Metode Numerik Dichotomus
|
|
|
- Sucianty Widjaja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Algoritma Prodi S1 Pendidikan Matematika UMT April 4, 016
2 Algoritma Algoritma
3 Algoritma adalah salah satu metode numerik yang dapat digunakan untuk menentukan nilai x yang meminimumkan suatu fungsi dari f (x). Metode Numerik ini analogi nya sama seperti metode numerik lainnya seperti GR, Fibonacci dan biseksi, namun tentu saja memiliki karakteristik tersendiri
4 Algoritma Algoritma Dichotomus Algoritima Dichotomus adalah sebagai berikut Diberikan suatu fungsi yang memaks atau memin Z = F (x), dan akan ditentukan nilai x yang memaks atau memin Z = F (x) tersebut
5 Algoritma Algoritma Dichotomus Algoritima Dichotomus adalah sebagai berikut Diberikan suatu fungsi yang memaks atau memin Z = F (x), dan akan ditentukan nilai x yang memaks atau memin Z = F (x) tersebut Tetapkan konstanta ɛ > 0 dan jarak akhir l(lenght) > 0 yang diinginkan
6 Algoritma Algoritma Dichotomus Algoritima Dichotomus adalah sebagai berikut Diberikan suatu fungsi yang memaks atau memin Z = F (x), dan akan ditentukan nilai x yang memaks atau memin Z = F (x) tersebut Tetapkan konstanta ɛ > 0 dan jarak akhir l(lenght) > 0 yang diinginkan Tetapkan interval awal [a 1, b 1 ]. Pemilihan interval ini harus mengapit dari nilai x yang memaks atau memin Z = F (x) di atas
7 Algoritma Algoritma Dichotomus Algoritima Dichotomus adalah sebagai berikut Diberikan suatu fungsi yang memaks atau memin Z = F (x), dan akan ditentukan nilai x yang memaks atau memin Z = F (x) tersebut Tetapkan konstanta ɛ > 0 dan jarak akhir l(lenght) > 0 yang diinginkan Tetapkan interval awal [a 1, b 1 ]. Pemilihan interval ini harus mengapit dari nilai x yang memaks atau memin Z = F (x) di atas Tentukan nilai n terkecil yang memenuhi pertidaksamaan ( 1 )n l b a
8 Algoritma Algoritma Dichotomus Algoritima Dichotomus adalah sebagai berikut Diberikan suatu fungsi yang memaks atau memin Z = F (x), dan akan ditentukan nilai x yang memaks atau memin Z = F (x) tersebut Tetapkan konstanta ɛ > 0 dan jarak akhir l(lenght) > 0 yang diinginkan Tetapkan interval awal [a 1, b 1 ]. Pemilihan interval ini harus mengapit dari nilai x yang memaks atau memin Z = F (x) di atas Tentukan nilai n terkecil yang memenuhi pertidaksamaan ( 1 )n l b a
9 Algoritma lanjutan Penentuan λ k dan µ k dilakukan dengan cara: λ k = a k+b k ɛ dan µ k = a k+b k + ɛ
10 Algoritma lanjutan Penentuan λ k dan µ k dilakukan dengan cara: λ k = a k+b k ɛ dan µ k = a k+b k + ɛ Kondisi 1 Jika F (λ k ) < F (µ k ), pilih a k+1 = a k dan b k+1 = µ k Kondisi Jika F (λ k ) > F (µ k ), pilih a k+1 = λ k dan b k+1 = b k
11 Algoritma lanjutan Penentuan λ k dan µ k dilakukan dengan cara: λ k = a k+b k ɛ dan µ k = a k+b k + ɛ Kondisi 1 Jika F (λ k ) < F (µ k ), pilih a k+1 = a k dan b k+1 = µ k Kondisi Jika F (λ k ) > F (µ k ), pilih a k+1 = λ k dan b k+1 = b k Iterasi berhenti ketika b k a k < l
12 Algoritma Tentukan nilai x yang meminimumkan fungsi F (x) = x 5x + 3 dengan selang awal [0, ], ɛ = 0.01 dan l = 0.1 Solusi Tentukan nilai n terkecil yang memenuhi pertidaksamaan ( 1 )n l b a = 1 0, didapatkan n = 5
13 Algoritma Tentukan nilai x yang meminimumkan fungsi F (x) = x 5x + 3 dengan selang awal [0, ], ɛ = 0.01 dan l = 0.1 Solusi Tentukan nilai n terkecil yang memenuhi pertidaksamaan ( 1 )n l b a = 1 0, didapatkan n = 5 λ 1 = dan µ 1 = , didapatkan λ 1 = 0.99 dan µ 1 = 1.01
14 Algoritma Tentukan nilai x yang meminimumkan fungsi F (x) = x 5x + 3 dengan selang awal [0, ], ɛ = 0.01 dan l = 0.1 Solusi Tentukan nilai n terkecil yang memenuhi pertidaksamaan ( 1 )n l b a = 1 0, didapatkan n = 5 λ 1 = dan µ 1 = , didapatkan λ 1 = 0.99 dan µ 1 = 1.01 F (λ 1 ) = > F (λ ) = , dengan demikian a = 0.99 dan b =
15 Algoritma Tentukan nilai x yang meminimumkan fungsi F (x) = x 5x + 3 dengan selang awal [0, ], ɛ = 0.01 dan l = 0.1 Solusi Tentukan nilai n terkecil yang memenuhi pertidaksamaan ( 1 )n l b a = 1 0, didapatkan n = 5 λ 1 = dan µ 1 = , didapatkan λ 1 = 0.99 dan µ 1 = 1.01 F (λ 1 ) = > F (λ ) = , dengan demikian a = 0.99 dan b = b 1 a 1 = > 0.1 = l, iterasi dilanjutkan sampai terpenuhinya kondisi b k a k < l
16 Algoritma lanjutan Hasil perhitungan disajikan dalam tabel di bawah ini: a k b k λ k µ k F (λ k ) F (µ k )
17 Algoritma lanjutan Hasil perhitungan disajikan dalam tabel di bawah ini: a k b k λ k µ k F (λ k ) F (µ k ) Terlihat bahwa pada iterasi ke 6, b k a k < 0.1 = l dengan demikian iterasi berhenti dan nilai x yang meminimumkan fungsi F (x) = x 5x + 3 ada pada selang [1.375, ] dengan hampiran solusi x = dan nilai F (x ) =
18 Algoritma lanjutan Apabila solusi analitik dicari, maka nilai x asli yang yang meminimumkan fungsi F (x) = x 5x + 3 adalah x = 1.5 dengan F (x ) = Eror kesalahan nilai hampiran numerik adalah ɛ = = dengan eror nilai F (x ) terhadap F (x) adalah
19 Algoritma lanjutan Apabila solusi analitik dicari, maka nilai x asli yang yang meminimumkan fungsi F (x) = x 5x + 3 adalah x = 1.5 dengan F (x ) = Eror kesalahan nilai hampiran numerik adalah ɛ = = dengan eror nilai F (x ) terhadap F (x) adalah Tugas Tentukan nilai x yang meminimumkan F (x) = X 3 3X dengan selang awal [0, 4], ɛ = l = 0 + JumlahanNim. Kumpulkan Minggu depan.
METODE NUMERIK SECANT
Prodi S1 Pendidikan Matematika UMT FKIP UMT April 4, 2016 Metode Numerik Secant Metode Numerik Secant Metode Numerik Secant Metode numerik Secant merupakan turunan dari metode Newton dan digunakan untuk
METODE NUMERIK BISEKSI
February 24, 2016 Metode Biseksi 1. Metode Biseksi 1 1. Metode Biseksi 2 Metode Biseksi Metode Biseksi memberikan alternatif perhitungan numerik menentukan x yang meminimumkan atau memaksimumkan suatu
Metode Numerik Newton
1. March 1, 2016 1. 1. 1. Berbeda dengan Metode numerik Golden Rasio dan Fibonacci yang tidak memerlukan f (x), metode numerik Newton memerlukan turunan dari fungsi f (x) tersebut. 1. Berbeda dengan Metode
Metode Numerik Arah Konjugasi
Contoh Penyelesaian Masalah Optimisasi dengan Metode Numerik Rukmono Budi Utomo, M.Sc. Prodi S1 Pendikan Matematika UMT email: [email protected] May 2, 2016 Contoh Penyelesaian Masalah
Metode Numerik Roosenberg
Metode Numerik Roosenberg Rukmono Budi Utomo, M.Sc. Prodi S1 Pendikan Matematika UMT email: [email protected] May 4, 2016 Metode Numerik Roosenberg Metode Numerik Roosenberg Algoritma Roosenberg
SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016
Halaman 1/4 SILABUS PERKULIAHAN TAHUN AKADEMIK 2015/2016 KODE DOSEN NAMA DOSEN KODE MATA KULIAH NAMA MATA KULIAH SEMESTER/KELAS F 220 MAT RUKMONO BUDI UTOMO, M.Sc. MKP010 METODE NUMERIK VI/A1,A2,B1,B2
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah
METODE STEEPEST DESCENT
METODE STEEPEST DESCENT Dosen Pengampu: Rukmono Budi Utomo M.Sc. Disusun Oleh : Linna Tri Lestari 6A1 1384202140 Diajukan sebagai tugas Ujian Akhir Semester UAS Metode Numerik UNIVERSITAS MUHAMMADIYAH
METODE NUMERIK STEEPEST DESCENT
METODE NUMERIK STEEPEST DESCENT 1 Juni 2016 Ujian Akhir Semester Untuk memenuhi ujian alhir semester mata kuliah metode numerik Selvi Kusdwi Lestari (1384202138 6A1 Pendidikan Matematika Fakultas Keguruan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial berperan penting dalam kehidupan, sebab banyak permasalahan pada dunia nyata dapat dimodelkan dengan bentuk persamaan diferensial. Ada dua jenis
METODE NUMERIK ROSENBERG
METODE NUMERIK ROSENBERG Mata Kuliah : Metode Numerik Dosen Pengampu : Rukmono Budi Utomo, M.Sc Disusun Oleh : Rizka Apriyanti 6 A1 13840080 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret
Ilustrasi Persoalan Matematika
Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti
PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA
Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 68 75 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA ELSA JUMIASRI, SUSILA BAHRI, BUKTI GINTING
ARAH KONJUGAT. dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni Dadang Supriadi A2
ARAH KONJUGAT dibuat guna memenuhi tugas UAS Mata Kuliah Metode Numerik Dosen: Rukmono Budi Utomo M.Sc. 4 juni 2016 Dadang Supriadi 1384202098 6A2 UNIVERSITAS MUHAMMADIYAH TANGERANG FAKULTAS KEGURUAN ILMU
PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier
PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan
MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.
KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI
PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3
PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3 Tornados P. Silaban 1, Faiz Ahyaningsih 2 1) FMIPA, UNIMED, Medan, Indonesia email: [email protected] 2)
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan
Persamaan dan Pertidaksamaan Linear
MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai
BAB I PENDAHULUAN. masalah dan menafsirkan solusi dari permasalahan yang ada. Tanpa
BAB I PENDAHULUAN 1.1. Latar Belakang Penggunaan matematika dalam kehidupan sangat berguna untuk meningkatkan pemahaman dan penalaran, serta untuk memecahkan suatu masalah dan menafsirkan solusi dari permasalahan
BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi
BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva
Contoh Solusi PR 5 Statistika & Probabilitas
Contoh Solusi PR 5 Statistika & Probabilitas 1. X = proporsi pelanggan yang menggunakan layanan penerbangan untuk keperluan bisnis. n = ukuran sampel, p = proporsi sampel yang menggunakan layanan penerbangan
MENENTUKAN NILAI EIGEN DOMINAN TERBESAR DAN TERKECIL SUATU MATRIKS SKRIPSI SARJANA MATEMATIKA. Oleh : DESVENTRI ETMY
MENENTUKAN NILAI EIGEN DOMINAN TERBESAR DAN TERKECIL SUATU MATRIKS SKRIPSI SARJANA MATEMATIKA Oleh : DESVENTRI ETMY 06 934 020 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS
matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA
K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan
DASAR-DASAR ANALISIS MATEMATIKA
(Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: [email protected]. December 1, 2007 Diberikan sebuah fungsi yang terdefinisi pada interval (a, b) kecuali mungkin di
RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK
RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK Mata Kuliah: Metode Numerik Semester: 7, Kode: KMM 090 Program Studi: Pendidikan Matematika Dosen: Khairul Umam, S.Si, M.Sc.Ed Capaian Pembelajaran: SKS:
PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier
PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan
BAB 1 PENDAHULUAN. khususnya matematika rekayasa, yang menggunakan bilangan untuk menirukan proses
BAB 1 PENDAHULUAN 1.1 Latar Belakang Analisis Numerik merupakan suatu cabang atau bidang ilmu matematika, khususnya matematika rekayasa, yang menggunakan bilangan untuk menirukan proses matematik. Proses
Persamaan yang kompleks, solusinya susah dicari. Contoh :
AKAR PERSAMAAN NON LINEAR Persamaan hingga derajat dua, masih mudah diselesaikan dengan cara analitik. Contoh : a + b + c = 0 Solusi : 1 = b ± b 4 ac a Persamaan yang kompleks, solusinya susah dicari.
BAB II KAJIAN PUSTAKA
BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas
METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya
METODE NUMERIK AKAR-AKAR PERSAMAAN Eka Maulana Dept. of Electrcal Engineering University of Brawijaya Pendekatan Pencarian Akar-akar Persamaan Metode Pencarian Akar Persamaan > Metode Pengurung - metode
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier
Algoritma Simplex. Algoritma Simplex adalah algoritma yang digunakan untuk mengoptimalkan fungsi objektif dan memperhatikan semua persamaan
Algoritma Simplex Algoritma Simplex adalah algoritma yang digunakan untuk mengoptimalkan fungsi objektif dan memperhatikan semua persamaan kendala. (George Dantizg, USA, 1950) Contoh Kasus Suatu perusahaan
SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik.
SILABUS MATAKULIAH Matakuliah Jurusan : Metode Numerik : Matematika Deskripsi Matakuliah :Metode Numerik membahas permasalahan matematika yang bersifat numerik. Penyelesaian persamaan khususnya non liner,
TINJAUAN PUSTAKA. Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu
II. TINJAUAN PUSTAKA. Distribusi Weibull Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu hidup dalam tekhnik ketahanan. Distribusi ini adalah distribusi serbaguna yang dapat
Staff Pengajar Jurusan Teknik Mesin, FT-Universitas Sebelas Maret Surakarta
DESAIN OPTIMASI UNGSI TAK LINIER MENGGUNAKAN METODE PENYELIDIKAN IBONACCI Yemi Kuswardi Nurul Muhayat Abstract: optimum design is an action to design the best product based on the problem. Theoretically,
PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU
PERBANDINGAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH ORDE EMPAT DALAM PENYELESAIAN MASALAH NILAI AWAL ORDE SATU Lilik Prasetiyo Pratama Jurusan Matematika, FMIPA UNS 1. LATAR BELAKANG
PAM 252 Metode Numerik Bab 4 Pencocokan Kurva
PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan
BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat
1 BAB I PENDAHULUAN 1.1 Latar Belakang Sistem persamaan dapat dipandang F(x) = 0 [5], merupakan kumpulan dari beberapa persamaan nonlinear dengan fungsi tujuannya saja atau bersama fungsi kendala berbentuk
Ujian Tengah Semester
Ujian Tengah Semester Mata Kuliah : PAM 252 Metode Numerik Jurusan : Matematika FMIPA Unand Hari/Tanggal : Selasa/31 Maret 2015 Waktu : 10.00 11.40 (100 menit) Dosen : Dr. Susila Bahri (Kelas A dan C)
FUZZY LINIER PROGRAMMING UNTUK PEMILIHAN JENIS KENDARAAN DALAM MENGANTISIPASI KEMACETAN LALU LINTAS DI KOTA MEDAN
FUZZY LINIER PROGRAMMING UNTUK PEMILIHAN JENIS KENDARAAN DALAM MENGANTISIPASI KEMACETAN LALU LINTAS DI KOTA MEDAN Zulfikar Sembiring 1* 1 Fakultas Teknik, Universitas Medan Area * Email : [email protected]
METODE SIMPLEKS KASUS MEMAKSIMUMKAN
TUGAS KELOMPOK RISET OPERASI METODE SIMPLEKS KASUS MEMAKSIMUMKAN KELOMPOK RINI ANGGRAINI S (H ) NURUL MUTHIAH (H 5) RAINA DIAH GRAHANI (H 68) FATIMAH ASHARA (H 78) PRODI STATISTIKA JURUSAN MATEMATIKA FAKULTAS
METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom
METODE NUMERIK Pertemuan ke - 3 Akar Persamaan (1) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk x = g(x)
POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi
Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem
Pengantar Metode Numerik
Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan
III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3
8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.
Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB
(Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: [email protected]. August 29, 2011 Dalam kisah Zeno tentang perlombaan lari antara Achilles dan seekor kura-kura, ketika Achilles mencapai
METODE NUMERIK ARAH KONJUGASI
METODE NUMERIK ARAH KONJUGASI 14 Mei 2016 Diajukan untuk Memenuh Tugas Ujian Akhir Semester Mata kuliah Metode Numerik Dosen Pengampu Bapak Rukmono Budi Utomo,M.Sc Nur Aliyah 1384202043 6A1 Fakultas Keguruan
METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1
METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem
Pendahuluan Metode Numerik Secara Umum
Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan
PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari
Hampiran turunan menggunakan metoda numerik
Hampiran turunan menggunakan metoda numerik Kie Van Ivanky Saputra March 31, 2009 K V I Saputra (Analisis Numerik) Turunan Numerik March 31, 2009 1 / 9 Tujuan 1 mengerti apa itu dari turunan numerik, 2
BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan
BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks
Triyana Muliawati, S.Si., M.Si.
SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. [email protected] 1. Pengenalan Metode
UNIVERSITAS BINA NUSANTARA
UNIVERSITAS BINA NUSANTARA Program Ganda Teknik Informatika - Matematika Skripsi Sarjana Program Ganda Semester Ganjil 2006/2007 PERANCANGAN PROGRAM APLIKASI SOLUSI LINEAR PROGRAMMING DENGAN MENGGUNAKAN
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan
BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan
BAB I PENDAHULUAN 1.1 Latar Belakang Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan secara numerik. Perhitungan secara analitik dilakukan untuk menyelesaikan integral pada fungsi
BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS
BAB III SOLUSI GRAFIK DAN METODE PRIMAL SIMPLEKS A. Metode Simpleks Metode simpleks yang sudah kita pelajari, menunjukkan bahwa setiap perpindahan tabel baru selalu membawa semua elemen yang terdapat dalam
Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik
Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses
METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom
METODE NUMERIK Pertemuan ke - 4 Akar Persamaan (2) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk = g() Metode
Metode Numerik. Muhtadin, ST. MT. Metode Numerik. By : Muhtadin
Metode Numerik Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat 2 Metode Numerik & Teknik Komputasi - Intro 3 Tujuan Pembelajaran Mahasiswa
BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan
BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,
METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR
METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR Metode Biseksi Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari
II. LANDASAN TEORI. sєs (S ruang sampel) dengan sebuah bilangan real. Salah satu peubah acak adalah
II. LANDASAN TEORI Peubah acak X(s) merupakan sebuah fungsi X yang menetapkan setiap anggota sєs (S ruang sampel) dengan sebuah bilangan real. Salah satu peubah acak adalah peubah acak diskrit, yaitu banyaknya
PERSAMAAN NON LINIER
PERSAMAAN NON LINIER Obyektif : 1. Mengerti penggunaan solusi persamaan non linier 2. Mengerti metode biseksi dan regulafalsi 3. Mampu menggunakan metode biseksi dan regula falsi untuk mencari solusi PENGANTAR
Pendahuluan Metode Numerik Secara Umum
Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro
Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar
Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Danang Tri Massandy (13508051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI
PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI Perbandingan Beberapa Metode Numerik dalam Menghitung Nilai Pi Aditya Agung Putra (13510010)1 Program Studi Teknik Informatika Sekolah Teknik
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Integral merupakan salah satu dari dua operasi utama dalam kalkulus. Jauh sebelum integral diperkenalkan, para matematikawan telah lebih dulu mengembangkan
PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT
PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Muliana 1, Syamsudhuha 2, Musraini 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika
CONTOH SOLUSI UTS ANUM
CONTOH SOLUSI UTS ANUM 0 Propagasi eror adalah kejadian di mana eror dari operan suatu komputasi sederhana memberikan eror yang lebih besar pada hasil komputasi tersebut. Misalnya, eror awal suatu representasi
IMPLEMENTASI MODEL NUMERIK DALAM PEMODELAN
IMPLEMENTASI MODEL NUMERIK DALAM PEMODELAN By: Kastana Sapanli PEMODELAN EKONOMI SUMBERDAYA DAN LINGKUNGAN (ESL 428 ) Coba Selesaikan Soal Berikut: Coba Selesaikan Soal Berikut: Padahal persoalan yang
Danang Triagus Setiyawan ST.,MT
Danang Triagus Setiyawan ST.,MT Metode ini didasari atas gagasan pergerakan dari satu titik ekstrim ke titik ekstrim yang lain pada satu susunan konvek yang dibentuk oleh set fungsi kendala dan kondisi
Penyelesaian Secara Numerik? Penyelesaian Secara Numerik Selesaikanlah persamaan nonlinier f(x) = x x -8 Solve : Misal f(x) = 0 x x 8 = 0 (x 4)(x + )
Fungsi Polinomial METODE BISEKSI Solusi Persamaan Non Linier Universitas Budi Luhur Bentuk Umum : f (x) = a + = a + 0 1 3 n 0x + a1x + a x + a 3x +... a nx 3 n 0 + a1x + ax + a3x +... anx Dengan n = derajat
BAB I PENDAHULUAN. Pada era modern sekarang ini dengan biaya hidup yang semakin meningkat,
BAB I PENDAHULUAN A. Latar Belakang Pada era modern sekarang ini dengan biaya hidup yang semakin meningkat, berakibat beberapa perusahaan mengalami peningkatan biaya pendistribusian produk. Pendistribusian
BAGIAN PERTAMA. Bilangan Real, Barisan, Deret
BAGIAN PERTAMA Bilangan Real, Barisan, Deret 2 Hendra Gunawan Pengantar Analisis Real 3 0. BILANGAN REAL 0. Bilangan Real sebagai Bentuk Desimal Dalam buku ini pembaca diasumsikan telah mengenal dengan
PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR
Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 93 98 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR
Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.
6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sistem kejadian dinamik diskrit (discrete-event dynamic system) merupakan sistem yang keadaannya berubah hanya pada titik waktu diskrit untuk menanggapi terjadinya
Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb
Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial
Ayundyah Kesumawati. April 27, 2015
Kesumawati Prodi Statistika FMIPA-UII April 27, 2015 Estimasi interval Jika diperhatikan, terdapat kesamaan rumus-rumus yang dipakai pada saat pengujian hipotesis dan pendugaan selang kepercayaan. Untuk
Persamaan Non Linier
Persamaan Non Linier MK: METODE NUMERIK Oleh: Dr. I GL Bagus Eratodi FTI Undiknas University Denpasar Persamaan Non Linier Metode Tabulasi Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode
BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau
BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah
BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik
BAB 1 Konsep Dasar 1 BAB 2 Solusi Persamaan Fungsi Polinomial Denition 2.0.1 (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik kalkulasi berulang (teknik iterasi)
DASAR-DASAR ANALISIS MATEMATIKA
(Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: [email protected]. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila
METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT
METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya
Bab 1. Pendahuluan Metode Numerik Secara Umum
Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian
BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.
BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Banyak ditemukan masalah nyata di alam ini yang dapat dibuat model matematikanya. Persamaan integral merupakan salah satu model matematika yang banyak digunakan
BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.
BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.
PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR
PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR T-11 RIVELSON PURBA 1 1 FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUSAMUS MERAUKE [email protected] ABSTRAK Purba, Rivelson. 01. Penerapan Logika
BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,
BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn
BAB 3 METODOLOGI PENELITIAN
33 BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Metodologi Penelitian Diagram alir di bawah ini merupakan langkah-langkah diambil untuk menunjang penelitian sistem antrian di BNI 46 Kantor Cabang Pasar
1) Untuk menentukan ketepatan (accuracy) hasil penghitungan numerik. 2) Untuk membuat kriteria stop pada
Analisa Terapan: Metode Numerik Pertemuan ke-1 Pengukuran Kesalahan (Measuring Error) 13 September 2012 Department of Civil Engineering 1 Mengapa mengukur kesalahan? 1) Untuk menentukan ketepatan (accuracy)
METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS
METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS Arif Prodi Matematika, FST- UINAM Wahyuni Prodi Matematika, FST-UINAM Try Azisah Prodi Matematika, FST-UINAM
