OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI"

Transkripsi

1 OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI SESI III (ISIAN SINGKAT DAN ESSAY) WAKTU : 180 MENIT ============================================================ I. Soal Isian Singkat, ada 10 soal dalam tes ini Petunjuk Menjawab Soal a. Tulis jawaban akhir (hasilnya) saja pada kotak di sebelah kanan setiap soal. b. Jika Anda akan mengganti jawaban, maka coret saja pada jawaban yang salah. c. Setiap soal yang dijawab benar diberi nilai + 5, jika jawaban salah diberi nilai 2 dan jika kosong (tidak dijawab) bernilai 0. ============================================================= 1. Jika 2010 dapat dinyatakan sebagai hasil kali dua bilangan bulat positif yang selisihnya sekecil mungkin, maka selisih tersebut adalah Tentukan jumlahan dari : Jika A dan B adalah matriks persegi berukuran sama, dengan A B dan memenuhi A B B A dan A B, 2 2 maka nilai det A B 4. Jika diketahui A 2,6, 3, B 4,9, 1 dan C 6,3, 2 adalah titik-titik sudut suatu segitiga, maka luas segitiga ABC tersebut adalah Sebuah kelas terdiri dari 8 pria dan 12 wanita. Jika dipilih 4 orang untuk menjadi pengurus kelas, berapakah peluang bahwa keempat orang tersebut terdiri dari tepat dua pria dan dua wanita?

2 6. Jika a dan b adalah bilangan real tak nol sedemikian hingga 2 akar-akar persamaan kuadrat x ax b 0 adalah a dan b, maka nilai a dan b yang mungkin adalah Bola batu beton disusun dalam bentuk piramida dengan alas berupa persegi seperti gambar berikut ini : Jika panjang sisi bola beton paling bawah ada 20 buah, maka berapakah banyaknya bola beton seluruhnya? 8. 1 Diberikan segitiga XYZ dengan sin X 2 dan 2 1 sin Z 5, maka nilai sin Y Pagar tembok tingginya 3 meter, berjarak 3 meter dari sebuah gedung yang tinggi. Tentukan panjang tangga terpendek yang dapat mencapai gedung jika salah satu ujungnya bertumpu pada tanah di luar tembok! 10. Perhatikan gambar berikut ini : Tentukan luas bagian yang diarsir.

3 II. Soal Essay, ada 10 soal dalam tes ini Petunjuk Menjawab Soal a. Selesaikan soal-soal di bawah ini dengan memberikan uraian lengkap, jelas langkah-langkahnya dan sebutkan rumus atau dalil yang Anda pakai. Tuliskan jawaban tepat dibawah soal. Tulis yang rapi dan urut serta usahakan jangan banyak coretan. b. Setiap soal bernilai ============================================================= 1. Misalkan J n menyatakan jumlahan angka ganjil pada bilangan asli n, sebagai contoh J , maka nilai J 1 J 2 J 3 J 100

4 2. Misalkan ABC dan DAC adalah dua buah segitiga sama kaki dengan AB = AC 0 dan AD = DC. Pada ABC besar BAC 20, sedangkan pada ADC berlaku 0 ADC 100, seperti diberikan oleh gambar di bawah ini. Buktikan bahwa AB = BC + CD.

5 Suatu partikel bergerak pada lingkaran x y 169. Tentukan titik-titik di mana partikel bergerak tegak lurus terhadap garis 3x 2y 100.

6 4. Aditya mencocokkan arlojinya di tengah hari. Pada jam yang seharusnya pukul 13.00, arlojinya menunjukkan waktu Dengan asumsi arloji Aditya berjalan lebih lambat dengan kecepatan tetap, pukul berapakah waktu sesungguhnya saat arlojinya menunjukkan pukul 23.45?

7 5. Sebuah lubang angin dari suatu bangunan terbuat dari besi yang dibentuk dari rangkaian segitiga sama sisi dengan panjang sisi dari segitiga yang paling kecil adalah 10 cm, seperti tampak pada gambar di bawah. Jika panjang sisi segitiga sama sisi yang paling besar adalah 150 cm. Tentukan berapa cm panjang besi yang diperlukan!

8 1 6. Diketahui pada kuadran pertama titik P a, b terletak pada kurva y dan x garis singgung di P memotong sumbu-x di titik A. Tentukan luas segitiga AOP dan bentuk segitiga AOP tersebut!

9 7. Jika x menyatakan bilangan bulat terbesar yang kurang dari atau sama dengan x dan x menyatakan pecahan desimal dari x, maka penyelesaian sistem x y z 1,1 persamaan x y z 3,3 adalah... x y z 4,

10 8. Tentukan panjang garis terpendek yang menyinggung ellips dan memotong sumbu-sumbu koordinat! b x a y a b

11 9. Diberikan sebuah persegi dan lingkaran seperti tampak pada gambar di bawah ini. Diketahui panjang sisi persegi a cm dan salah sisinya merupakan garis singgung lingkaran. Tentukan perbandingan luas kedua bangun tersebut!

12 Jika f adalah fungsi riil yang ditentukan oleh f x 6x x 10x x 24, maka nilai maksimum f adalah...

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 200 BIDANG MATEMATIKA TEKNOLOGI SESI II (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 20 MENIT ============================================================

Lebih terperinci

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA PETUNJUK UNTUK PESERTA: 1. Tes bagian pertama ini terdiri dari 20 soal. 2. Waktu yang disediakan adalah

Lebih terperinci

1. Tentukan nilai-nilai x yang memenuhi pertidaksamaan

1. Tentukan nilai-nilai x yang memenuhi pertidaksamaan OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA NON TEKNOLOGI SESI III (ISIAN SINGKAT DAN ESSAY) WAKTU : 180 MENIT ============================================================

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

=============================================================

============================================================= OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 00 BIDANG MATEMATIKA NON TEKNOLOGI SESI II (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 0 MENIT ============================================================

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA 2015 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3 . 4% uang Ani diberikan kepada adiknya dan 5% dari uang tersebut untuk membayar rekening listrik dan 5% untuk membayar rekening telpon, sisa uang Ani adalah Rp 4.,. Berapakah jumlah uang Ani a. Rp 4.,

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 00 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 003 Bidang Matematika Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2012 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SOAL BRILLIANT COMPETITION 2013

SOAL BRILLIANT COMPETITION 2013 PILIHAN GANDA. Pada suatu segitiga ABC, titik D berada di AC sehingga AD : DC = 4 :. Titik E berada di BC sehingga BE : EC = : 3. Titik F adalah titik perpotongan antara garis BD dan garis AE. Jika luas

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 013 TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 013

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2013 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P. D APRIL 2008 SMA NEGERI 1 PEKANBARU Jl. Sulthan Syarif Qasim 159 Pekanbaru

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

BERKAS SOAL BIDANG STUDI : MATEMATIKA

BERKAS SOAL BIDANG STUDI : MATEMATIKA BERKAS SOAL BIDANG STUDI : MADRASAH TSANAWIYAH SELEKSI TINGKAT PROVINSI KOMPETISI SAINS MADRASAH NASIONAL 2014 Petunjuk Umum 1. Tuliskan nama dan asal sekolah, kabupaten, dan provinsi anda pada setiap

Lebih terperinci

OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009

OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009 OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 009 Mata pelajaran Matematika Teknologi Kerjasama Dengan FMIPA Universitas Diponegoro Dan Dinas Pendidikan Propinsi Jawa Tengah OLIMPIADE SAINS TERAPAN

Lebih terperinci

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

Soal Babak Penyisihan MIC LOGIKA 2011

Soal Babak Penyisihan MIC LOGIKA 2011 Soal Babak Penyisihan MIC LOGIKA 2011 1. Jika adalah bilangan bulat dan angka puluhan dari adalah tujuh, maka angka satuan dari adalah... a. 1 c. 5 e. 9 b. 4 d. 6 2. ABCD adalah pesergi dengan panjang

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010 TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang

Lebih terperinci

KOTA - PROVINSI - NASIONAL TAHUN 2017 MATA PELAJARAN: MATEMATIKA

KOTA - PROVINSI - NASIONAL TAHUN 2017 MATA PELAJARAN: MATEMATIKA OLIMPIADE SAINS SMP/MTs TINGKAT KOTA - PROVINSI - NASIONAL TAHUN 07 MATA PELAJARAN: MATEMATIKA Mata Pelajaran : Matematika Jenjang : SMP/MTs MATA PELAJARAN PETUNJUK UMUM () Kerjakan soal ini dengan JUJUR,

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

BIDANG STUDI : MATEMATIKA

BIDANG STUDI : MATEMATIKA BERKAS SOAL BIDANG STUDI : MADRASAH TSANAWIYAH SELEKSI TINGKAT PROVINSI KOMPETISI SAINS MADRASAH NASIONAL 2013 Petunjuk Umum 1. Tuliskan identitas Anda (Nama, Asal Sekolah dan Kabupaten/Kota Sekolah) secara

Lebih terperinci

OSN Guru Matematika SMA (Olimpiade Sains Nasional)

OSN Guru Matematika SMA (Olimpiade Sains Nasional) ocsz Pembahasan Soal OSN Guru 2012 OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE

Lebih terperinci

1. Diketahui fungsi : f mempunyai sifat f x 1 1 f x untuk setiap x. Jika f 2. 2, maka nilai fungsi f B. 2 C. 3 D E.

1. Diketahui fungsi : f mempunyai sifat f x 1 1 f x untuk setiap x. Jika f 2. 2, maka nilai fungsi f B. 2 C. 3 D E. f x f mempunyai sifat f x f x untuk setiap x. Jika f, maka nilai fungsi f 06. Diketahui fungsi : 06 06. Perhatikan gambar berikut ini! Berapakah ukuran luas daerah yang diarsir jika diketahui ukuran luas

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 01 BAGIAN

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : D45 NO SOAL PEMBAHASAN 5 Hasil dari 8 adalah... 5. a = a a a a a A. 0 B. 5. = C.. = D. 64 Hasil dari 8 adalah... A. 6 B. 8 C. 6 D. 4 6 4 Hasil dari 7 ( ( 8)) adalah...

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B5 SMP N Kalibagor Hasil dari 7 ( ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. 7 Pangkat ; Akar D.

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMA Minggu, 0 Oktober HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan

Lebih terperinci

KUMPULAN SOAL-SOAL OMITS

KUMPULAN SOAL-SOAL OMITS KUMPULAN SOAL-SOAL OMITS SOAL Babak Penyisihan Olimpiade Matematika ITS 2011 (OMITS 11) Tingkst SMP Se-derajat BAGIAN I.PILIHAN GANDA 1. Berapa banyak faktor positif/pembagi dari 2011? A. 1 B. 2 C. 3 D.

Lebih terperinci

NO SOAL PEMBAHASAN 1

NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : B5 1 Hasil dari 17 (3 ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 41 Dalam kurung 1 C. 7 Pangkat ; Akar D. 41 Kali

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2012 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012

SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012 SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012 BAGIAN A : PILIHAN GANDA SOAL 1 Pernyataan yang benar diantara pernyataan-pernyataan berikut adalah : A. {Ø} Ø D. {a,b} {a, b, {{a,b}}} B. {Ø} Ø E. {a,ø}

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA 1. ABC adalah segitiga sama

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SNMPTN 2010

Soal-soal dan Pembahasan Matematika Dasar SNMPTN 2010 Soal-soal dan Pembahasan Matematika Dasar SNMPTN 010 1. Pernyataan yang mempunyai nilai kebenaran sama dengan pernyataan, Jika bilangan ganjil sama dengan bilangan genap, maka 1 + bilangan ganjil adalah

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40. PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45. NO SOAL PEMBAHASAN 1 Hasil dari adalah... Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45. NO SOAL PEMBAHASAN 1 Hasil dari adalah... Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : D45 NO SOAL PEMBAHASAN 1 Hasil dari 8 5 3 adalah... 1. a A. 10 5 = a a a a a B. 5. a 1 n n = a C. 3 3. a m n n = a m D. 64 Hasil dari 8 3 adalah... A. 6 B. 8 C.

Lebih terperinci

OSN Guru Matematika SMA

OSN Guru Matematika SMA ocsz Pembahasan Soal OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE GURU MATEMATIKA

Lebih terperinci

Matematika Proyek Perintis I Tahun 1980

Matematika Proyek Perintis I Tahun 1980 Matematika Proyek Perintis I Tahun 980 MA-80-0 Di antara lima hubungan di bawah ini, yang benar adalah Jika B C dan B C, maka A C Jika A B dan C B, maka A C Jika B A dan C B, maka A C Jika A C dan C B,

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 21 YOGYAKARTA55281 lmnas@ugm.ac.id http://lmnas.fmipugm.ac.id

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 200

Lebih terperinci

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan

Lebih terperinci

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 2006

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 2006 OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah 4. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat,

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 01 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 0 soal isian singkat dan tes

Lebih terperinci

PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA

PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA 1. Sebelum mengerjakan soal, telitilah dahulu jumlah dan nomor halaman yang terdapat pada naskah soal. Pada naskah soal ini terdiri dari 30 soal pilihan ganda

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika Pembahasan OSN Tingkat Provinsi Tahun 202 Jenjang SMP Bidang Matematika Bagian A : Soal Isian Singkat. Sebuah silinder memiliki tinggi 5 cm dan volume 20 cm 2. Luas permukaan bola terbesar yang mungkin

Lebih terperinci

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) 0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

SOAL-SOAL LATIHAN TURUNAN FUNGSI SPMB

SOAL-SOAL LATIHAN TURUNAN FUNGSI SPMB SOL-SOL LTIHN TURUNN FUNGSI SPM 00-007. SPM Matematika asar Regional I 00 Kode 0 Garis singgung kurva di titik potongnya dengan sumbu yang absisnya postif y mempunyai gradien.. 9 8 7. SPM Matematika asar

Lebih terperinci

MATEMATIKA TEKNIK (E3-1)

MATEMATIKA TEKNIK (E3-1) UJIAN NASIONAL SMK Tahun Pelajaran 004/005 MATEMATIKA TEKNIK (E-) KELOMPOK TEKNIK INDUSTRI ( U T A M A ) P MATA PELAJARAN MATEMATIKA TEKNIK KELOMPOK : TEKNIK INDUSTRI Hari/Tanggal : Rabu, Juni 005 Jam

Lebih terperinci

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006 OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat, maka salah satu

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Matematika EBTANAS Tahun 2003

Matematika EBTANAS Tahun 2003 Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2009 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

Menemukan Dalil Pythagoras

Menemukan Dalil Pythagoras Dalil Pythagoras Menemukan Dalil Pythagoras 1. Perhatikan gambar di bawah ini. Segitiga ABC adalah sebuah segitiga siku-siku di B dengan sisi miring AC. Jika setiap petak luasnya 1 satuan, tentukan luas

Lebih terperinci

METHODIST-2 EDUCATION EXPO 2016

METHODIST-2 EDUCATION EXPO 2016 TK/SD/SMP/SMA Methodist- Medan Jalan MH Thamrin No. 96 Medan Kota - 0 T: (+66)56 58 METHODIST- EDUCATION EXPO 06 Lomba Sains Plus Antar Pelajar Tingkat SMA se-sumatera Utara NASKAH SOAL MATEMATIKA - Petunjuk

Lebih terperinci

SOAL TO UN SMA MATEMATIKA

SOAL TO UN SMA MATEMATIKA 1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas

Lebih terperinci

SOAL ToT MATEMATIKA TEKNIK 2018

SOAL ToT MATEMATIKA TEKNIK 2018 1. Nilai dari =... A. 4 B. 6 C. 1 D. 12 E. 18 2. Bentuk sederhana dari ( ) =... A. a 5. b 8. c 4 B. a 5. b 2. c 4 C. a 6. b 8. c 4 D. a 6. b 8. c 4 E. a 6. b 2. c 4 3. Bentuk sederhana dari A. B. C. D.

Lebih terperinci

SOAL PREDIKSI MATEMATIKA TAHUN

SOAL PREDIKSI MATEMATIKA TAHUN SOAL PREDIKSI MATEMATIKA TAHUN 2014 PAKET 1. Hasil dari 5 2 7-21 4 : 31 2 adalah... A. 3 3 14 B. 3 9 14 C. 4 3 14 D. 4 9 14 2. Dalam kompetisi matematika, setiap jawaban benar diberi skor 3, jawaban salah

Lebih terperinci

SANGGAR 14 SMA JAKARTA TIMUR

SANGGAR 14 SMA JAKARTA TIMUR SANGGAR 4 SMA JAKARTA TIMUR SOAL DAN SOLUSI TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A SMP N Kalibagor Hasil dari 5 + [6 : ( )] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. Pangkat ; Akar D.

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 200 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3.

Matematika SMA/MA IPA. Nama : No. Peserta : , dan z = 10, maka nilai dari 12 A. 36 B. 25 C D. 1 9 E Jika log 3. Nama : No. Peserta :. Jika x =, y =, dan z = 0, maka nilai dari x y z =. x yz A. 6 B. 5 C. 6 D. 9 E.. Jika log A. ab+a+b a+ B. b+a+ a+ C. a+b+ a+ D. ab+a+ a+ E. ab+a+ a+ = a dan log 5 = b, maka log 60.

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional Tahun 1991 Matematika

Evaluasi Belajar Tahap Akhir Nasional Tahun 1991 Matematika Evaluasi Belajar Tahap Akhir Nasional Tahun 99 Matematika EBTANAS-SMP-9-0 Amir, Adi dan Budi selalu berbelanja ke Toko "Anda". Amir tiap 3 hari sekali, Adi tiap 4 hari sekali dan Budi tiap hari sekali.

Lebih terperinci

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian 1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 015 TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 015

Lebih terperinci

LEMBAR SOAL National Math Olympiad 4 th PDIM UB 2015

LEMBAR SOAL National Math Olympiad 4 th PDIM UB 2015 LEMBAR SOAL National Math Olympiad 4 th PDIM UB 015 PETUNJUK UNTUK PESERTA 1. Tes terdiri dari dua bagian. Bagian pertama terdiri dari 50 soal pilihan ganda dan bagian kedua terdiri dari 5 soal uraian..

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 Pembahasan UN 0 A3 by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A3 Hasil dari 5 + [6 : ( 3)] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung

Lebih terperinci

x x x 2x rata kelas pertama, kedua, dan ketiga masing-msing adalah 7, 8, dan 7

x x x 2x rata kelas pertama, kedua, dan ketiga masing-msing adalah 7, 8, dan 7 SOAL SELEKSI TINGKAT PROPINSI OLIMPIADE SAINS NASIONAL 009 BIDANG MATEMATIKA SMP SOAL ISIAN SINGKAT. Banyak bilangan bulat berbeda yang merupakan penjumlahan dari tiga bilangan berbeda dalam {5, 9,,,.,

Lebih terperinci

UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) UJIAN NASIONAL SMA/MA Tahun Pelajaran 004/005 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 005 Jam : 08.00 0.00 PELAKSANAAN

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Waktu : 210 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH TAHUN PELAJARAN 2011/2012 L E M B A R S O A L

SMA NEGERI 5 BEKASI UJIAN SEKOLAH TAHUN PELAJARAN 2011/2012 L E M B A R S O A L PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-4600 UJIAN SEKOLAH TAHUN PELAJARAN 0/0 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika. Tingkat SMK se DIY

Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika. Tingkat SMK se DIY Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika Tingkat SMK se DIY Disusun oleh : DWI LESTARI, M.Sc. Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri

Lebih terperinci

SOAL TRY OUT MATEMATIKA 2009

SOAL TRY OUT MATEMATIKA 2009 SOAL TRY OUT MATEMATIKA 009. Diberikan premis-premis :. jika semua siswa SMA di DKI Jakarta lulus ujian, maka Pak Gubernur DKI Jakarta sujud syukur. Pak Gubernur DKI Jakarta tidak sujud syukur negasi kesimpulan

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C32 NO SOAL PEMBAHASAN. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C32 NO SOAL PEMBAHASAN. Ingat! Pembahasan UN 0 C by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : C NO SOAL PEMBAHASAN Hasil dari 6 adalah... A. 48. a = a a a B. 7. = C. 08. = D. 6 6 = 6 = 6 = 6 = 6 Hasil dari 8 adalah... A.

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-86080 UJIAN SEKOLAH TAHUN PELAJARAN 0/0 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas 11 Matematika Persiapan UAS - Latihan Soal Doc. Name: K13AR11MATWJB0UAS doc. Version : 016-0 halaman 1 01. Nilai maksimum dari 0x + 8 untuk x dan y yang memenuhi x + y 0, x + y 8, 0 0 dan

Lebih terperinci