Pengantar Teori Bilangan. Kuliah 10

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengantar Teori Bilangan. Kuliah 10"

Transkripsi

1 Pengantar Teori Bilangan Kuliah 10

2 Materi Kuliah Chinese Remainder Theorem (Teorema Sisa Cina) 2/5/2014 Yanita, FMIPA Matematika Unand 2

3 Pengantar Chinese Remainder Theorem (Teorema sisa Cina) adalah hasil tentang Kongruen di teori bilangan dan digeneralisasi dalam aljabar abstrak. Pertama kali dipublikasikan pada abad ke-3 sampai abad ke-5 oleh Sun Tzu seorang matematikawan Cina. Pertama ditemukan pada teka-teki Cina kuno: Ada beberapa bilangan yang tidak diketahui. Bilangan itu dibagi 3, sisanya adalah 2; Bilangan itu dibagi oleh 5, sisanya adalah 3; Bilangan itu dibagi oleh 7 sisanya adalah 2; Bilangan yang manakah itu? Dalam notasi matematika x = 2 (mod 3) x = 3 (mod 5) x = 2 (mod 7) 2/5/2014 Yanita, FMIPA Matematika Unand 3

4 Chinese Remainder Theorem Misalkan n 1, n 2,, n r bilangan bulat positif sedemikian sehingga ppb n i, n j = 1 untuk i j. Maka system kongruen linier x a 1 (mod n 1 ) x a 2 (mod n 2 ) x a r (mod n r ) mempunyai solusi simultan, yang tunggal modulo bilangan bulat n 1 n 2 n r 2/5/2014 Yanita, FMIPA Matematika Unand 4

5 Bukti Chinese Remainder Theoremn Bentuk hasilkali n = n 1 n 2 n r. Untuk setiap k = 1,2,, r, misalkan N k = n n k = n 1 n 2 n k 1 n k+1 n r. Atau, N k adalah hasilkali semua bilangan bulat n i dengan factor n k dihapuskan. Diketahui bahwa ppb n i, n j = 1 untuk i j atau n i relative prima dengan n j untuk i j. Dengan demikian diperoleh ppb N k, n k = 1. Berdasarkan teori kongruen linier tunggal, hal ini memungkinkan untuk menyelesaikan kongruen N k x 1 (mod n k ), sebutlah solusi tunggal x k. Tujuannya adalah untuk membuktikan bahwa bilangan x = a 1 N 1 x 1 + a 2 N 2 x a r N r x r = a k N k x k (mod n k ) adalah solusi simultan dari system kongruen linier yg diberikan. Pertama, amati bahwa N i 0 (mod n k ) untuk i k, karena n k N i Hasilnya adalah x = a 1 N 1 x 1 + a 2 N 2 x a r N r x r = a k N k x k (mod n k ) Tapi x k bilangan bulat yang dipilih untuk memenuhi kongruen N k x 1 (mod n k ), yang menyebabkan x a k. 1 a k (mod n k ) Ini menunjukkan bahwa solusi untuk system kongruen yang diberikan ada. Untuk menunjukkan ketuanggalannya, misalkan x adalah sebarang bilangan bulat yang memenuhi system kongruen ini. Maka x a k x (mod n k ) k = 1,2,, r dan selanjutnya n k x x untuk setiap nilai k. Karena ppb n i, n j = 1, maka diperoleh n 1 n 2 n r x x, karenanya x x (mod n k ). 5

6 Dengan Chinese Remainder Theorem, maka langkah penyelesaian suatu system kongruen linier adalah: Misalkan system kongruen linier x a 1 (mod n 1 ) x a 2 (mod n 2 ) x a r (mod n r ) Maka langkah untuk mencari solusi system ini: 1. Periksa ppb(n i, n j ) untuk i j, jika ppb n i, n j = 1 maka system punya solusi. 2. Tentukan n = n 1 n 2 n r dan N k = n n k = n 1 n 2 n k 1 n k+1 n r, k = 1,2,, r. 3. Selesaikan N k x k 1 (mod n k ), k = 1,2,, r. 4. Solusinya adalah x (a 1 N 1 x 1 + a 2 N 2 x a r N r x r ) (mod n) 2/5/2014 Yanita, FMIPA Matematika Unand 6

7 Contoh 1 Dengan Chinese Remainder Theorem, carilah solusi untuk system kongruen linier berikut: x 3 (mod 4) x 2 (mod 3) x 4(mod 5) Perhatikan bahwa system ini terdiri dari 3 persamaan konruen linier, jadi k = 1,2,3. Dari system diperoleh a 1 = 3, a 2 = 2, a 3 = 4, n 1 = 4, n 2 = 3, n 3 = Oleh karena ppb 4,3 = ppb 4,5 = ppb 3,5 = 1, maka system ini punya solusi. 2. Nilai n = n 1 n 2 n 3 = = 60 dan N 1 = n n 1 = 60 4 = 15; N 2 = n n 2 = 60 3 = 20; N 3 = n n 3 = 60 5 = Selesaikan N k x i 1 (mod n k ), k = 1,2,3, yaitu 15x 1 1 mod 4 20x 2 1 mod 3 12x 3 1 mod 5 Dengan menggunakan solusi dalam persamaan kongruen linier, maka solusi untuk 15x 1 1 mod 4 adalah : 15x 1 1 mod 4 ekivalen dengan 15x 1 1 = 4k. Diperoleh x 1 = 1+4k 15. Nilai k = 11 menyebakan x 1 = 3. Dengan cara yang sama, diperoleh x 2 = 2, dan x 3 = Solusinya adalah x = (a 1 N 1 x 1 + a 2 N 2 x 2 + a 3 N 3 x 3 ) (mod n) = ( ) (mod 60) = 359 (mod 60) = 59 (mod 60) Jadi solusi untuk x 3 (mod 4) x 2 (mod 3) x 4(mod 5) adalah x 59 (mod 60) Yanita, FMIPA Matematika Unand 7

8 Contoh 2 Dengan menggunakan Chinese Remainder Theorem, carilah solusi untuk system kongruen linier berikut: x = 2 (mod 3) x = 3 (mod 5) x = 2 (mod 7) Perhatikan bahwa system ini terdiri dari 3 persamaan konruen linier, jadi k = 1,2,3. Dari system diperoleh a 1 = 2, a 2 = 3, a 3 = 2, n 1 = 3, n 2 = 5, n 3 = Oleh karena ppb 3,5 = ppb 3,7 = ppb 5,7 = 1, maka system ini punya solusi. 2. Nilai n = n 1 n 2 n 3 = = 105 dan N 1 = n n 1 = = 35; N 2 = n n 2 = = 21; N 3 = n n 3 = = Selesaikan N k x k 1 (mod n k ), k = 1,2,3, yaitu 35x 1 1(mod 3) 21x 2 1 (mod 5) 15x 3 1 (mod 7) Dengan menggunakan solusi dalam persamaan kongruen linier, maka solusi untuk 35x 1 1 mod 3 adalah : 35x 1 1 mod 3 ekivalen dengan 35x 1 1 = 3k. Diperoleh x 1 = 1+3k. Nilai k = 23 menyebakan x 35 1 = 2. Dengan cara yang sama, diperoleh x 2 = 1, dan x 3 = Solusinya adalah x (a 1 N 1 x 1 + a 2 N 2 x 2 + a 3 N 3 x 3 ) (mod n) ( ) (mod 105) 233 (mod 105) 23 (mod 105) Jadi solusi untuk x 3 (mod 4) x 2 (mod 3) x 4(mod 5) adalah x 23 (mod 105) Yanita, FMIPA Matematika Unand 8

9 Dengan Chinese Remainder Theorem, langkah penyelesaian jika persamaan kongruen linier yang diketahui: 1. Dari persamaan kongruen linier ax b (mod n), maka cari faktorisasi prima dari n, yaitu n = n 1 n 2 n r dengan n i adalah prima, i = 1,2, r 2. Selesaikan system aa k b (mod n i ), k = 1,2,, r. Untuk mendapatkan nilai a i. 3. Cari N k = n n k dengan k = 1,2,, r dan selesaikan system N k x k 1 (mod n k ) untuk mendapatkan nilai x k. 4. Solusinya adalah x (a 1 N 1 x 1 + a 2 N 2 x a r N r x r ) (mod n) 2/5/2014 Yanita, FMIPA Matematika Unand 9

10 Contoh 3: Selesaikan persamaan linier kongruen 17x 9 mod 276 dengan dua cara. Dengan cara biasa (solusi persamaan kongruen linier), 1. ppb 17,276 = 1 2. Persamaan 17x 9 mod 276 ekivalen dengan 17x 276k = 9 atau diperoleh x = 9+276k. Nilai k = 2, 17 menyebabkan x = Solusinya adalah x 33 (mod 276) Dengan Chinese Remainder Theorem, 1. faktorisasi prima dari 276 adalah Jadi 276 = Dengan demikian diperoleh n = 276, n 1 = 3, n 2 = 4, n 3 = Selesaikan system 17a k 9 (mod n k ), k = 1,2,3, yaitu system 17a 1 9 (mod 3) a 1 = 3 17a 2 9 (mod 4) Diperoleh: a 2 = 5 17a 3 9 (mod 23) a 3 = Cari nilai N k = n dengan k = 1,2,3, yaitu N n 1 = n = k n 276 = 92; N = n = 276 = 69; N n = n = 276 = 12. n 3 23 Selesaikan system N k x k 1 (mod n k ), yaitu: 92x 1 1 (mod 3) x 1 = 2 69x 2 1 (mod 4) Diperoleh x 2 = 1 12x 3 1 (mod 23) x 3 = 2 4. Solusinya adalah x (a 1 N 1 x 1 + a 2 N 2 x 2 + a 3 N 3 x 3 ) (mod n) x ( )(mod 276) x 1137 (mod 276) x 33 (mod 276) 2/5/2014 Yanita, FMIPA Matematika Unand 10

11 Contoh 4: Selesaikan persamaan linier kongruen 13x 1 mod 70 dengan dua cara. Dengan cara biasa (solusi persamaan kongruen linier), 1. ppb 13,70 = 1 2. Persamaan 13x 1 mod 70 ekivalen dengan 13x 70k = 1 atau diperoleh x = 1+70k. Nilai k = 5, 13 menyebabkan x = Solusinya adalah x 27 (mod 70) Dengan Chinese Remainder Theorem, 1. faktorisasi prima dari 70 adalah Jadi 70 = Dengan demikian diperoleh n = 70, n 1 = 2, n 2 = 5, n 3 = Selesaikan system 13a k 1 (mod n k ), k = 1,2,3, yaitu system 13a 1 1 (mod 2) a 1 = 1 13a 2 1 (mod 5) Diperoleh: a 2 = 2 13a 3 1 (mod 7) a 3 = 6 3. Cari nilai N k = n n k dengan k = 1,2,3, yaitu N 1 = n n 1 = 70 2 = 35; N 2 = n n 2 = 70 5 = 14; N 3 = n n 3 = 70 7 = 10. Selesaikan system N k x k 1 (mod n k ), yaitu: 35x 1 1 (mod 2) x 1 = 1 14x 2 1 (mod 5) Diperoleh x 2 = 4 10x 3 1 (mod 7) x 3 = 5 4. Solusinya adalah x (a 1 N 1 x 1 + a 2 N 2 x 2 + a 3 N 3 x 3 ) (mod n) x ( )(mod 70) x 447 (mod 70) x 27 (mod 70) 2/5/2014 Yanita, FMIPA Matematika Unand 11

12 Solusi Sistem Kongruen Linier dengan dua Variabel Definisi Persamaan kongruen linier dengan dua variabel adalah persamaan dalam bentuk ax + by c mod n, dengan x, y Z. Teorema 4.9 Sistem kongruen linier ax + by r mod n cx + dy s mod n mempunyai solusi tunggal modulo n jika ppb ad bc, n = 1 2/5/2014 Yanita, FMIPA Matematika Unand 12

13 Bukti Teorema 4.9 Diketahui system kongruen linier ax + by r mod n cx + dy s mod n Dengan ppb ad bc, n = 1. Akan dibuktikan system ini mempunyai solusi tunggal modulo n. Misalkan ax + by r mod n (1) cx + dy s mod n (2) Kalikan persamaan (1) dengan d, dan persamaan (2) dengan b, maka diperoleh d(ax + by) dr mod n (1 ) b(cx + dy) bs mod n (2 ) Jika pers (1 ) dikurangkan dengan pers (2 ) maka diperoleh dax bcx dr bs (mod n) atau ad bc x dr bs (mod n) (3) Oleh karena ppb ad bc, n = 1, maka dijamin bahwa ad bc z 1 (mod n) mempunyai solusi tunggal; misalkan solusi tersebut adalah t. Jika persamaan (3) dikalikan dengan t, diperoleh x t dr bs (mod n). Dengan cara yang sama dapat dicari nilai y, yaitu Kalikan persamaan (1) dengan c, dan persamaan (2) dengan a, maka diperoleh c(ax + by) cr mod n (1 ) a(cx + dy) as mod n (2 ) Jika pers (1 ) dikurangkan dengan pers (2 ) maka diperoleh cax bcy as cr (mod n) atau ad bc y (as cr)(mod n) (3 ) Oleh karena ppb ad bc, n = 1, maka dijamin bahwa ad bc z 1 (mod n) mempunyai solusi tunggal; misalkan solusi tersebut adalah t. Jika persamaan (3 ) dikalikan dengan t, diperoleh y t as cr (mod n). 2/5/2014 Yanita, FMIPA Matematika Unand 13

14 Contoh Carilah solusi untuk sitem kongruen linier: 7x + 3y 10 mod 16 (1) 2x + 5y 9 mod 16 (2) Penyelsaian Dari system tersebut diperoleh a = 7, b = 3, c = 2, d = 5, r = 10, s = 9 dan n = 16 Perhatikan bahwa ppb ad bc, n = ppb ,16 = ppb 29,16 = 1, maka system ini punya solusi. Kemudian dengan metode eliminasi, untuk mencari nilai x: Mencari nilai y Dengan solusi untuk persamaan kongruen linier, 29x 23 (mod 16) ekivalen dengan 29x 16k = 23 atau x = 23+16k. Nilai k = 4 menyebabkan x = 3. Jadi solusi 29 untuk 29x 23 (mod 16) adalah x 3 (mod 16) Persamaan 29y 43 (mod 16) ekivalen dengan 29y 16k = 43 atau x = 43+16k. Nilai k = 10 menyebabkan nilai 29 x = 7. Jadi solusi untuk 29y 43 (mod 16) adalah y 7 (mod 16). Jadi solusi untuk system adalah x 3 (mod 16) y 7 (mod 16) 2/5/2014 Yanita, FMIPA Matematika Unand 14

15 Latihan 1. Carilah solusi untuk system x 5 mod 11 x 14 (mod 29) x 15 (mod 31) 2. Selesaikan dengan 2 cara (solusi persamaan kongruen linier dan Chinese Remainder Theorem) persamaan 17x 3 mod Carilah solusi untuk system 3x + 4y 5 mod 13 2x + 5y 7 mod 13 2/5/2014 selesai 4 Mei

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Aritmetika Modulo Misalkan a adalah bilangan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep II. TINJAUAN PUSTAKA Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan bulat, bilangan prima,modular, dan kekongruenan. 2.1 Bilangan Bulat Sifat Pembagian

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan Kuliah 2 2/2/2014 Yanita, FMIPA Matematika Unand 1 Materi Kuliah 2 Teori Pembagian dalam Bilangan Bulat Algoritma Pembagian Pembagi Persekutuan Terbesar 2/2/2014 2 Algoritma Pembagian

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 6

Pengantar Teori Bilangan. Kuliah 6 Pengantar Teori Bilangan Kuliah 6 Materi Kuliah Carl Friedrich Gauss Teori Dasar Kongruen 3/14/2014 Yanita FMIPA Matematika Unand 2 Carl Friedrich Gauss Hidup pada masa 1777 1855 Mengenalkan konsep Disquisitiones

Lebih terperinci

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori dalam aljabar dan teori bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan carmichael akan dibutuhkan definisi

Lebih terperinci

Teori Bilangan (Number Theory)

Teori Bilangan (Number Theory) Bahan Kuliah ke-3 IF5054 Kriptografi Teori Bilangan (Number Theory) Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 3. Teori Bilangan Teori bilangan

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 4

Pengantar Teori Bilangan. Kuliah 4 Pengantar Teori Bilangan Kuliah 4 Materi Kuliah Bilangan Prima dan Distribusinya Teorema Fundamental Aritmatika Saringan Eratosthenes 22/2/2014 Yanita, FMIPA Matematika Unand 2 Bilangan Prima dan Komposit

Lebih terperinci

Aljabar Linier Elementer. Kuliah 27

Aljabar Linier Elementer. Kuliah 27 Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Problema logaritma diskrit adalah sebuah fundamental penting untuk proses pembentukan kunci pada berbagai algoritma kriptografi yang digunakan sebagai sekuritas dari

Lebih terperinci

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY Induksi Matematika Induksi matematika adalah : Salah satu metode pembuktian untuk proposisi perihal bilangan bulat Induksi matematika merupakan teknik

Lebih terperinci

TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa :

TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa : TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa : 1 Menggunakan algoritma Euclid untuk menyelesaikan masalah. 2 Menggunakan notasi kekongruenan. 3 Menggunakan teorema Fermat dan teorema

Lebih terperinci

MAKALAH KRIPTOGRAFI CHINESE REMAINDER

MAKALAH KRIPTOGRAFI CHINESE REMAINDER MAKALAH KRIPTOGRAFI CHINESE REMAINDER Disusun : NIM : 12141424 Nama : Ristiana Prodi : Teknik Informatika B SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN ILMU KOMPUTER EL RAHMA YOGYAKARTA 2016 1. Pendahuluan

Lebih terperinci

Modul 05 Persamaan Linear dan Persamaan Linear Simultan

Modul 05 Persamaan Linear dan Persamaan Linear Simultan Modul 05 Persamaan Linear dan Persamaan Linear Simultan 5.1. Persamaan Linear Persamaan adalah pernyataan kesamaan antara dua ekspresi aljabar yang cocok untuk bilangan nilai variable tertentu atau variable

Lebih terperinci

TEORI BILANGAN (3 SKS)

TEORI BILANGAN (3 SKS) BAHAN AJAR: TEORI BILANGAN (3 SKS) O l e h Drs. La Misu, M.Pd. (Dipakai dalam Lingkungan Sendiri) PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALU OLEO KENDARI

Lebih terperinci

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan.

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan. Nama : Teori bilangan Kode /SKS : MAT- / 2 sks Program Studi : Pendidikan Matematika Semester : IV (Empat) TEORI BILANGAN Oleh : RINA AGUSTINA, M.Pd. NEGO LINUHUNG, M.Pd Mata kuliah ini masih merupakan

Lebih terperinci

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Oleh. Nikenasih B 1.1 SIFAT HABIS DIBAGI PADA BILANGAN BULAT Untuk dapat memahami sifat habis dibagi pada bilangan bulat, sebelumnya perhatikan

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand Aljabar Linier Kuliah 3 5/9/2014 Yanita FMIPA Matematika Unand 1 Materi Kuliah 3 Jumlah Langsung, Hasilkali Langsung Himpunan Pembangun (Spans) dan Bebas Linier 5/9/2014 Yanita FMIPA Matematika Unand 2

Lebih terperinci

BAB I INDUKSI MATEMATIKA

BAB I INDUKSI MATEMATIKA BAB I INDUKSI MATEMATIKA 1.1 Induksi Matematika Induksi matematika adalah suatu metode yang digunakan untuk memeriksa validasi suatu pernyataan yang diberikan dalam suku-suku bilangan asli. Dalam pembahasan

Lebih terperinci

Aljabar Linier Elementer. Kuliah ke-9

Aljabar Linier Elementer. Kuliah ke-9 Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor

Lebih terperinci

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar 4 II. TINJAUAN PUSTAKA Untuk melakukan penelitian ini terlebih dahulu harus memahami konsep yang terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar yang menunjang dan disajikan

Lebih terperinci

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 13 14 15 Materi Kuliah Transformasi Linier dari F n ke F m Perubahan Matriks Basis Matriks dari Transformasi Linier Perubahan Basis untuk Transformasi Linier Matriks-matriks Ekivalen

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi 5 II. TINJAUAN PUSTAKA Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi penjumlahan dua bilangan kuadrat sempurna. Seperti, teori keterbagian bilangan bulat, bilangan prima, kongruensi

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

Aplikasi Chinese Remainder Theorem dalam Secret Sharing

Aplikasi Chinese Remainder Theorem dalam Secret Sharing Aplikasi Chinese Remainder Theorem dalam Secret Sharing Dimas Gilang Saputra - 13509038 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sejak tiga abad yang lalu, pakar-pakar matematika telah menghabiskan banyak waktu untuk mengeksplorasi dunia bilangan prima. Banyak sifat unik dari bilangan prima yang menakjubkan.

Lebih terperinci

PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN

PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 27 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN RATI MAYANG SARI Program Studi Matematika Fakultas Matematika

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 11, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum kita membahas mengenai uji primalitas, terlebih dahulu kita bicarakan beberapa definisi yang diperlukan serta beberapa teorema dan sifat-sifat yang penting dalam teori bilangan

Lebih terperinci

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan DIKTAT KULIAH ( sks) MX 17 Teori Bilangan (Revisi Terakhir: Juli 009 ) Oleh: Didit Budi Nugroho, S.Si., M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar: DAERAH IDEAL UTAMA DAN DAERAH EUCLID

UNIVERSITAS GADJAH MADA. Bahan Ajar: DAERAH IDEAL UTAMA DAN DAERAH EUCLID UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN

Lebih terperinci

BAB MATRIKS. Tujuan Pembelajaran. Pengantar

BAB MATRIKS. Tujuan Pembelajaran. Pengantar BAB II MATRIKS Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks persegi merupakan invers

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan I Bilangan Bulat dan Operasinya Pembekalan dan pemahaman dasar tentang bentuk bilangan pada suatu kelompok/set/himpunan salah satunya adalah bilangan bulat (yang lazim disebut

Lebih terperinci

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Faktor Persekutuan Terbesar (FPB) dan Kelipatan

Lebih terperinci

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan prima, bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas (square free), keterbagian,

Lebih terperinci

Keterbagian Pada Bilangan Bulat

Keterbagian Pada Bilangan Bulat Latest Update: March 8, 2017 Pengantar Teori Bilangan (Bagian 1): Keterbagian Pada Bilangan Bulat Muhamad Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Lebih terperinci

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritma Pembagian............................. 3 1.2 Pembagi persekutuan terbesar......................... 6 1.3 Algoritma Euclides............................... 11

Lebih terperinci

Tentukan semua bilangan bulat x sedemikian sehingga x 1 (mod 10). Jawab. x 1 (mod 10) jika dan hanya jika x 1 = 10 k untuk setiap k bilangan bulat.

Tentukan semua bilangan bulat x sedemikian sehingga x 1 (mod 10). Jawab. x 1 (mod 10) jika dan hanya jika x 1 = 10 k untuk setiap k bilangan bulat. Aritmatika Modular Banyak konsep aritmatika jam dapat digunakan untuk mengerjakan masalah-masalah yang berkenaan dengan kalender. Misalkan, hari minggu pada bulan Juli 2006 jatuh pada tanggal 2, 9, 16,

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses penelitian untuk penyelesaian persamaan Diophantine dengan relasi kongruensi modulo m mengenai aljabar dan

Lebih terperinci

Aplikasi Teori Bilangan Dalam Algoritma Enkripsi-Dekripsi Gambar Digital

Aplikasi Teori Bilangan Dalam Algoritma Enkripsi-Dekripsi Gambar Digital Aplikasi Teori Bilangan Dalam Algoritma Enkripsi-Dekripsi Gambar Digital Harry Alvin Waidan Kefas 13514036 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid

Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid Bab 2 Daerah Euclid Pada bab ini akan dijelaskan mengenai daerah Euclid beserta struktur lain yang terkait nya. Beberapa struktur aljabar tersebut selanjutnya akan digunakan untuk melihat struktur gelanggang

Lebih terperinci

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A Fakultas : FMIPA Program Studi : Pendidikan Matematika Mata Kuliah/Kode : Teori Bilangan MAT 212 Jumlah SKS : Teori= 2 sks; Praktek= - Semester : Genap Mata Kuliah Prasyarat/kode : Logika dan Himpunan,

Lebih terperinci

BAHAN AJAR TEORI BILANGAN

BAHAN AJAR TEORI BILANGAN BAHAN AJAR TEORI BILANGAN PENYUSUN NURYADI, S.PD.SI, M.PD. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MERCU BUANA YOGYAKARTA 2014 FKIP UMB-Yogyakarta Page 1 KETERBAGIAN

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Pertama)

Sistem Bilangan Kompleks (Bagian Pertama) Sistem Bilangan Kompleks (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu I) Outline 1 Pendahuluan 2 Pengertian

Lebih terperinci

BILANGAN RADO 2-WARNA UNTUK m 1

BILANGAN RADO 2-WARNA UNTUK m 1 Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 68 77 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN RADO 2-WARNA UNTUK m 1 i=1 a ix i = x m DWIPRIMA ELVANNY MYORI Jurusan Teknik Elektro, Fakultas

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul Training of Trainer (TOT) Olimpiade Matematika Tingkat Sekolah Menengah Atas Untuk Guru-guru Sekolah Menengah Atas di Kabupaten Bantul

Lebih terperinci

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep GRUP Bab ini merupakan awal dari bagian pertama materi utama perkuliahan Struktur Aljabar I. Pada bab ini disajikan tentang pengertian grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Lebih terperinci

Daerah Ideal Utama Adalah Almost Euclidean

Daerah Ideal Utama Adalah Almost Euclidean Daerah Ideal Utama Adalah Almost Euclidean Oleh Ratwa Suriadikirta Irawati A B S T R A C T Daerah Euclid (DE) merupakan daerah ideal utama (DIU), daerah ideal utama merupakan daerah faktorisasi tunggal

Lebih terperinci

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi memberi pengaruh besar bagi segala aspek kehidupan. Begitu banyak manfaat teknologi tersebut yang dapat diimplementasikan dalam kehidupan. Teknologi

Lebih terperinci

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com 2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai 1 TEORI KETERBAGIAN Bilangan 0 dan 1 adalah dua bilangan dasar yang digunakan dalam sistem bilangan real. Dengan dua operasi + dan maka bilangan-bilangan lainnya didenisikan. Himpunan bilangan asli (natural

Lebih terperinci

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA)

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA) Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS KABUPATEN/KOTA SMA 018 OSK Matematika SMA (Olimpiade Sains Kabupaten/Kota Matematika SMA) Disusun oleh: Pak Anang Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS

Lebih terperinci

Perangkat Lunak Pembelajaran Protokol Secret Sharing Dengan Algoritma Asmuth Bloom

Perangkat Lunak Pembelajaran Protokol Secret Sharing Dengan Algoritma Asmuth Bloom Perangkat Lunak Pembelajaran Protokol Secret Sharing Dengan Algoritma Asmuth Bloom Marto Sihombing 1), Erich Gunawan 2) STMIK IBBI Jl. Sei Deli No. 18 Medan, Telp. 061-4567111 Fax. 061-4527548 E-mail :

Lebih terperinci

METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA

METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 1 (2015), hal 85 94 METODE SOLOVAY-STRASSEN UNTUK PENGUJIAN BILANGAN PRIMA Sari Puspita, Evi Noviani, Bayu Prihandono INTISARI Bilangan prima

Lebih terperinci

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang?

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang? Paa bab ini ipelajari aritmatika moular yaitu aritmatika tentang kelas-kelas ekuivalensi, imana permasalahan alam teori bilangan iseerhanakan engan cara mengganti setiap bilangan bulat engan sisanya bila

Lebih terperinci

STANDAR KOMPETENSI KOMPETENSI DASAR. Menggunakan aturan suku banyak dalam penyelesaian masalah

STANDAR KOMPETENSI KOMPETENSI DASAR. Menggunakan aturan suku banyak dalam penyelesaian masalah STANDAR KOMPETENSI Menggunakan aturan suku banyak dalam penyelesaian masalah KOMPETENSI DASAR Menggunakan teorema sisa dan teorema faktor dalam pemecahan masalah INDIKATOR Menentukan faktor, akar-akar

Lebih terperinci

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum Bab I. Sekilas Tentang Konsep Dasar Grup antonius cp 2 1. Tertutup, yakni jika diambil sebarang dua elemen dalam G maka hasil operasinya juga akan merupakan elemen G dan hasil tersebut adalah tunggal.

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 24, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT

MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 7 TEORI BILANGAN JUMLAH PERTEMUAN : 1

Lebih terperinci

PENGAPLIKASIAN KONGRUEN LANJAR UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR, CHINESE REMAINDER THEOREM, DAN UJI DIGIT ISBN.

PENGAPLIKASIAN KONGRUEN LANJAR UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR, CHINESE REMAINDER THEOREM, DAN UJI DIGIT ISBN. PENGAPLIKASIAN KONGRUEN LANJAR UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR, CHINESE REMAINDER THEOREM, DAN UJI DIGIT ISBN Skripsi Oleh: Novian Saputra JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 58 62 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE SISKA NURMALA SARI Program Studi Matematika, Fakultas

Lebih terperinci

Faktor Persekutuan Terbesar (FPB)

Faktor Persekutuan Terbesar (FPB) Faktor Persekutuan Terbesar (FPB) Perlu diingat kembali bahwa suatu bilangan bulat a tidak nol adalah faktor dari suatu bilangan bulat b, ditulis a b, jika ada bilangan bulat c sedemikian sehingga b =

Lebih terperinci

Modifikasi Algoritma RSA dengan Chinese Reamainder Theorem dan Hensel Lifting

Modifikasi Algoritma RSA dengan Chinese Reamainder Theorem dan Hensel Lifting Modifikasi Algoritma RSA dengan Chinese Reamainder Theorem dan Hensel Lifting Reyhan Yuanza Pohan 1) 1) Jurusan Teknik Informatika ITB, Bandung 40132, email: if14126@students.if.itb.ac.id Abstract Masalah

Lebih terperinci

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب

Lebih terperinci

MODUL PERSIAPAN OLIMPIADE. Oleh: MUSTHOFA

MODUL PERSIAPAN OLIMPIADE. Oleh: MUSTHOFA MODUL PERSIAPAN OLIMPIADE Oleh: MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2007 1 TEORI BILANGAN Dalam teori bilangan, semesta pembicaraan

Lebih terperinci

Aljabar Linier Lanjut. Kuliah 1

Aljabar Linier Lanjut. Kuliah 1 Aljabar Linier Lanjut Kuliah 1 Materi Kuliah (Review) Multiset Matriks Polinomial Relasi Ekivalensi Kardinal Aritmatika 23/8/2014 Yanita, FMIPA Matematika Unand 2 Multiset Definisi Misalkan S himpunan

Lebih terperinci

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan umur hingga habis, dan yang tersisa tinggal catatan

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA HANDOUT TEORI BILANGAN MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2011 1 RELASI KETERBAGIAN Dalam teori bilangan, semesta pembicaraan

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat dari Grup Faktor

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat dari Grup Faktor BAB 5 GRUP FAKTOR Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat dari Grup Faktor Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah

INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah No RUMUS 1 Bilangan Bulat Sifat penjumlahan bilangan bulat a. Sifat tertutup a + b = c; c juga bilangan bulat b. Sifat komutatif a + b = b + a c. Sifat asosiatif (a + b) + c = a + (b + c) d. Mempunyai

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo May 25, 2014 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

BIDANG MATEMATIKA SMA

BIDANG MATEMATIKA SMA MATERI PENGANTAR OLIMPIADE SAINS NASIONAL BIDANG MATEMATIKA SMA DISUSUN OLEH: TIM PEMBINA OLIMPIADE MATEMATIKA TIM OLIMPIADE MATEMATIKA INDONESIA Juli 009 KATA PENGANTAR Olimpiade Sains Nasional (OSN)

Lebih terperinci

TEORI KETERBAGIAN.

TEORI KETERBAGIAN. TEORI KETERBAGIAN 1 ALGORITMA PEMBAGIAN Teorema 2.1: (Algoritma Pembagian) Diberikan bilangan bulat a dan b, dengan b > 0, maka ada bilangan bulat tunggal q dan r yang memenuhi a = qb + r, 0 r < b. Bilangan

Lebih terperinci

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang?

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang? Pada bab ini dipelajari aritmatika modular yaitu aritmatika tentang kelas-kelas ekuivalensi, dimana permasalahan dalam teori bilangan disederhanakan dengan cara mengganti setiap bilangan bulat dengan sisanya

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field.

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. BAB 2 LANDASAN TEORI Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. Hal ini dimulai dengan memberikan pengertian dari group

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

FAKTORISASI SUKU ALJABAR

FAKTORISASI SUKU ALJABAR 1 FAKTORISASI SUKU ALJABAR Pernahkah kalian berbelanja di supermarket? Sebelum berbelanja, kalian pasti memperkirakan barang apa saja yang akan dibeli dan berapa jumlah uang yang harus dibayar. Kalian

Lebih terperinci

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima BAB II KETERBAGIAN 2.1 Pendahuluan Pada pertemuan minggu ke-3, dan 4 ini dibahas konsep keterbagian, algoritma pembagian dan bilangan prima pada bilangan bulat. Relasi keterbagian pada himpunan semua bilangan

Lebih terperinci

PERANGKAT PEMBELAJARAN

PERANGKAT PEMBELAJARAN PERANGKAT PEMBELAJARAN MATA KULIAH : TEORI BILANGAN KODE : MKK206515 DOSEN : JANUAR BUDI ASMARI, S.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN

Lebih terperinci

TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0.

TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. TEORI BILANGAN Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Sifat Pembagian pada Bilangan Bulat Misalkan a dan b adalah dua buah bilangan

Lebih terperinci

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta Matematika Diskrit Reza Pulungan Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta March 31, 2011 Teori Bilangan (Number Theory) Keterbagian (Divisibility) Pada bagian ini kita hanya akan berbicara

Lebih terperinci

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351) II. SISTEM BILANGAN RIIL Handout Analisis Riil I (PAM 351) Sifat Aljabar (Aksioma Lapangan) dari Bilangan Riil Bagian ini akan membicarakan struktur aljabar bilangan riil dengan terlebih dahulu memberikan

Lebih terperinci

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 10 11 12 Materi Kuliah Transformasi Linier Kernel dan Image dari Transformasi Linier isomorfisma Teorema Rank plus Nullity 1/11/2014 Yanita FMIPA Matematika Unand 2 Transformasi Linier

Lebih terperinci

ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc

ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2011 0 KATA PENGANTAR Aljabar abstrak

Lebih terperinci

Algoritma Kriptografi Kunci-publik RSA menggunakan Chinese Remainder Theorem

Algoritma Kriptografi Kunci-publik RSA menggunakan Chinese Remainder Theorem Algoritma Kriptografi Kunci-publik RSA menggunakan Chinese Remainder Theorem Muhamad Reza Firdaus Zen NIM : 13504048 Sekolah Teknik Elektro dan Informatika ITB, Bandung, email: if14048@students.if.itb.ac.id

Lebih terperinci

Bab 2: Kriptografi. Landasan Matematika. Fungsi

Bab 2: Kriptografi. Landasan Matematika. Fungsi Bab 2: Kriptografi Landasan Matematika Fungsi Misalkan A dan B adalah himpunan. Relasi f dari A ke B adalah sebuah fungsi apabila tiap elemen di A dihubungkan dengan tepat satu elemen di B. Fungsi juga

Lebih terperinci

Diktat Kuliah. Oleh:

Diktat Kuliah. Oleh: Diktat Kuliah TEORI GRUP Oleh: Dr. Adi Setiawan UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2015 Kata Pengantar Aljabar abstrak atau struktur aljabar merupakan suatu mata kuliah yang menjadi kurikulum nasional

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada II. LANDASAN TEORI Pada bilangan ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan sempurna, bilangan bulat, bilangan prima,faktor bilangan bulat dan kekongruenan. 2.1

Lebih terperinci

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi, penjelasan, dan teorema yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang diberikan diantaranya adalah definisi

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

Lembar Kerja Mahasiswa 1: Teori Bilangan

Lembar Kerja Mahasiswa 1: Teori Bilangan Lembar Kerja Mahasiswa 1: Teori Bilangan N a m a : NIM/Kelas : Waktu Kuliah : Kompetensi Dasar dan Indikator: 1. Memahami pengertian faktor dan kelipatan bilangan bulat. a) Menuliskan denisi faktor suatu

Lebih terperinci

KONGRUENSI PADA SUBHIMPUNAN BILANGAN BULAT

KONGRUENSI PADA SUBHIMPUNAN BILANGAN BULAT KONGRUENSI PADA SUBHIMPUNAN BILANGAN BULAT Paridjo Pendidikan Matematika FKIP Universitas Pancasakti Tegal muhparidjo@gmail.com Abstrak Himpunan bilangan bulat dilambangkan dengan sistem bilangan Real

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup BAB 3 DASAR DASAR GRUP Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci