Pembagi Persekutuan Terbesar dan Teorema Bezout

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pembagi Persekutuan Terbesar dan Teorema Bezout"

Transkripsi

1 Latest Update: March 10, 2017 Pengantar Teori Bilangan (Bagian 3): Pembagi Persekutuan Terbesar dan Teorema Bezout M. Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta 1 Pengertian Diberikan a dan b keduanya adalah bilangan bulat yang tidak semuanya nol, maka keduanya selalu memiliki suatu pembagi yang sama, yaitu 1 dan 1. Sebagai contohnya, bilangan bulat 8 dan 12 memiliki pembagi yang sama yaitu 1, 1,2, 2,3, 3,4 dan 4. Berikut ini diberikan definisi mengenai pembagi persekutuan dari dua bilangan bulat. Definisi 1.1. Diberikan a, b Z yang tidak semuanya nol. Suatu c Z disebut dengan pembagi persekutuan (common divisor) dari a dan b jika c a dan c b. Pembagi persekutuan sering juga disebut dengan pembagi bersama, faktor persekutuan atau faktor bersama. Sebagai contohnya, 3 adalah pembagi persekutuan dari 8 dan 12, tetapi 6 bukan pembagi persekutuan dari 8 dan 12, sebab 6 tidak membagi habis 6. Setiap bilangan bulat tidak nol a dan b pasti memiliki pembagi persekutuan, yaitu 1 dan 1. Di antara pembagi persekutuan, ada satu yang memiliki sifat yang menarik seperti diberikan pada contoh penyederhanaan 8 bilangan rasional. Misalkan bilangan rasional yang dapat disederhanakan menjadi Bilangan rasional 2 8 dapat diperoleh berdasarkan fakta bahwa = 2 4 = 2, sedangkan adalah pembagi persekutuan terbesar dari 8 dan 12. Definisi 1.2. Diberikan a, b Z yang tidak semuanya nol. Suatu d Z disebut dengan pembagi persekutuan terbesar (greatest common divisor) dari a dan b, dinotasikan dengan gcd(a, b) = d, jika d adalah pembagi persekutuan yang terbesar dari a dan b. Dengan kata lain, gcd(a, b) = d jika memenuhi: 1

2 (i) d a dan d b (ii) jika c Z dengan c a dan c b, maka c d. Sebagai contohnya, gcd(8, 12) = 4, gcd(9, 12) = 3, gcd( 9, 12) = 3 dan gcd( 9, 12) = 3. Pada kasus penyederhanaan bilangan rasional 8 menjadi 2, dapat dilihat bahwa gcd(8, 12) = dan gcd(3, 4) = 1, artinya 2 adalah bentuk yang paling sederhana dari 8, sebab pembagi 3 12 persekutuan terbesar dari 3 dan 4 adalah 1. Berikut ini diberikan definisi yang berkaitan dengan dua bilangan bulat yang memiliki pembagi persekutuan terbesarnya adalah 1. Definisi 1.3. Diberikan a, b Z dengan a, b 0. Bilangan bulat a dan b dikatakan relatif prima atau saling prima jika gcd(a, b) = 1. Sebagai contoh, 3 dan 4 keduanya relatif prima, sedangkan 8 dan 12 keduanya tidak relatif prima. Konsep relatif prima nantinya sangat penting pada saat pembahasan tentang kongruensi. 2 Sifat-Sifat Pembagi Persekutuan Terbesar Berikut ini diberikan beberapa sifat pembagi persekutuan terbesar. Teorema 2.1. Diberikan a, b, c Z. Jika gcd(a, b) = d, maka (i) gcd(a, b) = gcd(b, a) (ii) gcd( a, b ) = 1 (iii) jika b 0, maka a b = p q untuk suatu p, q Z dengan gcd(p, q) = 1. (iv) gcd(a + cb, b) = gcd(a, b). Bukti: (i) Cukup jelas. (ii) Diberikan a, b Z dengan gcd(a, b) = d. Akan ditunjukkan bahwa a an b d tidak memiliki pembagi persekutuan positif lebih dari 1. Dimisalkan e adalah bilangan bulat positif sedemikian hingga e ( a) dan e ( b ), maka terdapat k, l Z sedemikian hingga a = ek dan b = el, diperoleh a = dek dan b = del. Oleh karena itu, de adalah pembagi persekutuan dari a dan b. Diketahui d adalah pembagi persekutuan terbesar dari a dan b, maka de d, diperoleh bahwa e yang memenuhi hanyalah e = 1. Dengan demikian, diperoleh bahwa gcd( a d, b d ) = 1. 2

3 (iii) Diberikan a, b Z dengan b 0. Dibentuk p = a dan q = b, maka diperoleh p = a/d = a. Berdasarkan sifat sebelumnya, diperoleh bahwa gcd(p, q) = 1. q b/d b (iv) Diberikan a, b, c Z. Untuk menunjukkan bahwa gcd(a + cb, b) = gcd(a, b), cukup ditunjukkan bahwa pembagi persekutuan dari a dan b sama dengan pembagi persekutuan dari a + cb dan b. Dimisalkan e adalah pembagi persekutuan dari a dan b, maka e membagi habis a + cb. Oleh karena itu, e merupakan pembagi persekutuan dari a + cb dan b. Selanjutnya, dimisalkan f adalah pembagi persekutuan dari a+cb dan b, maka f membagi habis (a + cb) cb = a. Diperoleh bahwa f merupakan pembagi persekutuan dari a dan b. Dengan demikian, terbukti bahwa gcd(a + cb, b) = gcd(a, b). Konsep pembagi persekutuan terbesar dapat didefinisikan untuk lebih dari dua bilangan bulat, seperti diberikan pada definisi berikut ini. Definisi 2.1. Diberikan bilangan-bilangan bulat a 1, a 2,..., a n Z yang tidak semuanya nol. Suatu bilangan bulat isebut pembagi persekutuan terbesar dari a 1, a 2,..., a n, dinotasikan dengan gcd(a 1, a 2,..., a n ) = d, apabila memenuhi kondisi berikut (i) d adalah pembagi persekutuan dari a 1, a 2,..., a n, yaitu d a i untuk setiap i = 1, 2,..., n (ii) jika c a i untuk setiap i = 1, 2,..., n, maka c d, dengan c Z. Sebagai contoh, gcd(4, 6, 8) = 2 dan gcd(10, 15, 20, 25) = 5. Untuk menghitung pembagi persekutuan dari a 1, a 2,..., a n dapat dengan menggunakan cara seperti diberikan pada teorema berikut ini. Teorema 2.2. Diberikan bilangan-bilangan bulat a 1, a 2,..., a n Z yang tidak semuanya nol, maka Bukti: Sebagai latihan. gcd(a 1, a 2,..., a n 1, a n ) = gcd(a 1, a 2,..., gcd(a n 1, a n )). Sebagai contoh, gcd(5, 6, 9) = gcd(5, gcd(6, 9)) = gcd(5, 3) = 1. Definisi 2.2. Bilangan-bilangan bulat a 1, a 2,..., a n Z dikatakan relatif prima atau saling prima jika gcd(a 1, a 2,..., a n ) = 1. Sebagai contoh, 5, 6 dan 9 saling relatif prima, sebab gcd(5, 6, 9) = 1. 3

4 3 Teorema Bezout Dapat ditunjukkan bahwa pembagi persekutuan terbesar dari dua bilangan bulat tidak nol a dan b dapat dinyatakan sebagai jumlahan dari ma dan nb, untuk suatu m, n Z. Pernyataan tersebut pernah dikemukakan pada abad ke-18 oleh seorang matematikawan Perancis yang bernama Etienne Bezout. Saat ini pernyataan tersebut dikenal dengan Teorema Bezout. Sebelumnya, diberikan terlebih dahulu pengertian tetang kombinasi linear dari dua bilangan bulat a dan b. Definisi 3.1. Diberikan a, b Z. Suatu kombinasi linear dari a dan b adalah jumlahan berbentuk ma + nb dengan m, n Z. Berikut ini diberikan Teorema Bezout yang menyatakan bahwa pembagi persekutuan terbesar dari dua bilangan bulat dapat dinyatakan sebagai kombinasi linear dari a dan b. Teorema ini nantinya sangat bermanfaat untuk pembahasan berikutnya. Teorema 3.1 (Teorema Bezout). Diberikan a, b Z yang tidak semuanya nol, maka gcd(a, b) adalah kombinasi linear positif terkecil dari a dan b. Lebih lanjut, terdapat m, n Z sedemikian hingga gcd(a, b) = ma + nb. Bukti: Dibentuk suatu himpunan semua kombinasi linear dari a dan b, namakan himpunan S = {ma + nb m, n Z}, selanjutnya dibentuk himpunan T = {s S s > 0}, maka T memiliki elemen terkecil, namakan d, misalkan d = ma + nb untuk suatu m, n Z. Akan ditunjukkan bahwa d adalah pembagi persekutuan dari a dan b. Berdasarkan algoritma pembagian, diperoleh bahwa a = dq + r dengan 0 r d 1. Dari sini diperoleh r = a dq = a q(ma + nb) = (1 qm)a + ( qn)b yaitu r S. Diketahui 0 r d 1 dan d adalah kombinasi linear positif terkecil dari a dan b, akibatnya satu-satunya r yang memenuhi hanyalah r = 0, diperoleh a = dq yang berarti d a. Selanjutnya, dengan cara yang sama dapat ditunjukkan bahwa d b. Dari sini diperoleh bahwa d adalah pembagi persekutuan dari a dan b. Untuk menunjukkan bahwa d adalah pembagi persekutuan dari a dan b, dimisalkan c adalah pembagi persekutuan dari a dan b, maka c (ma + nb), sehingga diperoleh c d. Diketahui d > 0, akibatnya c d. Hal ini menunjukkan bahwa d adalah pembagi persekutuan terbesar dari a dan b. Sebagai contohnya, diketahui gcd(3, 4) = 1, maka terdapat m = 1 dan n = 1 sedemikian hingga 1 = Untuk teknik cara mencari nilai m dan n nantinya akan dibahas pada bagian Algoritma Euclid. 4

5 Akibat 3.2. Diberikan a, b Z, maka a dan b relatif prima jika dan hanya jika terdapat m, n Z sedemikian hingga ma + nb = 1. Bukti: Dimisalkan a dan b relatif prima, maka gcd(a, b) = 1. Berdasarkan Teorema Bezout, maka terdapat m, n Z sedemikian hingga ma + nb = gcd(a, b) = 1. Sebaliknya, dimisalkan terdapat m, n Z sedemikian hingga ma + nb = 1. Diketahui bahwa gcd(a, b) adalah kombinasi linear positif terkecil dari a dan b, maka satu-satunya pembagi dari a dan b yang memenuhi hanyalah 1 dan 1. Akibatnya gcd(a, b) = 1, yang berarti bahwa a dan b relatif prima. Berikut ini diberikan sebuah teorema yang menjelaskan hubungan antara himpunan kombinasi linear dari a dan b, dengan himpunan kelipatan dari pembagi persekutuan terbesar dari a dan b. Teorema 3.3. Diberikan a, b Z dengan a, b > 0, maka himpunan semua kombinasi linear dari a dan b adalah himpunan semua kelipatan dari gcd(a, b), atau dapat ditulis {ma + nb m, n Z} = {k gcd(a, b) k Z}. Bukti: Dimisalkan d = gcd(a, b). Dibentuk kombinasi linear ma + nb dengan m, n Z. Akan ditunjukkan bahwa ma+nb adalah kelipatan dari d. Diketahui d = gcd(a, b), maka d a dan d b. Berdasarkan sifat keterbagian, maka d (ma+nb), artinya terdapat k Z sedemikian hingga ma + nb = kd. Selanjutnya, dimisalkan ld adalah kelipatan dari d, akan ditunjukkan bahwa ld adalah kombinasi linear dari a dan b. Berdasarkan Teorema Bezout, maka terdapat m, n Z sedemikian hingga d = ma+nb. Dari sini diperoleh ld = l(ma+nb) = (lm)a+(ln)b, yang berarti bahwa ld adalah kombinasi linear dari a dan b. Berikut ini diberikan sebuah teorema yang berkaitan dengan definisi pembagi persekutuan terbesar. Teorema 3.4. Diberikan a, b Z dengan a, b 0, maka suatu d Z adalah pembagi persekutuan terbesar dari a dan b, yaitu gcd(a, b) = d jika dan hanya jika memenuhi: (i) d a dan d b (ii) jika c Z dengan c a dan c b, maka c d. Bukti: ( ) Diketahui gcd(a, b) = d, maka jelas memenuhi d a dan d b. Berdasarkan Teorema Bezout, terdapat m, n Z sedemikian hingga d = ma + nb. Akibatnya, jika c a dan c b, maka 5

6 menggunakan sifat keterbagian diperoleh bahwa c (ma + nb), sehingga c d. ( ) Misalkan pernyataan (i) dan (ii) dipenuhi. Akan ditunjukkan bahwa d adalah pembagi persekutuan terbesar dari a dan b. Dari (i) telah diketahui bahwa d adalah pembagi persekutuan dari a dan b. Dari (ii) diketahui jika c a dan c b, maka c d. Oleh karena itu, d = cf untuk suatu f Z, sehingga c = d. Akibatnya diperoleh c = d f f d = gcd(a, b). d, yang berarti 4 Soal-soal Latihan (1) Tuliskan semua pembagi persekutuan dari 100 dan 125. (2) Tentukan gcd(100, 125), gcd(0, 125) dan gcd( 90, 120). (3) Diberikan a Z dengan a > 0. Tentukan gcd(a, a 2 ). (4) Buktikan bahwa jika a dan b keduanya genap, maka gcd(a, b) juga genap. (5) Buktikan bahwa jika a genap dan b ganjil, maka gcd(a, b) ganjil. (6) Diberikan a, b Z yang tidak semuanya nol. Diberikan c Z dengan c 0. Buktikan bahwa gcd(ca, cb) = c gcd(a, b). (7) Diberikan a, b Z dengan a dan b relatif prima. Buktikan bahwa pembagi persekutuan terbesar dari a + b dan a b adalah 1 atau 2. (8) Diberikan a adalah suatu bilangan bulat positif. Buktikan bahwa pembagi persekutuan terbesar dari a + 1 dan a 2 a + 1 adalah 1 atau 3. (9) Diberikan a adalah suatu bilangan bulat positif. Buktikan bahwa pembagi persekutuan terbesar dari a dan n adalah 1, 3 atau 9. (10) Buktikan bahwa jika a dan b adalah bilangan genap yang tidak semuanya nol, maka gcd(a, b) = 2gcd( a, b ). 2 2 (11) Buktikan bahwa jika a adalah bilangan genap dan b adalah bilangan ganjil, maka gcd(a, b) = gcd( a, b). 2 (12) Buktikan bahwa jika a, b dan c adalah bilangan-bilangan bulat dengan gcd(a, b) = 1 dan c (a + b), maka gcd(a, c) = gcd(b, c) = 1. 6

7 (13) Diberikan bilangan bulat tidak nol a, b dan c, dan ketiganya saling prima. Buktikan bahwa gcd(a, bc) = gcd(a, b)gcd(a, c). (14) Diberikan a, b, c Z dengan gcd(a, b) = gcd(a, c) = 1. Buktikan bahwa gcd(a, bc) = 1. (15) Diberikan a 1, a 2,..., a n, b Z dengan gcd(a i, b) = 1, untuk setiap i = 1, 2,..., n. Buktikan bahwa gcd(a 1, a 2,..., a n, b) = 1. 7

Lembar Kerja Mahasiswa 1: Teori Bilangan

Lembar Kerja Mahasiswa 1: Teori Bilangan Lembar Kerja Mahasiswa 1: Teori Bilangan N a m a : NIM/Kelas : Waktu Kuliah : Kompetensi Dasar dan Indikator: 1. Memahami pengertian faktor dan kelipatan bilangan bulat. a) Menuliskan denisi faktor suatu

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi 5 II. TINJAUAN PUSTAKA Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi penjumlahan dua bilangan kuadrat sempurna. Seperti, teori keterbagian bilangan bulat, bilangan prima, kongruensi

Lebih terperinci

Keterbagian Pada Bilangan Bulat

Keterbagian Pada Bilangan Bulat Latest Update: March 8, 2017 Pengantar Teori Bilangan (Bagian 1): Keterbagian Pada Bilangan Bulat Muhamad Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Lebih terperinci

Bilangan Prima dan Teorema Fundamental Aritmatika

Bilangan Prima dan Teorema Fundamental Aritmatika Pembaharuan Terakhir: 28 Maret 2017 Pengantar Teori Bilangan (Bagian 5): Bilangan Prima dan Teorema Fundamental Aritmatika M. Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan

Lebih terperinci

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta

Matematika Diskrit. Reza Pulungan. March 31, Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta Matematika Diskrit Reza Pulungan Jurusan Ilmu Komputer Universitas Gadjah Mada Yogyakarta March 31, 2011 Teori Bilangan (Number Theory) Keterbagian (Divisibility) Pada bagian ini kita hanya akan berbicara

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan Kuliah 2 2/2/2014 Yanita, FMIPA Matematika Unand 1 Materi Kuliah 2 Teori Pembagian dalam Bilangan Bulat Algoritma Pembagian Pembagi Persekutuan Terbesar 2/2/2014 2 Algoritma Pembagian

Lebih terperinci

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai 1 TEORI KETERBAGIAN Bilangan 0 dan 1 adalah dua bilangan dasar yang digunakan dalam sistem bilangan real. Dengan dua operasi + dan maka bilangan-bilangan lainnya didenisikan. Himpunan bilangan asli (natural

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima

BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima BAB II KETERBAGIAN 2.1 Pendahuluan Pada pertemuan minggu ke-3, dan 4 ini dibahas konsep keterbagian, algoritma pembagian dan bilangan prima pada bilangan bulat. Relasi keterbagian pada himpunan semua bilangan

Lebih terperinci

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritma Pembagian............................. 3 1.2 Pembagi persekutuan terbesar......................... 6 1.3 Algoritma Euclides............................... 11

Lebih terperinci

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas

LANDASAN TEORI. bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas II. LANDASAN TEORI Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan prima, bilangan coprima, bilangan kuadrat sempurna (perfect square), kuadrat bebas (square free), keterbagian,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sejak tiga abad yang lalu, pakar-pakar matematika telah menghabiskan banyak waktu untuk mengeksplorasi dunia bilangan prima. Banyak sifat unik dari bilangan prima yang menakjubkan.

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses penelitian untuk penyelesaian persamaan Diophantine dengan relasi kongruensi modulo m mengenai aljabar dan

Lebih terperinci

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Faktor Persekutuan Terbesar (FPB) dan Kelipatan

Lebih terperinci

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Oleh. Nikenasih B 1.1 SIFAT HABIS DIBAGI PADA BILANGAN BULAT Untuk dapat memahami sifat habis dibagi pada bilangan bulat, sebelumnya perhatikan

Lebih terperinci

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY

R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY R. Rosnawati Jurusan Pendidikan Matematika FMIPA UNY Induksi Matematika Induksi matematika adalah : Salah satu metode pembuktian untuk proposisi perihal bilangan bulat Induksi matematika merupakan teknik

Lebih terperinci

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan

II. TINJAUAN PUSTAKA. bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori dalam aljabar dan teori bilangan yang mendukung proses penelitian. Dalam penyelesaian bilangan carmichael akan dibutuhkan definisi

Lebih terperinci

Teori Bilangan (Number Theory)

Teori Bilangan (Number Theory) Bahan Kuliah ke-3 IF5054 Kriptografi Teori Bilangan (Number Theory) Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 3. Teori Bilangan Teori bilangan

Lebih terperinci

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada

II. LANDASAN TEORI. Secara umum, apabila α bilangan bulat dan b bilangan bulat positif, maka ada II. LANDASAN TEORI Pada bilangan ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan sempurna, bilangan bulat, bilangan prima,faktor bilangan bulat dan kekongruenan. 2.1

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Sebelum kita membahas mengenai uji primalitas, terlebih dahulu kita bicarakan beberapa definisi yang diperlukan serta beberapa teorema dan sifat-sifat yang penting dalam teori bilangan

Lebih terperinci

TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0.

TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. TEORI BILANGAN Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Sifat Pembagian pada Bilangan Bulat Misalkan a dan b adalah dua buah bilangan

Lebih terperinci

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40 DAFTAR ISI 1 TEORI KETERBAGIAN 1 1.1 Algoritma Pembagian............................. 2 1.2 Pembagi persekutuan terbesar........................ 5 1.3 Algoritma Euclides.............................. 12

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep

II. TINJAUAN PUSTAKA. Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep II. TINJAUAN PUSTAKA Pada bagian ini diterangkan materi yang berkaitan dengan penelitian, diantaranya konsep bilangan bulat, bilangan prima,modular, dan kekongruenan. 2.1 Bilangan Bulat Sifat Pembagian

Lebih terperinci

MAKALAH KRIPTOGRAFI CHINESE REMAINDER

MAKALAH KRIPTOGRAFI CHINESE REMAINDER MAKALAH KRIPTOGRAFI CHINESE REMAINDER Disusun : NIM : 12141424 Nama : Ristiana Prodi : Teknik Informatika B SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN ILMU KOMPUTER EL RAHMA YOGYAKARTA 2016 1. Pendahuluan

Lebih terperinci

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan

DIKTAT KULIAH (2 sks) MX 127 Teori Bilangan DIKTAT KULIAH ( sks) MX 17 Teori Bilangan (Revisi Terakhir: Juli 009 ) Oleh: Didit Budi Nugroho, S.Si., M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA

Lebih terperinci

Setelah mengikuti materi Bab ini mahasiswa diharapkan mampu: 2. Mendefinisikan factor persekutuan, kelipatan persekutuan, FPB, dan KPK.

Setelah mengikuti materi Bab ini mahasiswa diharapkan mampu: 2. Mendefinisikan factor persekutuan, kelipatan persekutuan, FPB, dan KPK. BAB II KETERBAGIAN PENDAHULUAN A. Deskripsi Singkat Mata Kuliah Mata kuliah ini dimaksudkan untuk memberikan kemampuan pada mahasiswa untuk belajar bukti matematika. Materi dalam mata kuliah ini sangat

Lebih terperinci

MODUL PERSIAPAN OLIMPIADE. Oleh: MUSTHOFA

MODUL PERSIAPAN OLIMPIADE. Oleh: MUSTHOFA MODUL PERSIAPAN OLIMPIADE Oleh: MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2007 1 TEORI BILANGAN Dalam teori bilangan, semesta pembicaraan

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA HANDOUT TEORI BILANGAN MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2011 1 RELASI KETERBAGIAN Dalam teori bilangan, semesta pembicaraan

Lebih terperinci

Pemfaktoran prima (2)

Pemfaktoran prima (2) FPB dan KPK Konsep Habis Dibagi Definisi: Jika a suatu bilangan asli dan b suatu bilangan bulat, maka a membagi habis b (dinyatakan dengan a b) jika dan hanya jika ada sebuah bilangan bulat c demikian

Lebih terperinci

BAB I INDUKSI MATEMATIKA

BAB I INDUKSI MATEMATIKA BAB I INDUKSI MATEMATIKA 1.1 Induksi Matematika Induksi matematika adalah suatu metode yang digunakan untuk memeriksa validasi suatu pernyataan yang diberikan dalam suku-suku bilangan asli. Dalam pembahasan

Lebih terperinci

TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa :

TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa : TEORI BILANGAN Setelah mempelajari modul ini diharapakan kamu bisa : 1 Menggunakan algoritma Euclid untuk menyelesaikan masalah. 2 Menggunakan notasi kekongruenan. 3 Menggunakan teorema Fermat dan teorema

Lebih terperinci

BAB I NOTASI, KONJEKTUR, DAN PRINSIP

BAB I NOTASI, KONJEKTUR, DAN PRINSIP BAB I NOTASI, KONJEKTUR, DAN PRINSIP Kompetensi yang akan dicapai setelah mempelajari bab ini adalah sebagai berikut. (1) Dapat memberikan sepuluh contoh notasi dalam teori bilangan dan menjelaskan masing-masing

Lebih terperinci

KATA PENGANTAR. Rantauprapat,11 April Penyusun

KATA PENGANTAR. Rantauprapat,11 April Penyusun KATA PENGANTAR Puji syukur kami panjatkan atas kehadirat Tuhan Yang Maha Esa, karena atas berkat rahmat-nya lah dan hidayah-nya jualah penulisan makalah ini dapat selesai dengan tepat waktu. Makalah ini

Lebih terperinci

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul

Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul Disajikan pada Pelatihan TOT untuk guru-guru SMA di Kabupaten Bantul Training of Trainer (TOT) Olimpiade Matematika Tingkat Sekolah Menengah Atas Untuk Guru-guru Sekolah Menengah Atas di Kabupaten Bantul

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Aljabar merupakan salah satu bagian dalam matematika yang mencakup berbagai materi yang dipelajari baik pada tingkat sekolah dasar sampai pada tingkat perguruan tinggi.

Lebih terperinci

BAB III PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM

BAB III PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM BAB III PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM 3.1 Pengembangan Teorema Pada penelitian dan perancangan algoritma ini, akan dibahas mengenai beberapa teorema uji primalitas yang telah ditemukan baru

Lebih terperinci

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan.

Teori bilangan. Nama Mata Kuliah : Teori bilangan Kode Mata Kuliah/SKS : MAT- / 2 sks. Deskripsi Mata Kuliah. Tujuan Perkuliahan. Nama : Teori bilangan Kode /SKS : MAT- / 2 sks Program Studi : Pendidikan Matematika Semester : IV (Empat) TEORI BILANGAN Oleh : RINA AGUSTINA, M.Pd. NEGO LINUHUNG, M.Pd Mata kuliah ini masih merupakan

Lebih terperinci

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang

BAB II LANDASAN TEORI. yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi, penjelasan, dan teorema yang mendasari pembahasan pada bab-bab berikutnya. Beberapa definisi yang diberikan diantaranya adalah definisi

Lebih terperinci

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun

Lebih terperinci

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang?

3 TEORI KONGRUENSI. Contoh 3.1. Misalkan hari ini adalah Sabtu, hari apa setelah 100 hari dari sekarang? Pada bab ini dipelajari aritmatika modular yaitu aritmatika tentang kelas-kelas ekuivalensi, dimana permasalahan dalam teori bilangan disederhanakan dengan cara mengganti setiap bilangan bulat dengan sisanya

Lebih terperinci

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA)

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA) Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS KABUPATEN/KOTA SMA 018 OSK Matematika SMA (Olimpiade Sains Kabupaten/Kota Matematika SMA) Disusun oleh: Pak Anang Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field.

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. BAB 2 LANDASAN TEORI Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. Hal ini dimulai dengan memberikan pengertian dari group

Lebih terperinci

Aplikasi Teori Bilangan Dalam Algoritma Enkripsi-Dekripsi Gambar Digital

Aplikasi Teori Bilangan Dalam Algoritma Enkripsi-Dekripsi Gambar Digital Aplikasi Teori Bilangan Dalam Algoritma Enkripsi-Dekripsi Gambar Digital Harry Alvin Waidan Kefas 13514036 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Integer (Bilangan Bulat)

Integer (Bilangan Bulat) Integer (Bilangan Bulat) Learning is not child's play, we cannot learn without pain. Aristotle 1 Tipe Data Integer Pada Bahasa Pemrograman Signed (bertanda +/- ) Unsigned (bulat non- negadf) Contoh: Misal

Lebih terperinci

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan I Bilangan Bulat dan Operasinya Pembekalan dan pemahaman dasar tentang bentuk bilangan pada suatu kelompok/set/himpunan salah satunya adalah bilangan bulat (yang lazim disebut

Lebih terperinci

KATA PENGANTAR. Yogyakarta, November Penulis

KATA PENGANTAR. Yogyakarta, November Penulis KATA PENGANTAR Puji syukur penulis panjatkan kepada Alloh SWT atas anugrah yang diberikan sehingga penulisan Buku Diktat yang dilengkapi dengan Rencana Program Kegiatan Pembelajaran Semester (RPKPS) dan

Lebih terperinci

Sistem Bilangan Real

Sistem Bilangan Real TUGAS I ANALISIS REAL I Sistem Bilangan Real Tugas 1 Analisis Real I Disusun oleh : Nariswari Setya D. Kartini Marvina Puspito M0108022 M0108050 M0108056 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

Pertemuan 4 Pengantar Teori Bilangan

Pertemuan 4 Pengantar Teori Bilangan INSTITUT PERTANIAN BOGOR FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Jl. Meranti, Kampus IPB Dramaga, Telp./Fax 0251-8625481/8625708 Email: fmipa@apps.ipb.ac.id, https://www.fmipa.ipb.ac.id Pertemuan

Lebih terperinci

Penulis : Rahmad AzHaris. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.com

Penulis : Rahmad AzHaris. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.com Penulis : Rahmad AzHaris Copyright 2013 pelatihan-osn.com Cetakan I : Oktober 2012 Diterbitkan oleh : Pelatihan-osn.com Kompleks Sawangan Permai Blok A5 No.12 A Sawangan, Depok, Jawa Barat 16511 Telp.

Lebih terperinci

BAB V BILANGAN BULAT

BAB V BILANGAN BULAT BAB V BILANGAN BULAT PENDAHULUAN Dalam bab ini akan dibicarakan sistem bilangan bulat, yang akan dimulai dengan memperluas sistem bilangan cacah dengan menggunakan sifat-sifat baru tanpa menghilangkan

Lebih terperinci

BAB 1. TEORI KETERBAGIAN. Materi mata kuliah: Teori Bilangan, pertemuan 1-4: Disiapkan oleh: Julan Hernadi

BAB 1. TEORI KETERBAGIAN. Materi mata kuliah: Teori Bilangan, pertemuan 1-4: Disiapkan oleh: Julan Hernadi BAB 1. TEORI KETERBAGIAN Materi mata kuliah: Teori Bilangan, pertemuan 1-4: Disiapkan oleh: Julan Hernadi February 3, 2015 2 DAFTAR ISI 1 TEORI KETERBAGIAN 1 1.1 Pendahuluan...............................

Lebih terperinci

BAB III PELABELAN KOMBINASI

BAB III PELABELAN KOMBINASI 1 BAB III PELABELAN KOMBINASI 3.1 Konsep Pelabelan Kombinasi Pelabelan kombinasi dari suatu graf dengan titik dan sisi,, graf G, disebut graf kombinasi jika terdapat fungsi bijektif dari ( himpunan titik

Lebih terperinci

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan umur hingga habis, dan yang tersisa tinggal catatan

Lebih terperinci

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik.

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Induksi Matematika Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Contoh: 1. Buktikan bahwa jumlah n bilangan bilangan bulat positif pertama adalah n(n

Lebih terperinci

BIDANG MATEMATIKA SMA

BIDANG MATEMATIKA SMA MATERI PENGANTAR OLIMPIADE SAINS NASIONAL BIDANG MATEMATIKA SMA DISUSUN OLEH: TIM PEMBINA OLIMPIADE MATEMATIKA TIM OLIMPIADE MATEMATIKA INDONESIA Juli 009 KATA PENGANTAR Olimpiade Sains Nasional (OSN)

Lebih terperinci

BAB II DASAR TEORI. membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda

BAB II DASAR TEORI. membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda BAB II DASAR TEORI Pada Bab II ini akan disajikan beberapa teori yang akan digunakan untuk membahas tentang penerapan skema tanda tangan Schnorr pada pembuatan tanda tangan digital yang meliputi: keterbagian

Lebih terperinci

BAB 4. TEOREMA FERMAT DAN WILSON

BAB 4. TEOREMA FERMAT DAN WILSON BAB 4. TEOREMA FERMAT DAN WILSON 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo June 11, 2012 Metoda Faktorisasi Fermat (1643) Biasanya pemfaktoran n melalui tester, yaitu faktor

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

Bab 2: Kriptografi. Landasan Matematika. Fungsi

Bab 2: Kriptografi. Landasan Matematika. Fungsi Bab 2: Kriptografi Landasan Matematika Fungsi Misalkan A dan B adalah himpunan. Relasi f dari A ke B adalah sebuah fungsi apabila tiap elemen di A dihubungkan dengan tepat satu elemen di B. Fungsi juga

Lebih terperinci

Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas.

Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Modul 03 HIMPUNAN I. Cara Menyatakan Himpunan PENGERTIAN Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Contoh: Himpunan siswi kelas III SMU 6 tahun 1999-2000 yang

Lebih terperinci

SMP kelas 9 - MATEMATIKA BAB 16. HIMPUNANLatihan Soal 16.1 {22, 25, 26, 28, 30) {21, 24, 26, 28, 30) {21, 23, 24, 27, 29) {21, 23, 25, 27, 29)

SMP kelas 9 - MATEMATIKA BAB 16. HIMPUNANLatihan Soal 16.1 {22, 25, 26, 28, 30) {21, 24, 26, 28, 30) {21, 23, 24, 27, 29) {21, 23, 25, 27, 29) SMP kelas 9 - MATEMATIKA BAB 16. HIMPUNANLatihan Soal 16.1 1. Complemen gabungan 2 himpunan. Diketahui : S = {21, 22, 23, 24,..., 30} A = {x 20 x 30, X Bil.Prima} B = {y 20 x 30, X Bil.Kelipatan 3} {22,

Lebih terperinci

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS

Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Aritmetika Modulo Misalkan a adalah bilangan

Lebih terperinci

TEORI BILANGAN (3 SKS)

TEORI BILANGAN (3 SKS) BAHAN AJAR: TEORI BILANGAN (3 SKS) O l e h Drs. La Misu, M.Pd. (Dipakai dalam Lingkungan Sendiri) PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALU OLEO KENDARI

Lebih terperinci

Minggu I PERSAMAAN DIOPHANTNE LINEAR

Minggu I PERSAMAAN DIOPHANTNE LINEAR Minggu I PERSAMAAN DIOPHANTNE LINEAR Budi Surodjo dan Yeni Susanti June 6, 2014 Budi Surodjo dan Yeni Susanti Minggu I PERSAMAAN DIOPHANTNE LINEAR June 6, 2014 1 / 15 Outline Outline 1 PDL Bagian I Contoh

Lebih terperinci

Induksi Matematika. Fitriyanti Mayasari

Induksi Matematika. Fitriyanti Mayasari Induksi Matematika Fitriyanti Mayasari Pendahuluan Induksi Matematika merupakan salah satu cara yang dapat digunakan untuk membuktikan pernyataan-pernyataan yang menegaskan bahwa suatu p(n) adalah benar

Lebih terperinci

BAHAN AJAR TEORI BILANGAN

BAHAN AJAR TEORI BILANGAN BAHAN AJAR TEORI BILANGAN PENYUSUN NURYADI, S.PD.SI, M.PD. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MERCU BUANA YOGYAKARTA 2014 FKIP UMB-Yogyakarta Page 1 KETERBAGIAN

Lebih terperinci

OLIMPIADE MATEMATIKA TINGKAT SEKOLAH MENENGAH ATAS MATERI : TEORI BILANGAN

OLIMPIADE MATEMATIKA TINGKAT SEKOLAH MENENGAH ATAS MATERI : TEORI BILANGAN OLIMPIADE MATEMATIKA TINGKAT SEKOLAH MENENGAH ATAS MATERI : TEORI BILANGAN Disajikan pada Pembimbingan Kompetisi Guru-Guru Matematika dalam pemecahan soal-soal OSN di lingkungan Sekolah Menengah Atas Kota

Lebih terperinci

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar

II. TINJAUAN PUSTAKA. terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar 4 II. TINJAUAN PUSTAKA Untuk melakukan penelitian ini terlebih dahulu harus memahami konsep yang terkait dengan pokok bahasan. Berikut ini diberikan pengertian-pengertian dasar yang menunjang dan disajikan

Lebih terperinci

BAB VI BILANGAN REAL

BAB VI BILANGAN REAL BAB VI BILANGAN REAL PENDAHULUAN Perluasan dari bilangan cacah ke bilangan bulat telah dibicarakan. Dalam himpunan bilangan bulat, pembagian tidak selalu mempunyai penyelesaian, misalkan 3 : 11. Timbul

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

BAHAN AJAR TEORI BILANGAN

BAHAN AJAR TEORI BILANGAN BAHAN AJAR TEORI BILANGAN PENYUSUN NURYADI, S.PD.SI, M.PD. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MERCU BUANA YOGYAKARTA 2014 FKIP UMB-Yogyakarta Page 1 KETERBAGIAN

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara 5 BAB 2 LANDASAN TEORI 2.1 Kriptografi Kriptografi adalah ilmu yang mempelajari bagaimana mengirim pesan secara rahasia sehingga hanya orang yang dituju saja yang dapat membaca pesan rahasia tersebut.

Lebih terperinci

HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) EvanRamdan

HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) EvanRamdan HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) Pengertian Himpunan Himpunan adalah kumpulan dari benda atau objek yang berbeda dan didefiniskan secara jelas Objek di dalam himpunan

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN

Teori Himpunan. Modul 1 PENDAHULUAN Modul 1 Teori Himpunan Drs. Sukirman, M.Pd. M PENDAHULUAN odul ini memuat pembahasan teori himpunan dan himpunan bilangan bulat. Teori himpunan memuat notasi himpunan, relasi dan operasi dua himpunan atau

Lebih terperinci

TEORI KETERBAGIAN.

TEORI KETERBAGIAN. TEORI KETERBAGIAN 1 ALGORITMA PEMBAGIAN Teorema 2.1: (Algoritma Pembagian) Diberikan bilangan bulat a dan b, dengan b > 0, maka ada bilangan bulat tunggal q dan r yang memenuhi a = qb + r, 0 r < b. Bilangan

Lebih terperinci

MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN METODE EBIK

MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN METODE EBIK MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN METODE EBIK Nuryadi, S.Pd, M.Pd. 1 A. PENDAHULUAN Pendidikan hendaknya mampu membentuk cara berpikir dan berprilaku

Lebih terperinci

Induksi 1 Matematika

Induksi 1 Matematika Induksi 1 Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!

Lebih terperinci

Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.

Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Induksi Matematik 1 Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT

BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT. Pendahuluan Well-Ordering Principle Jika S himpunan bagian dari himpunan bilangan bulat positif yang tidak kosong, maka S memiliki sebuah unsur terkecil. Unsur

Lebih terperinci

Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini

Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini TEORI BILANGAN, oleh Dr. Ni Nyoman Parwati, M.Pd. Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta dilindungi

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 003 TIM OLIMPIADE MATEMATIKA INDONESIA 004 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Pengertian HIMPUNAN Himpunan adalah suatu kumpulan dari sejumlah obyek. Sedangkan obyek yang ada didalamnya disebut anggota/elemen/unsur. Benda-benda yang berada di sekitar

Lebih terperinci

Faktor Persekutuan Terbesar (FPB)

Faktor Persekutuan Terbesar (FPB) Faktor Persekutuan Terbesar (FPB) Perlu diingat kembali bahwa suatu bilangan bulat a tidak nol adalah faktor dari suatu bilangan bulat b, ditulis a b, jika ada bilangan bulat c sedemikian sehingga b =

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

FAKTOR DAN KELIPATAN KELAS MARS SD TETUM BUNAYA

FAKTOR DAN KELIPATAN KELAS MARS SD TETUM BUNAYA FAKTOR DAN KELIPATAN KELAS MARS SD TETUM BUNAYA A. KELIPATAN A. KELIPATAN Kelipatan suatu bilangan dapat diperoleh: 1. penjumlahan berulang, dan 2. penjumlahan bilangan dengan bilangan asli Contoh: Tentukanlah

Lebih terperinci

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional  contact person : ALJABAR ALJABAR 1. Diberikan a 4 + a 3 + a 2 + a + 1 = 0. Tentukan a 2000 + a 2010 + 1. 2. Diberikan sistem persamaan 2010(x y) + 2011(y z) + 2012(z x) = 0 2010 2 (x y) + 2011 2 (y z) + 2012 2 (z x) = 2011 Tentukan

Lebih terperinci

Pembuktian Sifat Barisan Keterbagian Kuat pada Barisan Fibonacci

Pembuktian Sifat Barisan Keterbagian Kuat pada Barisan Fibonacci Pembuktian Sifat Barisan Keterbagian Kuat pada Barisan Fibonacci Aufar Gilbran 13513015 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl Ganesha

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

BILANGAN DAN KETERBAGIAN BILANGAN BULAT

BILANGAN DAN KETERBAGIAN BILANGAN BULAT BILANGAN DAN KETERBAGIAN BILANGAN BULAT A. Sistem Bilangan Dalam matematika mempelajari urutan dan keberaturan di antara bilangan-bilangan merupakan suatu bagian yang sangat fundamental. Dengan ditemukannya

Lebih terperinci

Pertemuan 1 BILANGAN BULAT

Pertemuan 1 BILANGAN BULAT Pertemuan 1 BILANGAN BULAT A. Bilangan Bulat Bilangan, -3, -2, -1, 0, 1, 2, disebut bilangan bulat rasional atau biasa disebut bilangan bulat saja atau integer. Bilangan 0, 1, 2, 3,... disebut bilangan

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar: DAERAH IDEAL UTAMA DAN DAERAH EUCLID

UNIVERSITAS GADJAH MADA. Bahan Ajar: DAERAH IDEAL UTAMA DAN DAERAH EUCLID UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN

Lebih terperinci

ALTERNATIF MENENTUKAN FPB DAN KPK

ALTERNATIF MENENTUKAN FPB DAN KPK ALTERNATIF MENENTUKAN FPB DAN KPK Welly Desriyati 1, Mashadi 2, Sri Gemawati 3 1 Mahasiswa Program Studi Magister Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau wellydesriyati@gmail.com

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

1 INDUKSI MATEMATIKA

1 INDUKSI MATEMATIKA 1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua

Lebih terperinci

TEKNIK PEMBUKTIAN. (Yus Mochamad Cholily)

TEKNIK PEMBUKTIAN. (Yus Mochamad Cholily) TEKNIK PEMBUKTIAN (Yus Mochamad Cholily) Pembuktian merupakan aktifitas yang tidak bisa dipisahkan dengan Matematika. Hal ini disebabkan produk matematika pada umumnya berbentuk teorema yang harus dibuktikan

Lebih terperinci