METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya"

Transkripsi

1 METODE NUMERIK AKAR-AKAR PERSAMAAN Eka Maulana Dept. of Electrcal Engineering University of Brawijaya

2 Pendekatan Pencarian Akar-akar Persamaan Metode Pencarian Akar Persamaan > Metode Pengurung - metode Tabulasi & Grafis - metode Bagi dua (Bisection) - metode Posisi Palsu (Regula Falsi) > Metode Terbuka - metode Iterasi Satu Titik - metode Newton-Raphson - motode Secant

3 Studi Kasus Akar persamaan adalah nilai nol sebuah fungsi y=f() X 0 y = f() Akar Persamaan adl absis titik potong kurva y=f() dgn sb. 0 adl akar pers, jika diberi nilai 0 pers f( 0 )=0 adl benar.

4 Definisi Akar-akar suatu persamaan dari suatu fungsi sebenarnya adalah harga yang membuat f() = 0. Sebelum kemajuan komputer, menyelesaikan suatu akar persamaan menggunakan metode analitis dan grafik. Analitis f() = = 0 (bukan numerik) (-5) (+) = 0 1 = 5 atau = -

5 f() = + 5 f() = +4+3 =-1 =-,5 BEBERAPA CONTOH 1 =-3 =... f() = cos e f() = sin =... 5 March 014 5

6 Jumlah Akar Persamaan Bila f( i ) dan f( u ) mempunyai tanda yang sama, maka jumlah akar biasanya merupakan bilangan genap.

7 Jumlah Akar Bila f( i ) dan f( u ) mempunyai tanda yang berbeda, maka jumlah akar biasanya merupakan bilangan ganjil.

8 Jumlah Akar Meskipun generalisasi ini biasanya benar, tetapi ada kasus tertentu dimana suatu fungsi mempunyai akar kembar atau fungsi tersebut diskontinu.

9 Jika y=f() adalah kontinyu pada sebuah interval dari =a s/d =b sedangkan f(a) dan f(b) mempunyai tanda berlawanan, yaitu f(a) * f(b) < 0 Maka dalam interval itu sekurang-kurangnya terdapat satu akar.

10 AKAR AKAR PERSAMAAN DINYATAKAN SEBAGAI TITIK POTONG DUA KURVA e (- 5) 5 cos = 0 dinyatakan sebagai: e (- 5) = 5 cos Masing-masing sisi diambil sbg fungsi: y = e (- 5) y = 5 cos Titik potong kedua kurva merupakan akar persamaan: e (- 5) 5 cos = 0 Sukar memprediksi (menggambar Kurva) akar y=e (- 5) -5cos? y=e (-5) 5cos y=e (-5) y=5cos 10

11 Metode Tertutup (Akolade) Metode ini sering disebut metode terkurung/tertutup karena membutuhkan dua tebakan awal untuk menentukan akar suatu f(). Dua tebakan harus mengapit akarnya, berarti harus ditentukan sebelum akar dan setelah akar Dalam metode pengurung, grafik fungsi digambar secara kasar.

12 Kasus Pengantar Berapa akar dari suatu f() = e - -? Dengan analitis sulit tetapi masih bisa diselesaikan dengan metode grafik, dengan cara: f() 0 1 0, 0,6187 0,3 0, ,63

13 Metode Tabulasi & Grafik Metode paling sederhana untuk memperoleh tafsiran akar suatu f() dengan membuat tabel dan grafik dari fungsi tersebut dan kemudian mengamati berapa nilai yang menyebabkan f() berharga 0. Jika selang dari tiap perubahan nilai ditentukan semakin kecil, maka akan menghasilkan nilai yang semakin teliti.

14 Metode Tabulasi Menentukan titik awal f(), misal f( 1 ) dan f( ) Syarat: f( 1 ) * f( ) < 0 Jika syarat tersebut terpenuhi, penyelesaian berada pada nilai 1 dan Membuat tabel fungsi f(), diantara f( 1 ) dan f( ) Membuat tabel sekitar dua titik penyebab perbedaan tanda pada fungsi f() Mengulangi langkah ke 3 hingga diperoleh nilai yang diharapkan.

15 Penyelesaian Persoalan (Tabulasi) Tentukan akar penyelesaian dari persamaan: f() = -5+sin() = 0 Langkah: Tentukan f() awal yg memenuhi syarat, misal: f( 1 )=f(0)=-5(0)+sin(0)= f( )=f(1)=-5(1)+sin(1)=-,15853 f( 1 ) * f( ) < 0 Buat Tabel f() Abs. error 0 1

16 Metode Grafik (contoh) Ingin dicari suatu akar dari f() = e - - Tebakan awal 0 = 0,5 dan 1 = 1,5 dan selangnya () = 0,5 f() 0,5 0, ,817 1,5 0,3169

17 Metode Grafik (contoh) Tebakan awal 0 = 0,5 dan 1 = 1,5 dan selangnya () = 0,5 f() 0,5 0,6018 0,75 0, ,817 1,5 0,0716 1,5 0,3169

18 Metode Grafik (contoh) Tebakan awal 0 = 0,5 dan 1 = 1,5 dan selangnya () = 0, f() 0,5 0,6018 0,7 0,4765 0,9 0,3504 1,1 0,0583 1,3 0,0070 1,5 0,3169 Dengan selang = 0,5, akarnya adalah = 1,5. Dengan selang = 0,, akarnya adalah = 1,3. Dengan selang ini lebih teliti karena menghasilkan f() yang nilainya lebih dekat dengan 0.

19 Metode Bisection (Bagi Dua) Syarat: f() real/nyata dan kontinu dalam interval i s/d u, dimana f( i ) dan f( u ) berbeda tanda sehingga f( i ).f( u ) < 0 Metode ini digunakan untuk menentukan salah satu akar dari f(). Dasar dari metode bagi adalah metode carian inkremental.

20 Metode Carian Inkremental Proses dimulai dengan menentukan sebuah interval dimana fungsi tersebut bertukar tanda. kemudian penempatan perubahan tanda dari akar ditandai lebih teliti dengan cara membagi interval tersebut menjadi sejumlah subinterval (pada metode bagi dua, pencarian subintervalnya dengan cara membagi dua). Setiap subinterval dicari untuk menempatkan perubahan tanda. Proses tersebut diulangi dengan subinterval yang semakin lama semakin kecil hingga dicapai suatu proses konvergensi

21 representasi

22 Algoritma Metode Bisection 1. Pilih harga i yaitu harga yang terendah dan u yaitu harga yang tertinggi, agar fungsi berubah tanda sepanjang interval tersebut sehingga f( i ).f( u ) < 0. Taksiran pertama akar sebut dengan r ditentukan oleh: i u r

23 Algoritma Metode Bisection 3. Evaluasi harga r untuk menentukan subinterval mana yang akan memuat harga akar dengan cara sebagai berikut Jika f( i ).f( r ) < 0, akar terletak pada subinterval pertama, maka u baru = r. Jika f( i ).f( r ) > 0, akar terletak pada subinterval kedua, maka i baru = r. Jika f( i ).f( r ) = 0, maka proses komputasi berhenti dan akarnya = r.

24 Algoritma Metode Bisection 4. Buat taksiran akar baru = r baru dari r i u 5. Putuskan apakah taksiran baru cukup akurat dengan kebutuhan yaitu biasanya a s yang ditentukan. Jika ya hentikan komputasi, jika tidak kembali lagi ke evaluasi.

25 Metode Bisection (contoh) f() = e, cari akarnya dengan metode bisection dimana i = 0.5; u = 1.5; s = 1%

26 Metode Bisection (contoh) Langkah 1: 1. i = 0,5; u = 1,5; f( i ) = 0,6018; f( u ) = 0, f( r ) = 0,817 f( i ).f( r ) = (0,6018).(0,817) > 0 maka i baru = 1 4. r r i i u u 0,5 1, ,5 1,5 5. a 1,5 1 1,5 100% 0%

27 Metode Bisection (contoh) Langkah : 3. f( r ) = f(1,5) = 0,0716 f( i ).f( r ) = (0,817).(0,0716) > 0 maka i baru = 1, r a i u 1,5 1,5 1,375 1,375 1,5 100% 9,1% 1,375

28 Metode Bisection (contoh) Langkah 3: 3. f( r ) = f(1,375) = 0,06445 f( i ).f( r ) = (0,0716).(0,06445) < 0 maka u baru = 1, r i u 1,5 1,375 1, a 1,315 1,375 1, % 4,76%

29 Metode Bisection (contoh) Langkah 4: 3. f( r ) = f(1,315) = 0,007 f( i ).f( r ) = (0,0716).(0,007) > 0 maka i baru = 1, r a i u 1,315 1,375 1, , , %,3% 1,34375

30 Metode Bisection (contoh) Langkah 5: 3. f( r ) = f(1,315) = 0,007 f( i ).f( r ) = (0,007).(0,077) > 0 maka i baru = 1, r a i u 1,315 1, ,3815 1,3815 1, % 1,176% 1,3815

31 Metode Bisection (contoh) Langkah 6: 3. f( r ) = f(1,3815) = 0,010 f( i ).f( r ) = (0,007).(0,010) < 0 maka u baru = 1, r a i u 1,315 1,3815 1,303 1,303 1, % 0,59% 1,303

32 Metode Bisection (contoh) Iterasi r a % 1 1 1, ,375 9,1 4 1,315 4,76 5 1,34375,3 6 1,3815 1, ,303 0,59 Jika s = 1 %, maka akarnya adalah = 1,303

33 Persoalan (selesaikan dengan metode biseksi) 1. f() = = 0 (,6 dan,5). f() = = 0 3. f() = -3+sin = 0 4. =1

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

Bab 2. Penyelesaian Persamaan Non Linier

Bab 2. Penyelesaian Persamaan Non Linier Bab 2. Penyelesaian Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier penentuan

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar persamaan

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

Metode Numerik. Persamaan Non Linier

Metode Numerik. Persamaan Non Linier Metode Numerik Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN : 3 & 4 PENYELESAIAN PERSAMAAN NON LINIER METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen Mulai dengan terkaan awal yang mengurung atau memuat akar

Lebih terperinci

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen

Lebih terperinci

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Penyelesaian Persamaan Non Linier Pengantar Penyelesaian Pers. Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Numerik Tabel/Biseksi/RegulaFalsi 1 Pengantar Penyelesaian Persamaan Non

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier MK: METODE NUMERIK Oleh: Dr. I GL Bagus Eratodi FTI Undiknas University Denpasar Persamaan Non Linier Metode Tabulasi Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode

Lebih terperinci

Persamaan yang kompleks, solusinya susah dicari. Contoh :

Persamaan yang kompleks, solusinya susah dicari. Contoh : AKAR PERSAMAAN NON LINEAR Persamaan hingga derajat dua, masih mudah diselesaikan dengan cara analitik. Contoh : a + b + c = 0 Solusi : 1 = b ± b 4 ac a Persamaan yang kompleks, solusinya susah dicari.

Lebih terperinci

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 4 Akar Persamaan (2) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk = g() Metode

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

Akar-Akar Persamaan. Definisi akar :

Akar-Akar Persamaan. Definisi akar : Akar-Akar Persamaan Definisi akar : Suatu akar dari persamaan f(x) = 0 adalah suatu nilai dari x yang bilamana nilai tersebut dimasukkan dalam persamaan memberikan identitas 0 = 0 pada fungsi f(x) X 1

Lebih terperinci

PERSAMAAN NON LINIER. Pengantar dan permasalahan persamaan Non-Linier. Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014

PERSAMAAN NON LINIER. Pengantar dan permasalahan persamaan Non-Linier. Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014 PERSAMAAN NON LINIER Pengantar dan permasalahan persamaan Non-Linier Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014 Pengantar 1. Persamaan linier sudah kita kenal sejak SMP. Contoh kasus

Lebih terperinci

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant

Penyelesaian Persa. amaan Non Linier. Metode Iterasi Sederhana Metode Newton Raphson. Metode Secant. Metode Numerik. Iterasi/NewtonRaphson/Secant Penyelesaian Persa amaan Non Linier Metode Iterasi Sederhana Metode Newton Raphson Permasalahan Titik Kritis pada Newton Raphson Metode Secant Iterasi/NewtonRaphson/Secant Metode Numerik - Metode Iter

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER 3.. Permasalahan Persamaan Non Linier Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier.dimana akar sebuah persamaan f(x =0 adalah

Lebih terperinci

Penyelesaian. n Persamaan. Metode Tabel Metode Biseksi Metode Regula Falsi

Penyelesaian. n Persamaan. Metode Tabel Metode Biseksi Metode Regula Falsi Penyelesaian n Persamaan Non Linier 1 Pengantar Penyelesaian Pers. Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Muhammad Zen S. Hadi, ST. MSc. Pengantar Penyelesaian Persa amaan Non Linier

Lebih terperinci

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 3 Akar Persamaan (1) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk x = g(x)

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP METODE NUMERIK Disusun oleh Ir. Sudiadi, M.M.A.E. Ir. Rizani Teguh, MT SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 2015 Metode Numerik i KATA PENGANTAR Pertama-tama penulis

Lebih terperinci

PERSAMAAN NON LINIER

PERSAMAAN NON LINIER PERSAMAAN NON LINIER Obyektif : 1. Mengerti penggunaan solusi persamaan non linier 2. Mengerti metode biseksi dan regulafalsi 3. Mampu menggunakan metode biseksi dan regula falsi untuk mencari solusi PENGANTAR

Lebih terperinci

Menemukan Akar-akar Persamaan Non-Linear

Menemukan Akar-akar Persamaan Non-Linear Menemukan Akar-akar Persamaan Non-Linear Muhtadin, ST. MT. Agenda Metode Tertutup Biseksi Regula Falsi Metode Terbuka Newton Method 3 Solusi untuk Persamaan Non Linear Akar-akar dari persamaan (y = f())

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 12 Rumusan Masalah Tentukan solusi dengan f fungsi nonlinear. f (x)

Lebih terperinci

2 Akar Persamaan NonLinear

2 Akar Persamaan NonLinear 2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan

Lebih terperinci

Pertemuan 3: Penyelesaian Persamaan Transedental. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014

Pertemuan 3: Penyelesaian Persamaan Transedental. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Pertemuan 3: Penyelesaian Persamaan Transedental Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Persamaan Dalam Matematika Persamaan Linier Persamaan Kuadrat Persamaan Polynomial Persamaan Trigonometri

Lebih terperinci

Persamaan Non Linier 1

Persamaan Non Linier 1 Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier Penentuan akar-akar persamaan

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

CONTOH Dengan mengunakan Metode Regula Falsi, tentukanlah salah satu akar dari persamaan f(x) = x - 5x + 4. Jika diketahui nilai awal x = dan x = 5 se

CONTOH Dengan mengunakan Metode Regula Falsi, tentukanlah salah satu akar dari persamaan f(x) = x - 5x + 4. Jika diketahui nilai awal x = dan x = 5 se METODE REGULA FALSI METODE REGULA FALSI Solusi Persamaan Non Linier Universitas Budi Luhur Metode regula falsi merupakan salah satu metode tertutup untuk menentukan solusi akar dari persamaan non linier,

Lebih terperinci

BANK SOAL METODE KOMPUTASI

BANK SOAL METODE KOMPUTASI BANK SOAL METODE KOMPUTASI 006 iv DAFTAR ISI Halaman Bio Data Singkat Penulis.. Kata Pengantar Daftar Isi i iii iv Pengantar... Kesalahan Bilangan Pendekatan... 6 Akar-akar Persamaan Tidak Linier.....

Lebih terperinci

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR Metode Biseksi Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari

Lebih terperinci

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Bernardino Madaharsa Dito Adiwidya - 13507089 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara BAB I PENDAHULUAN Latar Belakang Masalah Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara metode-metode

Lebih terperinci

Course Note Numerical Method Akar Persamaan Tak Liniear.

Course Note Numerical Method Akar Persamaan Tak Liniear. Course Note Numerical Method Akar Persamaan Tak Liniear. Dalam matematika terapan seringkali harus mencari selesaian persamaan yang berbentuk f() = 0 yakni bilangan o sedemikian sehingga f( o ) = 0. Dalam

Lebih terperinci

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Tommy Gunardi / 13507109 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan Modul 8 METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Pada modul 7 terdahulu, telah dijelaskan tentang keunggulan komparatif Metode Newton-Raphson dibanding metode-metode

Lebih terperinci

Matematika Dasar NILAI EKSTRIM

Matematika Dasar NILAI EKSTRIM NILAI EKSTRIM Misal diberikan kurva f( ) dan titik ( a,b ) merupakan titik puncak ( titik maksimum atau minimum ). Maka garis singgung kurva di titik ( a,b ) akan sejajar sumbu X atau [ ] mempunyai gradien

Lebih terperinci

Pertemuan ke 4. Non-Linier Equation

Pertemuan ke 4. Non-Linier Equation Pertemuan ke 4 Non-Linier Equation Non-Linier Equation Persamaan Kuadrat Persamaan Kubik Metode Biseksi Metode Newton-Rapshon Metode Secant 1 Persamaan Kuadrat Persamaan kuadrat adalah suatu persamaan

Lebih terperinci

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 68 75 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA ELSA JUMIASRI, SUSILA BAHRI, BUKTI GINTING

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR METODE GRAFIK DAN TABULASI A. Tujuan a. Memahami Metode Grafik dan Tabulasi b. Mampu Menentukan nilai akar persamaan dengan Metode Grafik dan Tabulasi c. Mampu membuat

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER Persamaan taklinier sudah diperkenalkan sejak di sekolah menengah, diataranya persamaan kuadrat, persamaan trigonometri dan persamaan yang memuat logaritma atau eksponen.

Lebih terperinci

Fungsi kuadrat. Hafidh munawir

Fungsi kuadrat. Hafidh munawir Fungsi kuadrat Hafidh munawir Bentuk Umum Persamaan Kuadrat Bentuk umum atau Bentuk Baku persamaan kuadrat adalah: a + b + c = Dengan a,b,c R dan a serta adalah peubah (variabel) a merupakan koefisien

Lebih terperinci

Koordinat Polar (Ch )

Koordinat Polar (Ch ) Koordinat Polar (Ch.10.-10.) O (the pole) ray (polar axis) Dalam beberapa hal, lebih mudah mencari lokasi/posisi suatu titik dengan menggunakan koordinat polar. Koordinat polar menunjukkan posisi relatif

Lebih terperinci

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1 Studi Kasus Penyelesaian Pers.Non Linier Studi Kasus Non Linier 1 Contoh Kasus Penyelesaian persamaan non linier terkadang muncul sebagai permasalahan yang terpisah, tetapi terkadang pula muncul sebagai

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN JURUSAN INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SYIAH KUALA BANDA ACEH 2012 DAFTAR ISI DAFTAR ISI... 1 KATA PENGANTAR... 2 PENDAHULUAN...

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Pengertian dan notasi dari it suatu fungsi, f() di suatu nilai = a diberikan secara intuitif berikut. Bila nilai f() mendekati L untuk nilai mendekati a dari arah kanan maka dikatakan

Lebih terperinci

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 5 METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Persamaan Aljabar Non-Linier Tunggal atau PANLT merupakan sembarang fungsi atau persamaan aljabar

Lebih terperinci

1 Penyelesaian Persamaan Nonlinear

1 Penyelesaian Persamaan Nonlinear 1 Penyelesaian Persamaan Nonlinear Diberikan fungsi kontinu f (x). Setiap bilangan c pada domain f yang memenuhi f (c) = 0 disebut akar persamaan f (x) = 0, atau disebut juga pembuat nol fungsi f. Dalam

Lebih terperinci

1-x. dimana dan dihubungkan oleh teorema Pythagoras.

1-x. dimana dan dihubungkan oleh teorema Pythagoras. `2. Menyelesaikan persamaan dengan satu variabel Contoh: Berdasarkan Hukum Archimedes, suatu benda padat yang lebih ringan daripada air dimasukkan ke dalam air, maka benda tersebut akan mengapung. Berat

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : MAtematika Lanjut 2 Kode / SKS : IT012220 / 2 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 Pendahuluan Metode Numerik Pengertian Metode Numerik Mahasiswa

Lebih terperinci

BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik

BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik BAB 1 Konsep Dasar 1 BAB 2 Solusi Persamaan Fungsi Polinomial Denition 2.0.1 (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik kalkulasi berulang (teknik iterasi)

Lebih terperinci

PRAKTIKUM 2 Penyelesaian Persamaan Non Linier Metode Tabel

PRAKTIKUM 2 Penyelesaian Persamaan Non Linier Metode Tabel PRAKTIKUM 2 Penyelesaian Persamaan Non Linier Metode Tabel 1. Tujuan : Mempelajari metode Tabel untuk penyelesaian persamaan non linier 2. Dasar Teori : Penyelesaian persamaan non linier adalah penentuan

Lebih terperinci

Galat & Analisisnya. FTI-Universitas Yarsi

Galat & Analisisnya. FTI-Universitas Yarsi BAB II Galat & Analisisnya Galat - error Penyelesaian secara numerik dari suatu persamaan matematis hanya memberikan nilai perkiraan yang mendekati nilai eksak (yang benar dari penyelesaian analitis. Penyelesaian

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE NEWTON RAPHSON

APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE NEWTON RAPHSON Jurnal Dinamika Informatika Volume 6, No 2, September 2017 ISSN 1978-1660 : 113-132 ISSN online 2549-8517 APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE

Lebih terperinci

BAB III LIMIT DAN KEKONTINUAN FUNGSI

BAB III LIMIT DAN KEKONTINUAN FUNGSI BAB III LIMIT DAN KEKONTINUAN FUNGSI Pembahasan pada bab ini dibagi dalam dua bagian. Pada bagian pertama dibahas it fungsi yang meliputi pengertian, sifat, dan penghitungan nilai it suatu fungsi. Pada

Lebih terperinci

BAB II AKAR-AKAR PERSAMAAN

BAB II AKAR-AKAR PERSAMAAN BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau

Lebih terperinci

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Danang Tri Massandy (13508051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

SolusiPersamaanNirlanjar

SolusiPersamaanNirlanjar SolusiPersamaanNirlanjar Bahan Kuliah IF4058 Topik Khusus Informatika I Oleh; Rinaldi Munir(IF-STEI ITB) Rinaldi Munir - Topik Khusus Informatika I 1 RumusanMasalah Persoalan: Temukan nilai yang memenuhi

Lebih terperinci

PRAKTIKUM 1 Penyelesaian Persamaan Non Linier Metode Tabel

PRAKTIKUM 1 Penyelesaian Persamaan Non Linier Metode Tabel PRAKTIKUM 1 Penyelesaian Persamaan Non Linier Metode Tabel Tujuan : Mempelajari metode Tabel untuk penyelesaian persamaan non linier Dasar Teori : Penyelesaian persamaan non linier adalah penentuan akar-akar

Lebih terperinci

ROOTS OF NON LINIER EQUATIONS

ROOTS OF NON LINIER EQUATIONS ROOTS OF NON LINIER EQUATIONS ROOTS OF NON LINIER EQUATIONS Metode Bagi dua (Bisection Method) Metode Regula Falsi (False Position Method) Metode Grafik Iterasi Titik-Tetap (Fi Point Iteration) Metode

Lebih terperinci

PERBANDINGAN METODE REGULA-FALSI DAN SECANT DALAM MENYELESAIKAN PERSAMAAN NON-LINEAR SKRIPSI

PERBANDINGAN METODE REGULA-FALSI DAN SECANT DALAM MENYELESAIKAN PERSAMAAN NON-LINEAR SKRIPSI PERBANDINGAN METODE REGULA-FALSI DAN SECANT DALAM MENYELESAIKAN PERSAMAAN NON-LINEAR SKRIPSI Oleh: Eko Wahyudianto NIM 091810101044 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

Penyelesaian Secara Numerik? Penyelesaian Secara Numerik Selesaikanlah persamaan nonlinier f(x) = x x -8 Solve : Misal f(x) = 0 x x 8 = 0 (x 4)(x + )

Penyelesaian Secara Numerik? Penyelesaian Secara Numerik Selesaikanlah persamaan nonlinier f(x) = x x -8 Solve : Misal f(x) = 0 x x 8 = 0 (x 4)(x + ) Fungsi Polinomial METODE BISEKSI Solusi Persamaan Non Linier Universitas Budi Luhur Bentuk Umum : f (x) = a + = a + 0 1 3 n 0x + a1x + a x + a 3x +... a nx 3 n 0 + a1x + ax + a3x +... anx Dengan n = derajat

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro

Lebih terperinci

BAB I METODE NUMERIK SECARA UMUM. dengan rumus rumus aljabar yang sudah baku atau lazim.

BAB I METODE NUMERIK SECARA UMUM. dengan rumus rumus aljabar yang sudah baku atau lazim. BAB I METODE NUMERIK SECARA UMUM 1.1 Pengertian Metode Numerik Metode numerik merupakan teknik untuk menyelesaikan masalah matematika dengan pengoperasian aritmatika (hitungan), metode penyelesaian model

Lebih terperinci

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2 ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK-031248 /2 Ming gu Pokok Bahasan & TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajara n Media Tugas Referensi

Lebih terperinci

Mulyono (NIM : ) BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Penelitian ini menghasilkan diagram alir, kode program serta keluaran

Mulyono (NIM : ) BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Penelitian ini menghasilkan diagram alir, kode program serta keluaran Mulyono (NIM : 0301060025) BAB IV HASIL PENELITIAN DAN PEMBAHASAN Penelitian ini menghasilkan diagram alir, kode program serta keluaran berupa tingkat ketelitian metode Biseksi dan metode Regula Falsi

Lebih terperinci

Triyana Muliawati, S.Si., M.Si.

Triyana Muliawati, S.Si., M.Si. SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. triyana.muliawati@ma.itera.ac.id 1. Pengenalan Metode

Lebih terperinci

CONTOH SOLUSI UTS ANUM

CONTOH SOLUSI UTS ANUM CONTOH SOLUSI UTS ANUM 0 Propagasi eror adalah kejadian di mana eror dari operan suatu komputasi sederhana memberikan eror yang lebih besar pada hasil komputasi tersebut. Misalnya, eror awal suatu representasi

Lebih terperinci

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA PROJEK PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA A. PENDAHULUAN Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi terikat (bonding

Lebih terperinci

Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan

Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan Pengertian Metode Numerik Metode Numerik adalah teknik-teknik yang digunakan untuk memformulasikan masalah matematis agar dapat dipecahkan dengan operasi perhitungan Metode Numerik Tujuan Metode Numerik

Lebih terperinci

Ëalah satu masalah yang paling umum ditemui di dalam matematika dan teknik adalah mencari akar suatu persamaan; yakni jika diketahui

Ëalah satu masalah yang paling umum ditemui di dalam matematika dan teknik adalah mencari akar suatu persamaan; yakni jika diketahui 3 AKAR PERSAMAAN TAK LINIER ܵ ¼ Ëalah satu masalah yang paling umum ditemui di dalam matematika dan teknik adalah mencari akar suatu persamaan; yakni jika diketahui fungsi ܵ, akan dicari nilai-nilai

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

MATERI. Akar-akar Persamaan Metode Akolade. Metode Terbuka. Metode Grafik Metode Bagi Dua Metode Posisi Salah

MATERI. Akar-akar Persamaan Metode Akolade. Metode Terbuka. Metode Grafik Metode Bagi Dua Metode Posisi Salah MATERI Akar-akar Persamaan Metode Akolade Metode Grafik Metode Bagi Dua Metode Posisi Salah Metode Terbuka Iterasi Satu Titik Sederhana Metode Newton-Raphson Metode Secant Akar Ganda Sistem Persamaan Aljabar

Lebih terperinci

Modul Dasar dasar C. 1. Struktur Program di C++

Modul Dasar dasar C. 1. Struktur Program di C++ Modul Dasar dasar C I 1. Struktur Program di C++ Dalam bahasa pemrograman C++ strukturnya adalah sebagai berikut: a. Header. Ex: #include b. Main adalah isi dari program diawali {. dan diakhiri

Lebih terperinci

esaian Pers.Non Linier Studi Kasus Penyele S. Hadi, ST. MSc. Muhammad Zen Studi Kasus Non Linier

esaian Pers.Non Linier Studi Kasus Penyele S. Hadi, ST. MSc. Muhammad Zen Studi Kasus Non Linier Studi Kasus Penyele esaian Pers.Non Linier 1 Muhammad Zen S. Hadi, ST. MSc. Contoh Kasus Penyelesaian persamaan non linier permasalahan yang terpisah, tetapi 2 terkadang muncul sebagai terkadang pula muncul

Lebih terperinci

Implementasi Teknik Bisection Untuk Penyelesaian Masalah Nonlinear Break Even Point

Implementasi Teknik Bisection Untuk Penyelesaian Masalah Nonlinear Break Even Point SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Implementasi Teknik Bisection Untuk Penyelesaian Masalah Nonlinear Break Even Point Khairina Natsir Fakultas Ekonomi, Universitas Tarumanagara

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan TUGAS KOMPUTASI SISTEM FISIS 2015/2016 Identitas Tugas Program Mencari Titik Nol/Titik Potong Dari Suatu Sistem 27 Oktober 2015 Disusun oleh : Zulfikar Lazuardi Maulana (10212034) Ridho Muhammad Akbar

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM

PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM E-Jurnal Matematika Vol. 5 (1), Januari 2016, pp. 1-6 ISSN: 2303-1751 PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM Ida

Lebih terperinci

METODE NUMERIK. ROBIA ASTUTI, M.Pd. STKIP Muhammadiyah Pringsewu Lampung

METODE NUMERIK. ROBIA ASTUTI, M.Pd. STKIP Muhammadiyah Pringsewu Lampung METODE NUMERIK ROBIA ASTUTI, M.Pd. STKIP Muhammadiyah Pringsewu Lampung BAB I METODE NUMERIK SECARA UMUM Metode numerik : Teknik yang di gunakan untuk memformulasikan persoalan matematika sehingga dapat

Lebih terperinci

temperatur T di pusat bola setelah t detik sebagai : T(t) = 100 ( sinλ ) ( ) n =

temperatur T di pusat bola setelah t detik sebagai : T(t) = 100 ( sinλ ) ( ) n = 2.1 PENDAHULUAN Untuk mendapatkan penyelesaian matematika yang menjabarkan model suatu persoalan nyata bidang rekayasa, sering solusi yang dicari berupa suatu nilai variabel x sedemikian rupa sehingga

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN

BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN 1 BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN Dalam banyak usaha pemecahan permasalahan, seringkali harus diselesaikan dengan menggunakan persamaan-persamaan matematis, baik persamaan linier, persamaan kuadrat,

Lebih terperinci

PETUNJUK PRAKTIKUM METODE NUMERIK (MT318)

PETUNJUK PRAKTIKUM METODE NUMERIK (MT318) PETUNJUK PRAKTIKUM METODE NUMERIK (MT38) Oleh : Dewi Rachmatin, S.Si., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 9 Dewi Rachmatin PRAKTIKUM

Lebih terperinci

BAB I ARTI PENTING ANALISIS NUMERIK

BAB I ARTI PENTING ANALISIS NUMERIK BAB I ARTI PENTING ANALISIS NUMERIK Pendahuluan Di dalam proses penyelesaian masalah yang berhubungan dengan bidang sains, teknik, ekonomi dan bidang lainnya, sebuah gejala fisis pertama-tama harus digambarkan

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Bagi Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 20 Rumusan Masalah Bagi Tentukan solusi dengan f fungsi nonlinear.

Lebih terperinci

Analisis Riil II: Diferensiasi

Analisis Riil II: Diferensiasi Definisi Turunan Definisi dan Teorema Aturan Rantai Fungsi Invers Definisi (Turunan) Misalkan I R sebuah interval, f : I R, dan c I. Bilangan riil L dikatakan turunan dari f di c jika diberikan sebarang

Lebih terperinci

METODA NUMERIK PRAKTIKUM 3 : APROKSIMASI PERSAMAAN TAKLINEAR Pokok Bahasan: Metoda Newton dan Iterasi Titik Tetap

METODA NUMERIK PRAKTIKUM 3 : APROKSIMASI PERSAMAAN TAKLINEAR Pokok Bahasan: Metoda Newton dan Iterasi Titik Tetap METODA NUMERIK PRAKTIKUM 3 : APROKSIMASI PERSAMAAN TAKLINEAR Pokok Bahasan: Metoda Newton dan Iterasi Titik Tetap Tujuan Kompetensi Dasar Memahami cara mengimplementasikan metoda Newton dan metoda iterasi

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-2 SISTEM BILANGAN DAN KESALAHAN METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode

Lebih terperinci

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini METODE NUMERIK, oleh Sri Adi Widodo, M.Pd. Hak Cipta 2015 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-882262; 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG Bahan ajar Kalkulus Integral 9 APLIKASI INTEGRAL. LUAS DAERAH BIDANG Misalkan f() kontinu pada a b, dan daerah tersebut dibagi menjadi n sub interval h, h,, h n yang panjangnya,,, n (anggap n ), ambil

Lebih terperinci

Silabus dan Satuan Acara Perkuliahan

Silabus dan Satuan Acara Perkuliahan Fakultas Teknik No. Dokumen : FT SSAP-S3-10 Program Studi Teknik Elektro No. Revisi : 02 Silabus dan Satuan Acara Perkuliahan Tgl.Revisi :13-07-2006 Tgl. Berlaku :13-07-2006 KOMPUTASI NUMERIK DAN SIMBOLIK

Lebih terperinci