapat dibagi (habis dibagi) atau tidak dapat dibagi oleh bilangan bulat lain kita dapat menggunakan kalkulator atau dengan metode

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 015 TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 015

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 11, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 9-10 METODE KONTRADIKSI & METODE KONTRAPOSISI (c) Hendra Gunawan (2015) 2 Metode Pembuktian Lainnya Pada bab-bab sebelumnya kita telah

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

SILABUS MATEMATIKA KEMENTERIAN

SILABUS MATEMATIKA KEMENTERIAN SILABUS OLIMPIADE MATEMATIKA INTERNASIONAL UNTUK SELEKSI OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA, PROVINSI, DAN NASIONAL MATEMATIKA KEMENTERIAN Kementerian Pendidikan dan Kebudayaan Direktorat

Lebih terperinci

Setelah mengikuti materi Bab ini mahasiswa diharapkan mampu: 2. Mendefinisikan factor persekutuan, kelipatan persekutuan, FPB, dan KPK.

Setelah mengikuti materi Bab ini mahasiswa diharapkan mampu: 2. Mendefinisikan factor persekutuan, kelipatan persekutuan, FPB, dan KPK. BAB II KETERBAGIAN PENDAHULUAN A. Deskripsi Singkat Mata Kuliah Mata kuliah ini dimaksudkan untuk memberikan kemampuan pada mahasiswa untuk belajar bukti matematika. Materi dalam mata kuliah ini sangat

Lebih terperinci

BAB V RELASI DAN FUNGSI

BAB V RELASI DAN FUNGSI BAB V RELASI DAN FUNGSI 6.1 Pendahuluan Relasi atau hubungan antara himpunan merupakan suatu aturan pengawasan antar himpunan tersebut, sebagai contohnya kalimat adalah ayah b atau kalimat 4 habis diabgi

Lebih terperinci

BAB 2 LANDASAN TEORI. Musik dan matematika berkaitan satu sama lain secara kompleks. Matematika

BAB 2 LANDASAN TEORI. Musik dan matematika berkaitan satu sama lain secara kompleks. Matematika BAB 2 LANDASAN TEORI 2.1 Kaitan Matematika Dengan Musik Musik dan matematika berkaitan satu sama lain secara kompleks. Matematika memiliki beberapa persamaan dengan musik, Sedikit orang yang berbakat untuk

Lebih terperinci

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Aritmetika Modulo Misalkan a adalah bilangan

Lebih terperinci

SUKU BANYAK. Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut:

SUKU BANYAK. Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut: SUKU BANYAK A. Pengertian Suku Banyak Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut: Dinamakan suku banyak (polinom) dalam yang berderajat dengan bilangan cacah

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

Teorema Faktor. Misalkan P (x) suatu polynomial, (x k) merupakan faktor dari P (x) jika dan hanya jika P (k) = 0

Teorema Faktor. Misalkan P (x) suatu polynomial, (x k) merupakan faktor dari P (x) jika dan hanya jika P (k) = 0 Teorema faktor adalah salah satu teorema pada submateri polynomial. Teorema ini cukup terkenal dan sangat berguna untuk menyelesaikan soal - soal baik level sekolah maupun soal level olimpiade. Berikut

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat dari Grup Faktor

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat dari Grup Faktor BAB 5 GRUP FAKTOR Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat dari Grup Faktor Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

Menyelesaikan Persamaan Kuadrat. 3. Rumus ABC ax² + bx + c = 0 X1,2 = ( [-b ± (b²-4ac)]/2a. Kemungkinan Jenis Akar Ditinjau Dari Nilai Diskriminan

Menyelesaikan Persamaan Kuadrat. 3. Rumus ABC ax² + bx + c = 0 X1,2 = ( [-b ± (b²-4ac)]/2a. Kemungkinan Jenis Akar Ditinjau Dari Nilai Diskriminan Menyelesaikan Persamaan Kuadrat Bentuk umum : ax² + bx + c = 0 x variabel; a,b,c konstanta ; a 0 Menyelesaikan persamaan kuadrat berarti mencari harga x yang memenuhi persamaan kudrat (PK) tersebut (disebut

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar 4 II. TINJAUAN PUSTAKA Untuk melakukan penelitian ini terlebih dahulu harus memahami konsep yang terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar yang menunjang dan disajikan

Lebih terperinci

PEMBAHASAN OSN MATEMATIKA SMP TINGKAT KABUPATEN TAHUN 2018 PROVINSI SULAWESI SELATAN

PEMBAHASAN OSN MATEMATIKA SMP TINGKAT KABUPATEN TAHUN 2018 PROVINSI SULAWESI SELATAN PEMBAHASAN OSN MATEMATIKA SMP TINGKAT KABUPATEN TAHUN 08 PROVINSI SULAWESI SELATAN 0. Pada suatu data terdapat 5 bilangan bulat positif. Bilangan terbesar pada data tersebut adalah 55. Median dari data

Lebih terperinci

PERANGKAT PEMBELAJARAN

PERANGKAT PEMBELAJARAN PERANGKAT PEMBELAJARAN MATA KULIAH : TEORI BILANGAN KODE : MKK206515 DOSEN : JANUAR BUDI ASMARI, S.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN

Lebih terperinci

STRATEGI PENYELESAIAN MASALAH (PROBLEM SOLVING STRATEGIES) EDDY HERMANTO

STRATEGI PENYELESAIAN MASALAH (PROBLEM SOLVING STRATEGIES) EDDY HERMANTO STRATEGI PENYELESAIAN MASALAH (PROBLEM SOLVING STRATEGIES) EDDY HERMANTO Strategi Penyelesaian Masalah Beberapa Strategi Penyelesaian Masalah : 1. Membuat daftar Yang Teratur 2. Memisalkan Dengan Suatu

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang Pertemuan 2. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuanku Tambusai Bangkinang 0. Bilangan Real 0. Bilangan Real sebagai bentuk desimal Pada pembahasan berikutnya kita diasumsikan telah mengetahui dengan

Lebih terperinci

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi, penjelasan, dan teorema yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang diberikan diantaranya adalah definisi

Lebih terperinci

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta

Lebih terperinci

SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a

SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a SUKU BANYAK A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a b ) 3) F(x) : [(x a)(x b)], maka S(x) = (x a)s 2 + S 1, dengan S 2 adalah sisa pembagian pada

Lebih terperinci

PENGAPLIKASIAN KONGRUEN LANJAR UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR, CHINESE REMAINDER THEOREM, DAN UJI DIGIT ISBN.

PENGAPLIKASIAN KONGRUEN LANJAR UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR, CHINESE REMAINDER THEOREM, DAN UJI DIGIT ISBN. PENGAPLIKASIAN KONGRUEN LANJAR UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR, CHINESE REMAINDER THEOREM, DAN UJI DIGIT ISBN Skripsi Oleh: Novian Saputra JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik.

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Induksi Matematika Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Contoh: 1. Buktikan bahwa jumlah n bilangan bilangan bulat positif pertama adalah n(n

Lebih terperinci

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE

APOTEMA: Jurnal Pendidikan Matematika. Volume 2, Nomor 2 Juli 2016 p ISSN BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE APOTEMA: Jurnal Pendidikan Matematika Volume 2 Nomor 2 Juli 2016 p 63-75 ISSN 2407-8840 BILANGAN SEMPURNA GENAP DAN KEPRIMAAN BI LANGAN MERSENNE Moh Affaf Prodi Pendidikan Matematika STKIP PGRI BANGKALAN

Lebih terperinci

(a) 32 (b) 36 (c) 40 (d) 44

(a) 32 (b) 36 (c) 40 (d) 44 Halaman:. Jika n = 8, maka n0 n bernilai... (a) kurang dari 00 (b) (d) lebih dari 00. Penumpang suatu pesawat terdiri dari anak-anak dari berbagai negara, 6 orang dari Indonesia yang termasuk dari anak-anak

Lebih terperinci

OSN 2014 Matematika SMA/MA

OSN 2014 Matematika SMA/MA Soal 1. Bilangan-bilangan 1,2,..., 9 akan ditempatkan ke dalam papan catur berukuran 3 3. Mungkinkah bilangan-bilangan ini ditempatkan sehingga setiap dua persegi yang bertetangga, baik secara vertikal

Lebih terperinci

Berapakah nilai a? a. 25. d. 25 b. 15. e. 15 c. 10. Penyelesaian: Berarti bahwa 1, 3, 5, 7 dan 9 adalah akar-akar persamaan polinomial g(x) = 0.

Berapakah nilai a? a. 25. d. 25 b. 15. e. 15 c. 10. Penyelesaian: Berarti bahwa 1, 3, 5, 7 dan 9 adalah akar-akar persamaan polinomial g(x) = 0. KOMPETISI MATEMATIKA 07 TINGKAT SMA SE-SULUT SOLUSI BABAK SEMI FINAL Rabu, Februari 07 . Misalkan f(x) = x 5 + ax 4 + bx 3 + cx + dx + c dan f() = f(3) = f(5) = f(7) = f(9). Berapakah nilai a? a. 5 d.

Lebih terperinci

Diktat Kuliah. Oleh:

Diktat Kuliah. Oleh: Diktat Kuliah TEORI GRUP Oleh: Dr. Adi Setiawan UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2015 Kata Pengantar Aljabar abstrak atau struktur aljabar merupakan suatu mata kuliah yang menjadi kurikulum nasional

Lebih terperinci

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 PENGANTAR TOPOLOGI EDISI PERTAMA Dosen Pengampu: Siti Julaeha, M.Si UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 by Matematika Sains 2012 UIN SGD, Copyright 2015 BAB 0. HIMPUNAN, RELASI, FUNGSI,

Lebih terperinci

1.Tentukan solusi dari : Rubrik Penskoran :

1.Tentukan solusi dari : Rubrik Penskoran : 1.Tentukan solusi dari : 1 7 1 Rubrik Penskoran : Skor Kriteria Langkah langkah untuk membentuk persamaan kuadrat telah benar. 4 Langkah pemfaktoran telah benar. (jika digunakan) Terdapat dua solusi yang

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 2 YOGYAKARTA5528 lmnas@ugm.ac.id http://lmnas.fmipa.ugm.ac.id

Lebih terperinci

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta Matematika Diskrit Reza Pulungan Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta March 31, 2011 Teori Bilangan (Number Theory) Keterbagian (Divisibility) Pada bagian ini kita hanya akan berbicara

Lebih terperinci