METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neng Ipa Patimatuzzaroh 1 ABSTRACT"

Transkripsi

1 METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Neng Ipa Patimatuzzaroh Mahasiswa Program Studi S Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya Pekanbaru Indonesia ABSTRACT This article discusses an iterative method obtained through modification of Steffensen s method using a parameter that depends on divided differences. Analysis of convergence shows that the discussed method has super cubic convergence i.e Computational test shows that the discussed iterative method meets the theoretical study conducted. Numerical comparisons of the discussed method with Newton s method Steffensen s method Traub s method and the Petkovic s method conclude that the proposed method is very efficient. Keywords: Nonlinear equation Newton s method Steffensen s method devided difference ABSTRAK Artikel ini mendiskusikan metode iterasi yang diperoleh melalui modifikasi metode Steffensen dengan menggunakan sebarang parameter yang bergantung kepada bentuk beda terbagi. Analisis konvergensi menunjukkan metode iterasi yang dibahas memiliki kekonvergenan super kubik yaitu Uji komputasi memperlihatkan bahwa metode iterasi yang dibahas memenuhi kajian teoritis yang dilakukan. Perbandingan numerik metode yang didiskusikan dengan metode Newton metode Steffensen metode Traub dan metode Petkovic menyimpulkan bahwa metode yang diusulkan sangat efisien. Kata kunci: Persamaan nonlinear metode Newton metode Steffensen beda terbagi. PENDAHULUAN Permasalahan matematika dalam berbagai bidang ilmu yang sering muncul adalah bagaimana menemukan solusi dari persamaan nonlinear f(x) = 0. () Repository FMIPA

2 Metode analitik tidak dapat digunakan untuk menyelesaikan semua kasus dari persamaan () sehingga metode numerik menjadi alternatif. Metode numerik yang sering digunakan untuk menyelesaikan persamaan () adalah metode satu langkah Newton atau lebih dikenal dengan metode Newton dengan bentuk iterasi x n+ = x n f(x n) f (x n ) f (x n ) 0 n = 0 2 (2) yang memiliki orde konvergensi kuadratik [ h ] dan memerlukan dua kali evaluasi fungsi pada setiap iterasinya sehingga indeks efisiensinya adalah.44. Dalam perkembangannya metode Newton banyak mengalami modifikasi tujuannya adalah untuk mempercepat kekonvergenan dan memperkecil error. Salah satu bentuk modifikasi dari metode Newton adalah dengan mendekati turunan pertama f (x n ) dengan beda terbagi (divided difference) yaitu f (x n ) = f(x n + f(x n )) f(x n ) f(x n ) dan diperoleh metode Steffensen dengan orde konvergensi kuadratik [2 h. 278] dengan bentuk iterasi x n+ = x n f(x n ) 2 n = 0 2. f(x n + f(x n )) f(x n ) Metode Steffensen memerlukan dua kali evaluasi fungsi pada setiap iterasinya sehingga indeks efisiensinya adalah.44. Untuk mempercepat kekonvergenan dan memperkecil error Traub [6 h. 86] memodifikasi metode Steffensen dengan bentuk iterasi dengan dan x n+ = x n f(x n) n = 0 2 f[x n z n ] sign(f (x n )) n = 0 β n = f[x n z n ] n = 2 3 z n = x n + β n f(x n ) n = 0 2 dimana β n merupakan sebarang parameter. Metode Traub memiliki orde konvergensi super kuadratik [6 h. 86] dan memerlukan tiga kali evaluasi fungsi pada setiap iterasinya sehingga indeks efisiensinya adalah.34. Selanjutnya Petkovic [3 h. 884] memodifikasi metode Traub dengan bentuk iterasi x n+ = x n f(x n) n = 0 2 f[x n z n ] Repository FMIPA 2

3 dengan sign(f (x n )) n = 0 β n = f[x n z n ] + f[x n x n ] f[x n z n ] n = 2 3. dan z n = x n + β n f(x n ) n = 0 2. Metode iterasi yang dikembangkan oleh Petkovic memiliki orde konvergensi kubik [3 h. 884] dan memerlukan tiga kali evaluasi fungsi pada setiap iterasinya sehingga indeks efisiensinya adalah.442. Metode lain yang dapat mempercepat kekonvergenan dan memperkecil error adalah Metode Bertipe Steffensen Satu Langkah yang dikembangkan oleh Zhongli dan Zheng [4 h. 870] yang dibahas pada bagian selanjutnya. Berikut adalah dua definisi dasar yang terkait dengan pembahasan selanjutnya. Definisi (Orde konvergensi) [5 h. 77] Asumsikan bahwa barisan {x n } n=0 konvergen ke α dan misalkan e n = x n α untuk n 0 jika terdapat konstanta positif A 0 dan p > 0 dan x n+ α lim n x n α = lim e n+ p n e n = A p maka barisan tersebut dikatakan konvergen ke α dengan orde konvergensi p. Konstanta A disebut konstanta error asimtotik (asymptotic error constant). Jika p = 2 3 maka orde kekonvergenan dengan barisan {x n } n=0 berturut-turut dikenal dengan istilah linear kuadratik dan kubik. Definisi 2 (Indeks Efisiensi) [6 h. 2] Misalkan p adalah orde konvergensi dengan suatu metode iterasi w adalah banyaknya fungsi yang dievaluasi pada setiap iterasinya maka indeks efisiensi dari metode tersebut adalah p w. Indeks efisiensi digunakan untuk melihat seberapa efisiensi suatu metode iterasi yang digunakan dalam mencari akar suatu persamaan nonlinear. Pembahasan dimulai dengan mendiskusikan penurunan metode Bertipe Steffensen dibagian dua dan dilanjutkan dibagian tiga dengan melakukan analisis konvergensi dari metode yang didiskusikan. Dibagian empat diberikan uji komputasi untuk melakukan perbandingan numerik. 2. METODE BERTIPE STEFFENSEN SATU LANGKAH DENGAN KONVERGENSI SUPER KUBIK Misalkan diberikan pasangan titik (x n f(x n )) dan (z n f(z n )) maka secara sederhana dari kedua titik tersebut dapat dibentuk sebuah garis dengan persamaan f(x) = f(x n ) + f(z n) f(x n ) z n x n (x x n ). Repository FMIPA 3

4 atau dalam notasi beda terbagi dapat dinyatakan sebagai f(x) = f(x n ) + f[x n z n ](x x n ). (3) Misalkan N (x) f(x) maka persamaan (3) menjadi N (x) f(x n ) + f[x n z n ](x x n ). (4) Selanjutnya misalkan diberikan tiga titik (x n f(x n )) (z n f(z n )) dan (x f(x)) dimana x n z n z n x berdasarkan konsep interpolasi polinomial beda terbagi newton diperoleh f(x) = f(x n ) + f[x n z n ](x x n ) + f[x n z n x](x x n )(x z n ). (5) Misalkan N 2 (x) f(x) dan nilai f[x n z n x] µ n maka persamaan (5) menjadi N 2 (x) = f(x n ) + f[x n z n ](x x n ) + µ n (x x n )(x z n ). Jika f(x) N 2 (x) maka f (x) N 2(x) dimana N 2(x) adalah turunan pertama dari interpolasi polinomial Newton orde dua. Selanjutnya akan dihitung N 2(x n ) dengan menggunakan konsep beda terbagi maka diperoleh [ ] d N 2(x n ) = dx N 2(x) x = x [ n ] d = dx (f(x n) + f[x n z n ](x x n ) + µ n (x x n )(x z n )) x = x n N 2(x n ) = f[x n z n ] + µ n (x n z n ). (6) Karena N 2(x n ) f (x n ) dengan mensubstitusikan persamaan (6) ke persamaan (2) maka diperoleh x n+ = x n f(x n ) f[x n z n ] + µ n (x n z n ) (7) dimana z n = x n + β n f(x n ) {β n } dan {µ n } adalah barisan konstanta terbatas. Dengan mendefinisikan ( 0 ) n = 0 µ n = + βn f[x n z n ] f[z n x n z n ] n = 2 3 β n f[x n z n ] (8) kemudian substitusikan persamaan (8) ke persamaan (7) maka diperoleh x n+ = x n f[x n z n ] + ( + β n f[x n z n ] f(x n ) ) (f[z n x n ] f[z n z n ]) (9) Repository FMIPA 4

5 dengan sign(f (x n )) n = 0 β n = f[x n z n ] + f[x n x n ] f[x n z n ] n = 2 3 dan z n = x n + β n f(x n ). Persamaan (9) disebut Metode Bertipe Steffensen satu langkah atau selanjutnya disebut Metode Bertipe Steffensen. 3. ANALISIS KONVERGENSI Teorema 3 Asumsikan f : D R fungsi yang terdeferensialkan dengan akar sederhana α dimana α D D R dan x 0 cukup dekat ke α maka Metode Bertipe Steffensen yang diberikan oleh persamaan (9) memiliki orde konvergensi super kubik. Bukti : Misalkan z n konvergen ke α dengan orde r > yaitu dan misalkan x n konvergen ke α dengan orde p > 2 yaitu Dari persamaan (0) dan () diperoleh dan e z n = c n e r n + O(e r+ n ) (0) e n+ = d n e p n + O(e p+ n ). () e z n = c n e r n + O(e r+ n ) e n = d n e p n + O(e p+ n ) (2) dengan mensubstitusikan persamaan (2) ke persamaan (0) dan () maka diperoleh dan e z n = c n d r n e pr n + O(e pr+p+r+ n ) e n+ = d n d p n e p2 n + O(e p2 +2p+ n ). (3) Perhatikan parameter β n yang terdapat pada persamaan (9) misalkan P (x n ) = f[x n z n ] + f[x n x n ] f[x n z n ]. (4) Repository FMIPA 5

6 Berdasarkan konsep beda terbagi P (x n ) dapat ditulis dalam bentuk dimana P (x n ) = f(x n) f(z n ) x n z n + f(x n) f(x n ) x n x n f(z n ) f(x n ) z n x n (5) sehingga persamaan (5) menjadi P (x n ) = f(x n) f(z n ) e n e z n e n = x n α e z n = z n α (6) + f(x n) f(x n ) e n e n f(z n ) f(x n ) e z n e n. (7) Selanjutnya dengan melakukan ekspansi Taylor untuk f(x n ) di sekitar x n = α yaitu f(x n ) = f(α) + f (α)(x n α) + f (α) 2! atau (x n α) 2 + f (α) (x n α) 3 + O((x n α) 4 ) 3! f(x n ) = f(α)(e n + c 2 e 2 n + c 3 e 3 n) + O(e 4 n). (8) Kemudian dilakukan ekspansi Taylor untuk f(x n ) di sekitar x n = α sehingga diperoleh f(x n ) = f (α)(e n + c 2 e 2 n + c 3 e 3 n ) + O(e 4 n ). (9) Selanjutnya dengan cara yang sama dilakukan ekspansi Taylor untuk f(z n ) di sekitar z n = α sehingga diperoleh f(z n ) = f (α)((e z n ) + c 2 (e z n ) 2 + c 3 (e z n ) 3 ) + O(e z n ) 4. (20) Substitusikan persamaan (8) (9) dan (20) ke persamaan (7) maka diperoleh P (x n ) = f (α)(e n + c 2 e 2 n + c 3 e 3 n) f (α)(e z n + c 2 (e z n ) 2 + c 3 (e z n ) 3 ) + (e n e z n ) + f (α)(e n + c 2 e 2 n + c 3 e 3 n) f (α)(e n + c 2 (e 2 n ) + c 3 (e n ) 3 ) + (e n e n ) f (α)(e z n + c 2 (e z n ) 2 + c 3 (e z n ) 3 ) f (α)(e n + c 2 e 2 n + c 3 e 3 n ) + (e z n e n ) Repository FMIPA 6

7 atau P (x n ) = f (α) ( e n e z n + c 2 (e 2 n (e z n ) 2 ) + c 3 (e 3 n (e z n ) 3 ) ) + (e n e z n ) + f (α) (e n n +c 2 (e 2 n (e n ) 2 ) + c 3 (e 3 n (e n ) 3 )) + (e n e n ) f (α) ( e z n e n + c 2 ((e z n ) 2 e 2 n ) + c 3 ((e z n ) 3 e 3 n ) ) + (e z n e n ) = f (α)( + c 2 (e n + (e z n )) + c 3 (e 2 n + e n e z n + (e z n ) 2 )) + + f (α)( + c 2 (e n + e n ) + c 3 (e 2 n + e n e n + e 2 n )) + f (α)( + c 2 (e z n + e n ) + c 3 ((e z n ) 2 + e z n e n + e 2 n )) + P (x n ) = f (α)( + 2c 2 e n + c 3 e n e n + c 3 e n e z n c 3 e n e z n + 2c 3 e 2 n) P (x n ) f (α)( c 3 e n e z n ). (2) Substitusikan persamaan (2) ke persamaan (4) sehingga diperoleh f[x n z n ] + f[x n x n ] f[x n z n ] f (α)( c 3 e n e z n ) (22) maka parameter β n yang terdapat pada persamaan (9) menjadi β n n = 2 3. (23) f (α)( c 3 e n e z n ) Perhatikan bentuk yang terdapat pada persamaan (23) dengan ( c 3 e n e z n ) menggunakan deret geometri untuk r = c 3 e n e z n maka diperoleh atau c 3 e n e z n = ( c 3 e n e z n ) + ( c 3 e n e z n ) 2 ( c 3 e n e z n ) 3 + = + c 3 e n e z n + c 2 3e 2 n (e z n ) 2 + c 3 3e 3 n (e z n ) 3 + c 3 e n e z n Sehingga persamaan (23) menjadi + c 3 e n e z n. β n ( + c 3e n e z n ) (24) f (α) dimana c n = f (n) (α). Selanjutnya perhatikan persamaan (6) yaitu n!f (α) e z n = z n α = (x n + β n f(x n )) α e z n = e n + β n f(x n ) Repository FMIPA 7

8 atau dalam notasi beda terbagi dapat dinyatakan sebagai e z n = e n + β n f[(x n ) α]e n. (25) Substitusikan persamaan (8) dan (24) ke persamaan (25) sehingga diperoleh ( e z n = e n + f ) (α)(e n + c 2 e 2 n + c 3 e 3 n)( + c 3 e n e z n ) f (α) = e n (e n + c 3 e n e z n e n + c 2 e 2 n + c 2 c 3 e n e z n e 2 n + c 2 3e n e z n e 3 n) = c 3 e n e z n e n e z n = c 3 c n d n e r+p+ n. (26) Perhatikan kembali persamaan (9) jika kedua ruas dikurangi dengan α maka diperoleh f(x n ) x n+ α = x n α f[x n z n ] + ( + β n f[x n z n ] )(f[z n x n ] f[z n z n ]) e n+ = e n f[x n α]e n f[x n z n ] + ( + β n f[x n z n ] )(f[z n x n ] f[z n z n ]) = e n[f[x n z n ] + ( + ) (f[z β nf[x nz n] n x n ] f[z n z n ])] f[x n α]e n f[x n z n ] + ( + )(f[z β n f[x n z n ] n x n ] f[z n z n ]) = e n(f[x n z n ] + ( + )(f[z β n f[x n z n ] n x n ] f[z n z n ]) f[x n α]) f[x n z n ] + ( + )(f[z β n f[x n z n ] n x n ] f[z n z n ]) = e n(f[x n z n α]e z n + ( + )(f[z β n f[x n z n ] n x n z n ])( β n f[x n α])) f[x n z n ] + ( + )(f[z β n f[x n z n ] n x n ] f[z n z n ]) = e n(f[x n z n α]( + β n f[x n α])e n ( + β n f[x n z n ]) f[x nα] f[z f[x nz n] n x n z n ]e n ) f[x n z n ] + ( + )(f[z β n f[x n z n ] n x n ] f[z n z n ]) = e2 n( + β n f[x n α])(f[x n z n α]f[x n z n ] f[x n α]f[z n x n z n ]) f 2 [x n z n ] + ( + )f[x β n f[x n z n ] n z n ](f[z n x n ] f[z n z n ]) = e2 n( + β n f[x n α])(f 2 [x n z n α]e z n f[x n α]f[z n x n z n α]e z n ) f 2 [x n z n ] + ( + )f[x β nf[x nz n] n z n ](f[z n x n ] f[z n z n ]) ( ) f = e 2 (α) f (α) e z 3! n + n( + β n f[x n α]) (f (α)) 2 + e n+ = c 2 3c 2 n d 2 n e +2r+2p n +. (27) Dari persamaan (0) dan (26) diperoleh c n d p n e rp n = c 3 c n d n e r+p+ n (28) Repository FMIPA 8

9 dan dari persamaan (3) dan (27) diperoleh d n d r n e p2 n = c 2 3c 2 n d 2 n e 2p+2r+ n. (29) Menggunakan persamaan (28) dan (29) diperoleh sebuah sistem persamaan dengan bentuk { pr = r + p + (30) p 2 = 2p + 2r + Apabila persamaan (30) diselesaikan maka akan diperoleh solusi r.839 dan p Metode Bertipe Steffensen memerlukan tiga kali evaluasi fungsi pada setiap iterasinya yaitu f(x n ) f (x n ) dan f(z n ). Hal ini membuktikan bahwa Metode Bertipe Steffensen yang diberikan oleh persamaan (9) memiliki orde konvergensi (super kubik) dengan nilai indeks efisiensinya adalah UJI KOMPUTASI Pada bagian ini dilakukan uji komputasi dengan menggunakan metode Newton (MN) metode Steffensen (MS) metode Traub (MT) metode Petkovic (MP) serta metode Bertipe Steffensen (MBS). Di bawah ini adalah beberapa contoh fungsi yang digunakan untuk membandingkan metode-metode tersebut. f (x) = x 2 e x 3x + 2. f 2 (x) = 0.5(e x 2 ) 3. f 3 (x) = e x2 + sin(x) 4. f 4 (x) = e x2 +x+2. Dalam menemukan solusi numerik dari beberapa contoh fungsi di atas digunakan program Maple3 dengan toleransi Tabel : Perbandingan Hasil Komputasi untuk MN MS MT MP dan MBS Metode n x n f(x n ) x n x n f x 0 = 2.2 MN e e 2 MS e e 25 MT e e 26 MP e e 4 MBS e e 0 Repository FMIPA 9

10 f 2 x 0 = 2.5 MN e e 2 MS e e 30 MT e e 3 MP e e 7 MBS e e 27 f 3 x 0 = 0.6 MN e e 8 MS e e 7 MT e e 4 MP e e 8 MBS e e 0 f 4 x 0 = 0.85 MN e e 26 MS e e 9 MT e e 6 MP e e 32 MBS e e 24 Keterangan untuk Tabel adalah n menyatakan jumlah iterasi x 0 menyatakan tebakan awal x n menyatakan akar dari fungsi f(x n ) menyatakan nilai fungsi untuk pendekatan akar ke n dan x n x n menyatakan error. Pada Tabel tampak bahwa semua metode yang diujikan telah berhasil mencapai akar yang diharapkan. Secara keseluruhan MBS memerlukan jumlah iterasi yang lebih sedikit dibandingkan dengan metode pembandingnya sehingga MBS lebih cepat konvergen ke akar pendekatannya. MBS juga sangat efisien digunakan karena memiliki indeks efisiensi yang tinggi. Ucapan Terimakasih Penulis mengucapkan terimakasih kepada Bapak Supriadi Putra M.Si. dan Bapak Dr. Imran M. M.Sc. selaku pembimbing yang telah meluangkan waktu pikiran dan tenaga dalam memberikan bimbingan arahan dan nasehat dalam membimbing penulis menyelesaikan artikel ini. DAFTAR PUSTAKA [] Atkinson K Elementary Numerical Analysis 2 nd Ed. John Wiley & Sons Inc. New York. [2] Gautschi W. 20. Numerical Analysis 2 nd Ed. Birkhauser New York. Repository FMIPA 0

11 [3] Dzunic J. and M.S. Petkovic 202. A cubically convergent Steffensen-like method for solving nonlinear equations. Applied Mathematics Letter 25: [4] L. Zhongli & Q. Zheng A one-step Steffensen-type Method with Super- Cubic Convergence for Solving Nonlinear Equations. International Conference on Computational Science 29: [5] Mathews J. H Numerical Method for Mathematical Science and Engineer. Prentice-Hall International. Englewood Cliffs New Jersey. [6] Traub J.F Iterative Methods for the Solution of Equations. Prentice Hall Inc. Englewood Cliffs New Jersey. Repository FMIPA

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT

MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT Yenni May Sovia, Agusni 2 Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT

MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT. Masnida Esra Elisabet ABSTRACT MODIFIKASI METODE CAUCHY DENGAN ORDE KONVERGENSI EMPAT Masnida Esra Elisabet Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Ridho Alfarisy 1 ABSTRACT

METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Ridho Alfarisy 1 ABSTRACT METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Ridho Alfarisy 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI ABSTRACT

METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI ABSTRACT METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI Amelia Riski, Putra. Supriadi 2, Agusni 2 Mahasiswa Program Studi S Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. FAMILI DARI METODE NEWTON-LIKE DENGAN ORDE KONVERGENSI EMPAT Nurazmi, Supriadi Putra 2, Musraini M 2 Mahasiswa Program Studi S Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas

Lebih terperinci

METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK

METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Anisa Rizky Apriliana 1 ABSTRACT ABSTRAK METODE CHEBYSHEV-HALLEY DENGAN KEKONVERGENAN ORDE DELAPAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Anisa Rizky Apriliana 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika

Lebih terperinci

PERBAIKAN METODE OSTROWSKI UNTUK MENCARI AKAR PERSAMAAN NONLINEAR. Rin Riani ABSTRACT

PERBAIKAN METODE OSTROWSKI UNTUK MENCARI AKAR PERSAMAAN NONLINEAR. Rin Riani ABSTRACT PERBAIKAN METODE OSTROWSKI UNTUK MENCARI AKAR PERSAMAAN NONLINEAR Rin Riani Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau Kampus

Lebih terperinci

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT Vera Alvionita Harahap 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA Rahmawati Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya,

Lebih terperinci

METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI OPTIMAL BERORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Helmi Putri Yanti 1, Rolan Pane 2 1 Mahasiswa Program Studi S1 Matematika 2 DosenJurusan Matematika Fakultas Matematika dan

Lebih terperinci

VARIAN METODE HALLEY BEBAS TURUNAN KEDUA DENGAN ORDE KEKONVERGENAN ENAM. Siti Mariana 1 ABSTRACT ABSTRAK

VARIAN METODE HALLEY BEBAS TURUNAN KEDUA DENGAN ORDE KEKONVERGENAN ENAM. Siti Mariana 1 ABSTRACT ABSTRAK VARIAN METODE HALLEY BEBAS TURUNAN KEDUA DENGAN ORDE KEKONVERGENAN ENAM Siti Mariana 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra 1, Supriadi Putra 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1

METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1 METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI 1 + Lely Jusnita 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

VARIASI METODE CHEBYSHEV DENGAN ORDE KEKONVERGENAN OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT ABSTRAK

VARIASI METODE CHEBYSHEV DENGAN ORDE KEKONVERGENAN OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT ABSTRAK VARIASI METODE CHEBYSHEV DENGAN ORDE KEKONVERGENAN OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Julia Murni 1, Sigit Sugiarto 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan,

Lebih terperinci

FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR. Nurul Khoiromi ABSTRACT

FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR. Nurul Khoiromi ABSTRACT FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR Nurul Khoiromi Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK Risvi Ayu Imtihana 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

Daimah 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Daimah 1. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE NEWTON BISECTRIX UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Daimah 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru

Lebih terperinci

METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT

METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK. Resdianti Marny 1 ABSTRACT METODE GENERALISASI SIMPSON-NEWTON UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN KONVERGENSI KUBIK Resdianti Marny 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Imaddudin Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL ABSTRACT

METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL ABSTRACT METODE ITERASI DUA LANGKAH BEBAS TURUNAN BERDASARKAN INTERPOLASI POLINOMIAL N.D. Monti 1, M. Imran, A. Karma 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neli Sulastri 1 ABSTRACT

BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neli Sulastri 1 ABSTRACT BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Neli Sulastri 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BEBAS TURUNAN BERDASARKAN KOMBINASI KOEFISIEN TAK TENTU DAN FORWARD DIFFERENCE UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Mahrani 1, M. Imran, Agusni 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Handico Z Desri 1, Syamsudhuha 2, Zulkarnain 2 1 Mahasiswa Program Studi S1

Lebih terperinci

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT

METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR ABSTRACT METODE ORDE-TINGGI UNTUK MENENTUKAN AKAR DARI PERSAMAAN NONLINEAR I. P. Edwar, M. Imran, L. Deswita Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM. Oktario Anjar Pratama ABSTRACT

FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM. Oktario Anjar Pratama ABSTRACT FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM Oktario Anjar Pratama Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR. Yeni Cahyati 1, Agusni 2 ABSTRACT

TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR. Yeni Cahyati 1, Agusni 2 ABSTRACT TEKNIK ITERASI VARIASIONAL DAN BERBAGAI METODE UNTUK PENDEKATAN SOLUSI PERSAMAAN NONLINEAR Yeni Cahyati 1, Agusni 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

KONSTRUKSI SEDERHANA METODE ITERASI BARU ORDE TIGA ABSTRACT

KONSTRUKSI SEDERHANA METODE ITERASI BARU ORDE TIGA ABSTRACT KONSTRUKSI SEDERHANA METODE ITERASI BARU ORDE TIGA Dedi Mangampu Tua 1, Syamsudhuha 2, Asmara Karma 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas

Lebih terperinci

METODE BERTIPE STEFFENSEN DENGAN ORDE KONVERGENSI OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

METODE BERTIPE STEFFENSEN DENGAN ORDE KONVERGENSI OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT METODE BERTIPE STEFFENSEN DENGAN ORDE KONVERGENSI OPTIMAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Sarbaini, Asmara Karma Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yolla Sarwenda 1, Zulkarnain 2 ABSTRACT

MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Yolla Sarwenda 1, Zulkarnain 2 ABSTRACT MODIFIKASI FAMILI METODE ITERASI MULTI-POINT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Yolla Sarwenda 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR. Een Susilawati 1 ABSTRACT

KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR. Een Susilawati 1 ABSTRACT KELUARGA METODE LAGUERRE DAN KELAKUAN DINAMIKNYA DALAM MENENTUKAN AKAR GANDA PERSAMAAN NONLINEAR Een Susilawati 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear

Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear M. Nizam 1, Lendy Listia Nanda 2 1, 2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl.

Lebih terperinci

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT

METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR ABSTRACT METODE ITERASI BARU BEBAS DERIVATIF UNTUK MENEMUKAN SOLUSI PERSAMAAN NONLINEAR Eka Ceria 1, Agusni, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR. Rio Kurniawan ABSTRACT

KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR. Rio Kurniawan ABSTRACT KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR Rio Kurniawan Mahasiswa Program Studi S Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

ANALISIS KONVERGENSI METODE DEKOMPOSISI ADOMIAN BARU UNTUK PERSAMAAN INTEGRAL VOLTERRA NONLINEAR JENIS KEDUA. Rini Christine Prastika Sitompul 1

ANALISIS KONVERGENSI METODE DEKOMPOSISI ADOMIAN BARU UNTUK PERSAMAAN INTEGRAL VOLTERRA NONLINEAR JENIS KEDUA. Rini Christine Prastika Sitompul 1 ANALISIS KONVERGENSI METODE DEKOMPOSISI ADOMIAN BARU UNTUK PERSAMAAN INTEGRAL VOLTERRA NONLINEAR JENIS KEDUA Rini Christine Prastika Sitompul 1 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

ANALISIS KEKONVERGENAN GLOBAL METODE ITERASI CHEBYSHEV ABSTRACT

ANALISIS KEKONVERGENAN GLOBAL METODE ITERASI CHEBYSHEV ABSTRACT ANALISIS KEKONVERGENAN GLOBAL METODE ITERASI CHEBYSHEV Poppy Hanggreny 1, M. Imran, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI Febrian Lisnan, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR. Eka Parmila Sari 1, Agusni 2 ABSTRACT

SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR. Eka Parmila Sari 1, Agusni 2 ABSTRACT SOLUSI NUMERIK UNTUK PERSAMAAN INTEGRAL KUADRAT NONLINEAR Eka Parmila Sari 1, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT PENERAPAN TRANSFORMASI SHANK PADA METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Muliana 1, Syamsudhuha 2, Musraini 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM (1) 2017 UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PENERAPAN METODE NEWTON-COTES OPEN FORM 5 TITIK UNTUK MENYELESAIKAN SISTEM PERSAMAAN NONLINIER M Ziaul Arif, Yasmin

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M.

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M. BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA

Lebih terperinci

METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1.

METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1. METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA Edo Nugraha Putra Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

PENYELESAIAN PERSAMAAN NONLINIER ORDE-TINGGI UNTUK AKAR BERGANDA

PENYELESAIAN PERSAMAAN NONLINIER ORDE-TINGGI UNTUK AKAR BERGANDA PENYELESAIAN PERSAMAAN NONLINIER ORDE-TINGGI UNTUK AKAR BERGANDA Mohammad Jamhuri Jurusan Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang j4msh@gmail.com

Lebih terperinci

METODE ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL DAN INTEGRO-DIFERENSIAL VOLTERRA LINEAR DAN NONLINEAR ABSTRACT

METODE ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL DAN INTEGRO-DIFERENSIAL VOLTERRA LINEAR DAN NONLINEAR ABSTRACT METODE ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL DAN INTEGRO-DIFERENSIAL VOLTERRA LINEAR DAN NONLINEAR Nasrin 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 93 98 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

Lebih terperinci

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR Merintan Afrina S Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

GENERALISASI RATA-RATA PANGKAT METODE NEWTON. Haikal Amrullah 1, Aziskhan 2 ABSTRACT

GENERALISASI RATA-RATA PANGKAT METODE NEWTON. Haikal Amrullah 1, Aziskhan 2 ABSTRACT GENERALISASI RATA-RATA PANGKAT METODE NEWTON Haikal Amrullah 1, Aziskhan 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M. Imran 2

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M. Imran 2 BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA Zulkarnain 1, M. Imran 2 1.2 Laboratorium Matematika Terapan FMIPA Universitas Riau, Pekanbaru e-mail

Lebih terperinci

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT

PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK Nurul Ain Farhana, Imran M Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL Siti Nurjanah 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. METODE SIMPSON-LIKE TERKOREKSI Ilis Suryani, M. Imran, Asmara Karma Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia. INTEGRASI NUMERIK TANPA ERROR UNTUK FUNGSI-FUNGSI TERTENTU Irma Silpia 1, Syamsudhuha, Musraini M. 1 Mahasiswi Jurusan Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Adek Putri Syafriani, Syamsudhuha 2, Zulkarnain 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

KONSEP METODE ITERASI VARIASIONAL ABSTRACT

KONSEP METODE ITERASI VARIASIONAL ABSTRACT KONSEP METODE ITERASI VARIASIONAL Yuliani 1, Leli Deswita 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus

Lebih terperinci

MODIFIKASI METODE JARRAT DENGAN VARIAN METODE NEWTON DAN RATA-RATA KONTRA HARMONIK TUGAS AKHIR. Oleh : KHARISMA JAKA ARFALD

MODIFIKASI METODE JARRAT DENGAN VARIAN METODE NEWTON DAN RATA-RATA KONTRA HARMONIK TUGAS AKHIR. Oleh : KHARISMA JAKA ARFALD MODIFIKASI METODE JARRAT DENGAN VARIAN METODE NEWTON DAN RATA-RATA KONTRA HARMONIK TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika Oleh : KHARISMA

Lebih terperinci

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA Kristiani Panjaitan 1, Syamsudhuha 2, Leli Deswita 2 1 Mahasiswi Program

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT

SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU Vanny Octary 1 Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS ABSTRACT

METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS ABSTRACT METODE ITERASI JACOBI DAN GAUSS-SEIDEL PREKONDISI UNTUK MENYELESAIKAN SISTEM PERSAMAN LINEAR DENGAN M-MATRIKS Efriani Widya 1, Syamsudhuha 2, Bustami 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan

Lebih terperinci

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN Lucy L. Batubara 1, Deswita. Leli 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

SOLUSI SISTEM PERSAMAAN INTEGRAL VOLTERRA LINEAR DENGAN MENGGUNAKAN METODE MATRIKS EULER ABSTRACT

SOLUSI SISTEM PERSAMAAN INTEGRAL VOLTERRA LINEAR DENGAN MENGGUNAKAN METODE MATRIKS EULER ABSTRACT SOLUSI SISTEM PERSAMAAN INTEGRAL VOLTERRA LINEAR DENGAN MENGGUNAKAN METODE MATRIKS EULER Marison Faisal Sitanggang, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas

Lebih terperinci

METODE ITERASI TIGA LANGKAH DENGAN ORDE KONVERGENSI LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BERAKAR GANDA ABSTRACT

METODE ITERASI TIGA LANGKAH DENGAN ORDE KONVERGENSI LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BERAKAR GANDA ABSTRACT METODE ITERASI TIGA LANGKAH DENGAN ORDE KONVERGENSI LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BERAKAR GANDA Zuhnia Lega 1, Agusni, Supriadi Putra 1 Mahasiswa Progra Studi S1 Mateatika Laboratoriu Mateatika

Lebih terperinci

METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR. Alhumaira Oryza Sativa 1 ABSTRACT ABSTRAK

METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR. Alhumaira Oryza Sativa 1 ABSTRACT ABSTRAK METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR Alhumaira Oryza Sativa 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI Sandra Roza 1*, M. Natsir 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika dan

Lebih terperinci

METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR ABSTRACT ABSTRAK

METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR ABSTRACT ABSTRAK METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR Istawi Arwannur 1, Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas

Lebih terperinci

FAMILI BARU DARI METODE ITERASI ORDE TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN AKAR GANDA ABSTRACT

FAMILI BARU DARI METODE ITERASI ORDE TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN AKAR GANDA ABSTRACT FAMILI BARU DARI METODE ITERASI ORDE TIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR DENGAN AKAR GANDA Elvi Syahriah 1, Khozin Mu taar 2 1,2 Progra Studi S1 Mateatika Jurusan Mateatika Fakultas Mateatika

Lebih terperinci

METODE ITERATIF YANG DIPERCEPAT UNTUK Z-MATRIKS ABSTRACT

METODE ITERATIF YANG DIPERCEPAT UNTUK Z-MATRIKS ABSTRACT METODE ITERATIF YANG DIPERCEPAT UNTUK Z-MATRIKS Mildayani 1, Syamsudhuha 2, Aziskhan 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus

Lebih terperinci

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA

MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA Irpan Riski M 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

KELUARGA METODE ITERASI ORDE EMPAT UNTUK MENCARI AKAR GANDA PERSAMAAN NONLINEAR ABSTRACT

KELUARGA METODE ITERASI ORDE EMPAT UNTUK MENCARI AKAR GANDA PERSAMAAN NONLINEAR ABSTRACT KELUARGA METODE ITERASI ORDE EMPAT UNTUK MENCARI AKAR GANDA PERSAMAAN NONLINEAR Kiki Reski Ananda 1 Khozin Mu taar 2 12 Progra Studi S1 Mateatika Jurusan Mateatika Fakultas Mateatika dan Ilu Pengetahuan

Lebih terperinci

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 21 25 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER

Lebih terperinci

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 68 75 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA ELSA JUMIASRI, SUSILA BAHRI, BUKTI GINTING

Lebih terperinci

METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN ABSTRACT

METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN ABSTRACT METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN Juanita Adrika, Syamsudhuha 2, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS. Anggy S. Mandasary 1, Zulkarnain 2 ABSTRACT

GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS. Anggy S. Mandasary 1, Zulkarnain 2 ABSTRACT GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS Anggy S. Mandasary 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8. Supriadi Putra & M. Imran

MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8. Supriadi Putra & M. Imran MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8 Supriadi Putra & M. Imran Laboratorium Komputasi Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

METODE STEEPEST DESCENT

METODE STEEPEST DESCENT METODE STEEPEST DESCENT DENGAN UKURAN LANGKAH BARU UNTUK PENGOPTIMUMAN NIRKENDALA D. WUNGGULI 1, B. P. SILALAHI 2, S. GURITMAN 3 Abstrak Metode steepest descent adalah metode gradien sederhana untuk pengoptimuman.

Lebih terperinci

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42 Jurnal Matematika Integratif ISSN 1412-6184 Volume 12 No 1, April 2016, pp 35 42 Perbandingan Tingkat Kecepatan Konvergensi dari Newton Raphson dan Secant Setelah Mengaplikasikan Aiken s dalam Perhitungan

Lebih terperinci

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika

Lebih terperinci

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU Syofia Deswita 1, Syamsudhuha 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA. Vanny Restu Aji 1 ABSTRACT

SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA. Vanny Restu Aji 1 ABSTRACT SKEMA NUMERIK UNTUK MEMPEROLEH SOLUSI TAKSIRAN DARI KELAS PERSAMAAN INTEGRAL FREDHOLM NONLINEAR JENIS KEDUA Vanny Restu Aji 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Sarimah. ABSTRACT

Sarimah. ABSTRACT PENDETEKSIAN OUTLIER PADA REGRESI LOGISTIK DENGAN MENGGUNAKAN TEKNIK TRIMMED MEANS Sarimah Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

METODE ITERASI AOR UNTUK SISTEM PERSAMAAN LINEAR PREKONDISI ABSTRACT

METODE ITERASI AOR UNTUK SISTEM PERSAMAAN LINEAR PREKONDISI ABSTRACT METODE ITERASI AOR UNTUK SISTEM PERSAMAAN LINEAR PREKONDISI Siswanti, Syamsudhuha 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR. Susilawati 1 ABSTRACT

PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR. Susilawati 1 ABSTRACT PEMBENTUKAN POLINOMIAL ORTOGONAL MENGGUNAKAN PERSAMAAN INTEGRAL NONLINEAR Susilawati 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN

PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN E-Jurnal Matematika Vol. 2, No.2, Mei 2013, 11-17 ISSN: 2303-1751 PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN NANDA NINGTYAS RAMADHANI UTAMI 1,

Lebih terperinci

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace M. Nizam Muhaijir 1, Wartono 2 Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim

Lebih terperinci

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR

PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR Jurnal Matematika UNAND Vol. VI No. Hal. 68 76 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND PEMBUKTIAN RUMUS BENTUK TUTUP BEDA MUNDUR BERDASARKAN DERET TAYLOR WIDIA ASTUTI Program Studi Matematika, Fakultas

Lebih terperinci

ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4

ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4 ASPEK STABILITAS DAN KONSISTENSI METODA DALAM PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL BIASA DENGAN MENGGUNAKAN METODA PREDIKTOR- KOREKTOR ORDE 4 Asep Juarna, SSi, MKom. Fakultas Ilmu Komputer, Universitas

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36

Lebih terperinci

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR

PEMBUKTIAN BENTUK TUTUP RUMUS BEDA MAJU BERDASARKAN DERET TAYLOR Jurnal Matematika UAD Vol. 5 o. 4 Hal. 8 ISS : 233 29 c Jurusan Matematika FMIPA UAD PEMBUKTIA BETUK TUTUP RUMUS BEDA MAJU BERDASARKA DERET TAYLOR ADE PUTRI, RADHIATUL HUSA Program Studi Matematika, Fakultas

Lebih terperinci

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Teknikom : Vol. No. (27) E-ISSN : 2598-2958 PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya Utama,

Lebih terperinci

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Teknikom : Vol. No. (27) ISSN : 2598-2958 (online) Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya

Lebih terperinci

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh : EKA PUTRI ARDIANTI

Lebih terperinci

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 9 17 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI RAHIMA

Lebih terperinci

MASALAH NILAI AWAL ITERASI NEWTON RAPHSON UNTUK ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG)

MASALAH NILAI AWAL ITERASI NEWTON RAPHSON UNTUK ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG) MASALAH NILAI AWAL ITERASI NEWTON RAPHSON UNTUK ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG) Shaifudin Zuhdi, Dewi Retno Sari Saputro Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA

RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA A. MATA KULIAH RENCANA PEMBELAJARAN SEMESTER(RPS) PROGRAM STUDI STATISTIKA Nama Mata Kuliah : Matematika II Kode/sks : MAS 4116/ 3 Semester : III Status (Wajib/Pilihan) : Wajib (W) Prasyarat : MAS 4215

Lebih terperinci

PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY

PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY Jurnal Matematika UNAND Vol. VI No. 1 Hal. 97 104 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY YOSI ASMARA Program Studi Magister

Lebih terperinci

GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Andri Ramadhan 1, Syamsudhuha 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN

PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN Okmi Zerlan 1*, M. Natsir 2, Eng Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR Suci Dini Anggraini 1, Khozin Mu tamar 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL Heni Kusnani 1, Leli Deswita, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika

Lebih terperinci