abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000"

Transkripsi

1 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat. 2. Isikan jawaban Anda pada Lembar Jawaban Komputer.. Perhatikan agar lembar jawaban ujian tidak kotor, tidak basah, tidak terlipat, dan tidak sobek. PILIHAN GANDA 1. Berapakah banyaknya bilangan asli 5 digit abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? C D E Berapakah banyaknya cara menyusun hurufhuruf pada kata LAPTOP sehingga tidak ada dua buah huruf vokal yang bersebelahan? A. 100 B. 105 C. 110 D. 115 E Berapakah banyaknya bilangan asli yang tidak lebih dari 2015 dengan sifat yang tidak habis dibagi 2, tidak habis dibagi oleh 5, tetapi habis dibagi oleh C. 268 D. 269 E Sebanyak 4 pasang suami istri duduk pada 8 buah kursi yang disusun melingkar. Berapakah banyaknya cara mengatur tempat duduk 8 orang tersebut sehingga setiap suami dan istri duduk bersebelahan. A. 96 B. 104 C. 112 D. 120 E. 128 n n! 5. Definisikan. Untuk setiap k k! n k! bilangan bulat tak negatif n, k, n k. Tentukan nilai dari k 0 2k k 0 k A. 511 B. 512 C. 102 D E Tentukan hasil penjumlahan semua bilangan asli n n n yang memenuhi. 2 4 A. 10 B. 9 D. 7 E Misalkan S 2 k. Tentukan dua digit k 0 k terakhir dari S. A. 81 B. 4 C. 21

2 Hal. 2 / 7 D. 07 E Sepuluh buah kartu diberi nomor 10 bilangan prima pertama dikocok lalu dipilih 2 buah kartu secara acak. Peluang selisih kedua bilangan prima pada kartu juga merupakan bilangan prima adalah 4 A. 5 B. 6 C. 7 D. 8 E. 9. Tentukan banyaknya faktor positif dari yang tidak habis dibagi oleh A C. 21 D. 22 E Tentukan banyaknya bilangan asli digit yang memuat tepat sebanyak genap digit ganjil. A. 100 B. 125 C. 250 D. 0 E Berapakah banyaknya persegi panjang yang terdiri dari 16 kotak yang termuat pada papan catur berukuran 8 8. A. 0 B. C. 6 D. 9 E Berapakah banyaknya bilangan asli 7 digit di mana setiap digitnya adalah 1 atau 0 dan tidak ada tiga buah digit berurutan yang digit-digitnya adalah bilangan yang sama? A. 11 B. 15 C. 20 D. 21 E Tentukan banyaknya bilangan 8 digit yang memuat tepat buah digit. A B C D E Berapakah banyaknya fungsi f: {1,2,,4,5} {1,2,,4,5} sehingga f(f(a)) = a untuk setiap a {1,2,,4,5}. 1 6 C. 1 D. 6 E Tentukan banyaknya bilangan negatif yang dapat dinyatakan dalam bentuk a a a a + a 4 4 dengan a i { 1,0,1} untuk i = 0,1,2,,4. A. 81 B. 108 C. 121 D. 169 E Tentukan 2 angka terakhir dari A. B. 50 C. 55 D. 60 E Berapakah banyaknya x dengan (0 x 60 ) yang memenuhi sin x + cos x = 2? A. 6 B. 5 C. 4 D. E. 2

3 Hal. / Jika (2x 40 x + 1) 5 = a 2015 x a 2014 x a 1 x + a 0 maka nilai dari a a a 1 adalah A. 16 B. 1 C. 2 D. 6 E Terletak di interval manakah bilangan real positif x terkecil sehingga ada bilangan real positif y yang memenuhi x + y 2 = xy. A. (1,) B. (,5) C. (5,7) D. (7,9) E. (9,11) 20. Tentukan digit terakhir dari S dimana S = F. 75 G. 80 H. 85 I. 90 J Sebuah fungsi f memenuhi sifat berikut: i. f( x) = f( + x) untuk setiap bilangan real x ii. Terdapat tepat tiga buah bilangan real a, b, c sehingga f(a) = f(b) = f(c) = 0 Tentukan dua digit terakhir dari (a + b + c) 2015 A. 09 B. 49 C. 01 D. 29 E Tentukan nilai minimum dari a 2 2bc + a 2 + b 2 2ac + b 2 + c 2 2ab + c 2 dengan a, b, c adalah bilangan real positif. A. 1 B. 1 2 C. 1 D. 2 E Jika (x + 2y + ) 2 + x + y + 2 = 0 tentukan nilai dari x 2 + y 2. A. 0 B. 1 C. 2 D. E Jumlah semua akar real yang berbeda dari persamaan x 4 2x + x 2 2x + 1 = 0 adalah A. B. 2 C. 1 D. 0 E Tentukan 2 digit terakhir dari ekspresi (dengan tiga tanda kurang diikuti tiga tanda tambah dan sebaliknya secara terus menerus) B. 6 C. 40 D. 46 E Tentukan koefisien x 2 dari ekspansi 1 (1 + x) + (1 + x) 2 (1 + x) + + (1 + x) 18 A. 54 B. 6 C. 72 D. 81 E Jika x = 4 x 1 dari x. B. 4 D. 16 E Maka tentukan nilai 28. Barisan a n didefinisikan dengan a 1 = 0, a 2 = 1 dan a n+2 2a n+1 + a n 2 = 0 untuk setiap n 1. Hitunglah nilai a 20.

4 Hal. 4 / C. 24 D. 61 E Jika fungsi f memenuhi f(x f(y)) = 1 x y untuk setiap bilangan real x, y. Tentukan nilai 2f(2015) C D E Polinomial P(x) = 5x x memiliki tiga buah akat a, b, c. Hitunglah nilai dari (a + b) + (b + c) + (a + c). A. 40 B. 806 C D E Sebuah segitiga memiliki sisi dengan panjang 4,5,6. Tentukan panjang jari-jari lingkaran dalam segitiga tersebut. A. 1 C. 4 D. 7 E Diketahui garis bagi dari segitiga ABC berpotongan di titik I, jika AI memotong BC di AI 4 titik D. Jika dan keliling dari segitiga DI ABC adalah 21, tentukan panjang BC. A. 6 B. 7 D. 9 E. 10. Sebuah segitiga memiliki panjang jari-jari lingkaran luar 4 dan sebuah sudut yang besar nya 0. Dari kelima pilihan berikut, yang manakah yang pasti merupakan panjang sisi dari segitiga tersebut? B. C. 4 D. 5 E Sebuah segitiga sama sisi, ketiga titik sudutnya terletak pada lingkaran dalam segitiga sama sisi. Tentukan rasio luas kedua segitiga sama sisi tersebut. A. 1:1 :1 C. :2 D. :1 E. 4:1 5. Sebuah trapezium memiliki lingkaran luar dan kedua diagonalnya berpotongan tegak lurus. Jika salah satu diagonal memiliki panjang 6, tentukan luas dari trapezium tersebut. A. 12 B. 16 C. 18 D. 24 E Sebuah segi n beraturan A 1 A 2 A n memenuhi hubungan A 1 A 2 A = 8 A 1 A A 2. Tentukan n. A. 7 B. 8 C. 9 D. 10 E Pada sebuah segitiga siku-siku dibuat tiga buah setengah lingkaran ke arah luar dari segitiga tersebut dengan diameternya adalah ketiga sisisisi segitiga siku-siku tersebut. Jika luas dua buah setengah lingkaran pada sisi siku-siku memiliki luas 100π dan 212π, tentukan luas setengah lingkaran yang ketiga. A. 10π B. 12π C. 14π D. 16π E. 18π

5 Hal. 5 / 7 8. Dua buah lingkaran memiliki tiga buah garis singgung persekutuan. Jika jari-jari kedua lingkaran adalah 10 dan 8. Tentukan panjang salah satu garis singgung persekutuan luar dari kedua lingkaran. A. 8 B. 8 2 D. 16 E Lingkaran dalam segitiga ABC menyingung sisi BC di titik D. Tentukan panjang BD jika panjang AB, BC, CA adalah 7,5,8 berturut-turut. A. 1 2 B. 1 C. 2 D. 5 4 E Jika panjang diameter lingkaran dalam segitiga siku-siku adalah 4 dan luas segitiga tersebut adalah 0, tentukan panjang sisi miring dari segitiga siku-siku tersebut. A. 5 B. 10 C. 1 D. 15 E Dua buah lingkaran berpotongan di titik X, Y. Titik P pada segmen XY. Sebuah garis melewati P memotong kedua lingkaran di empat buah titik berbeda A, B, C, D dalam urutan tersebut (P antara B dan C). Jika AB, BP, PC memiliki panjang 6,2, berturut-turut, tentukan panjang CD. A. 9 B. 10 C. 11 D. 12 E Jika H adalah titik dari segitiga ABC dengan AH = 6 dan A = 0, tentukan panjang jarijari lingkaran luar segitiga ABC. 2 C. 2 D. 4 E Misalkan ABC adalah segitiga dengan C = 120 dan A = 20. Pilih titik D pada AB sehingga DC tegak lurus dengan BC. Diketahui AC AD = 2, tentukan panjang BD. A. 1 C. D. 4 E ABCD adalah trapezium dengan BC sejajar AD. Diketahui panjang AD = 2015, A = 50 dan D = 40. Misalkan X, Y adalah titik tengah AD dan BC. Jika XY = 2000, tentukan panjang BC. A. 995 B C D E Pada persegi ABCD dengan luas 100, diabut segitiga CDE dengan DE = CE sehingga irisan segitiga DCE dengan ABCD memiliki luas 60. Tentukan jarak dari E ke sisi CD. A. 7.5 B C. 10 D E Suatu bilangan asli n apabila dibagi 2015 akan memberikan sisa 199. Tentukan sisa pembagian apabila n dibagi 1. A. 6 B. 8 C. 10 D. 12 E Diketahui suatu bilangan asli n apabila dibagi 15 memberikan sisa dan apabila dibagi 10 memberikan sisa 8. Tentukan banyaknya bilangan asli n seperti ini dengan n 2015.

6 Hal. 6 / 7 A. 6 B. 64 C. 65 D. 66 E Dua buah bilangan asli dikatakan relatif prima jika faktor persekutuan terbesar dari kedua bilangan tersebut adalah 1. Tentukan banyaknya bilangan asli yang kurang dari 2015 dan relatif prima dengan 108. A. 667 B. 669 C. 671 D. 67 E Tentukan banyaknya bilangan asli yang kurang dari 2015 dan relatif prima dengan dengan A. 140 B. 145 C D. 14 E Misalkan X adalah himpunan semua kemungkinan sisa pembagian dari pangkat tiga suatu bilangan asli jika dibagi oleh 9. Tentukan hasil penjumlahan semua elemen di X. A. 9 B. 10 C. 11 D. 12 E Hitunglah sisa pembagian dari oleh C D. 1 E Tentukan banyaknya bilangan asli n sehingga n n n n n 5 n 1 adalah bilangan bulat A. 4 B. 6 D. 10 E Tentukan hasil penjulahan dari semua kemungkinan sisa pembagian 2 n + n oleh 9. A. 16 B. 17 C. 18 D. 19 E Jika x, y adalah bilangan ganjil, bilangan asli terbesar yang pasti habis membagi x 2 y 2 adalah B. 4 C. 6 D. 8 E Bilangan p dan p + 2 keduanya adalah bilangan prima dua digit, tentukan bilangan prima terbesar yang mungkin habis membagi p + 1. A. 1 C. D. 5 E Tentukan banyaknya pasangan bilangan asli (p, q) dengan 1 p q 100 sehingga p habis membagi q dan q + 2 habis membagi p + 2. A. 40 B. C. 90 D. 100 E Barisan a n didefinisikan dengan a 1 = 1 dan a n = FPB(a n 1, n) + 1 untuk setiap n > 1. Hitunglah a A. 5 B. 4 C. D. 2 E. 1

7 Hal. 7 / Berapakah banyanya bilangan asli dengan p dengan 1 p 200 sehingga p p adalah bilangan kuadrat sempurna. A. 100 B. 104 C. 107 D. 110 E Berapakah banyaknya pasangan bilangan bulat positif (m, n) dengan m nsedemikian sehingga m n n m dan m n m n. Keduanya adalah bilangan bulat. A. 4 B. C. 2 D. 1 E Diketahui hanya ada 1 buah pasangan bilangan asli (x, y) yang memenuhi x 2 + 4x = y 2. Tentukan nilai dari y x. A. 7 B. 6 C. 5 D. 4 E. # Selamat Bekerja #

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 21 YOGYAKARTA55281 lmnas@ugm.ac.id http://lmnas.fmipugm.ac.id

Lebih terperinci

METHODIST-2 EDUCATION EXPO 2016

METHODIST-2 EDUCATION EXPO 2016 TK/SD/SMP/SMA Methodist- Medan Jalan MH Thamrin No. 96 Medan Kota - 0 T: (+66)56 58 METHODIST- EDUCATION EXPO 06 Lomba Sains Plus Antar Pelajar Tingkat SMA se-sumatera Utara NASKAH SOAL MATEMATIKA - Petunjuk

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-25 Babak Penyisihan Tingkat SMA Minggu, 9 November 20 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab :

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab : 3 2 1. Diketahui suatu polynomial 15 A B 3C D. Berapakah koefisien dari 5 15 6 2 2 A B C D Jawab :? 2. Diberikan polinomial f(x) = x n + a 1 x n-1 + a 2 x n-2 + + a n-1 x + a n dengan koefisien a 1, a

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P. D APRIL 2008 SMA NEGERI 1 PEKANBARU Jl. Sulthan Syarif Qasim 159 Pekanbaru

Lebih terperinci

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA 1) Sebuah barisan baru diperoleh dari barisan bilangan bulat positif 1, 2, 3, 4, dengan menghilangkan bilangan kuadrat yang ada di dalam barisan tersebut.

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA PETUNJUK UNTUK PESERTA: 1. Tes bagian pertama ini terdiri dari 20 soal. 2. Waktu yang disediakan adalah

Lebih terperinci

SOAL BRILLIANT COMPETITION 2013

SOAL BRILLIANT COMPETITION 2013 PILIHAN GANDA. Pada suatu segitiga ABC, titik D berada di AC sehingga AD : DC = 4 :. Titik E berada di BC sehingga BE : EC = : 3. Titik F adalah titik perpotongan antara garis BD dan garis AE. Jika luas

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 2 YOGYAKARTA5528 lmnas@ugm.ac.id http://lmnas.fmipa.ugm.ac.id

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA 2015 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMA Minggu, 0 Oktober HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR

Lebih terperinci

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional  contact person : ALJABAR ALJABAR 1. Diberikan a 4 + a 3 + a 2 + a + 1 = 0. Tentukan a 2000 + a 2010 + 1. 2. Diberikan sistem persamaan 2010(x y) + 2011(y z) + 2012(z x) = 0 2010 2 (x y) + 2011 2 (y z) + 2012 2 (z x) = 2011 Tentukan

Lebih terperinci

Kontes Terbuka Olimpiade Matematika

Kontes Terbuka Olimpiade Matematika Kontes Terbuka Olimpiade Matematika Kontes Bulanan Januari 2017 20 23 Januari 2017 Berkas Soal Definisi dan Notasi Berikut ini adalah daftar definisi yang digunakan di dokumen soal ini. 1. Notasi N menyatakan

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 015 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 015 = 5 13 31 Banyaknya faktor

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2012 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2013 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 00 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 003 Bidang Matematika Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2009 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 01 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 0 soal isian singkat dan tes

Lebih terperinci

2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi , yaitu. c. 1 d.

2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi , yaitu. c. 1 d. Halaman: 1 1. Akar pangkat empat dari 4 adalah a. 4 b. 4 c. 4 d. 4 2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi 100 000 064, yaitu a. 10404 b. 10408 c. 10804 d. 10808 3. Banyaknya

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Waktu : 210 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-26

LOMBA MATEMATIKA NASIONAL KE-26 LOMBA MATEMATIKA NASIONAL KE-6 Babak Penyisihan Tingkat SMA Minggu, 8 November 015 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 013 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 94 + 013 = a + b 013 = 61

Lebih terperinci

Soal Babak Penyisihan MIC LOGIKA 2011

Soal Babak Penyisihan MIC LOGIKA 2011 Soal Babak Penyisihan MIC LOGIKA 2011 1. Jika adalah bilangan bulat dan angka puluhan dari adalah tujuh, maka angka satuan dari adalah... a. 1 c. 5 e. 9 b. 4 d. 6 2. ABCD adalah pesergi dengan panjang

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Rabu, 20 Nopember 2013 : 120 menit : 40 Pilihan Ganda 1D Petunjuk :

Lebih terperinci

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014 PETUNJUK UNTUK PESERTA 1. Tuliskan nama lengkap, kelas, asal sekolah, alamat sekolah lengkap dengan nomor telepon, faximile, email sekolah dan nama guru Matematika di tempat yang telah disediakan.. Tes

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

SOAL Babak Penyisihan Olimpiade Matematika ITS 2013 (7 th OMITS) Tingkst SMP Se-derajat

SOAL Babak Penyisihan Olimpiade Matematika ITS 2013 (7 th OMITS) Tingkst SMP Se-derajat SOAL Babak Penyisihan Olimpiade Matematika ITS 01 (7 th OMITS) Tingkst SMP Se-derajat SOAL PILIHAN GANDA 1) Sebuah bilangan sempurna adalah sebuah bilangan bulat yang sama dengan jumlah semua pembagi positifnya,

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n )

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n ) Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi adalah... (n 1)(n 3)(n 5)(n 013) = n(n + )(n + )(n + 01) Jawaban : 0 ( tidak

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah : 1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x=38. 38 terdiri dari 3 puluhan

Lebih terperinci

MATEMATIKA (Paket 2) Waktu : 120 Menit

MATEMATIKA (Paket 2) Waktu : 120 Menit MATEMATIKA (Paket 2) Waktu : 20 Menit (025) 77 2606 Website : Pilihlah jawaban yang paling tepat!. Hasil dari A. B. D. 8 5 8 2 2 8 2 adalah. 2. Hasil dari A. B. D. 8 adalah.. Bentuk sederhana dari A. 2

Lebih terperinci

SOAL DAN PEMBAHASAN OSN MATEMATIKA SMP 2012 TINGKAT PROVINSI (BAGIAN A : ISIAN SINGKAT)

SOAL DAN PEMBAHASAN OSN MATEMATIKA SMP 2012 TINGKAT PROVINSI (BAGIAN A : ISIAN SINGKAT) SOAL DAN PEMBAHASAN OSN MATEMATIKA SMP 2012 TINGKAT PROVINSI (BAGIAN A : ISIAN SINGKAT) BAGIAN A : ISIAN SINGKAT 1. Sebuah silinder memiliki tinggi dan volume. Luas permukaan bola terbesar yang mungkin

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika Pembahasan OSN Tingkat Provinsi Tahun 202 Jenjang SMP Bidang Matematika Bagian A : Soal Isian Singkat. Sebuah silinder memiliki tinggi 5 cm dan volume 20 cm 2. Luas permukaan bola terbesar yang mungkin

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 013 TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 013

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMP Minggu, 0 Oktober 2016 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012 Tutur Widodo Pembahasan OSK Matematika SMA 01 Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi (n 1(n 3(n 5(n 013 = n(n + (n

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika Tutur Widodo Pembahasan OSP Matematika SMA 011 Pembahasan OSN Tingkat Provinsi Tahun 011 Jenjang SMA Bidang Matematika Bagian A : Soal Isian Singkat 1. Diberikan segitiga sama kaki ABC dengan AB = AC.

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA 1. ABC adalah segitiga sama

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-26

LOMBA MATEMATIKA NASIONAL KE-26 LOMBA MATEMATIKA NASIONAL KE-26 Babak Penyisihan Tingkat SMP Minggu, 8 November HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

Pembahasan OSK Tahun 2011 Tingkat SMP Bidang Matematika

Pembahasan OSK Tahun 2011 Tingkat SMP Bidang Matematika Pembahasan OSK Tahun 011 Tingkat SMP Bidang Matematika Bagian A : Pilihan Ganda 1. Nilai dari a. 113 b. c. 91 73 1 8! 9! + 3 adalah... d. e. 71 4 Jawaban : c 1 8! 9! + 3 = 10 9 10 + 3 = 73. Menggunakan

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 004 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN

Lebih terperinci

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO DIURUTKAN BERDASARKAN TAHUN DAN DIKUMPULKAN BERDASARKAN TOPIK MATERI BILANGAN 2011 1. Jika x adalah jumlah 99 bilangan

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 006 TINGKAT PROVINSI TAHUN 005 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006 OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat, maka salah satu

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 204 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 205 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota

Lebih terperinci

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan adalah bilangan bulat genap tak negatif. n = F P B(a, b + KP K(a, b a b Solusi. Misalkan d = F P B(a, b,

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 202 TIM OLIMPIADE MATEMATIKA INDONESIA 203 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA. Tanpa mengurangi keumuman misalkan

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika Solusi Olimpiade Sains Tingkat Kabupaten/Kota 01 Bidang Matematika Oleh : Tutur Widodo 1. Karena 01 = 13 31 maka banyaknya faktor positif dari 01 adalah (1 + 1) (1 + 1) (1 + 1) = 8. Untuk mencari banyak

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2013

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2013 Pembahasan Olimpiade Matematika SM Tingkat Kabupaten Tahun 013 Oleh Tutur Widodo 1. Misalkan a dan b adalah bilangan asli dengan a > b. Jika 9 + 013 = a + b, maka nilai a b adalah... Untuk a, b 0 berlaku

Lebih terperinci

SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012

SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012 SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012 BAGIAN A : PILIHAN GANDA SOAL 1 Pernyataan yang benar diantara pernyataan-pernyataan berikut adalah : A. {Ø} Ø D. {a,b} {a, b, {{a,b}}} B. {Ø} Ø E. {a,ø}

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT PROVINSI 007 TIM OLIMPIADE MATEMATIKA INDONESIA 008 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 013/014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Rabu, 0 Nopember 013 : 10 menit : 40 Pilihan Ganda 1B Petunjuk : 1. Isikan

Lebih terperinci

Pola (1) (2) (3) Banyak segilima pada pola ke-15 adalah. A. 235 C. 255 B. 250 D Yang merupakan bilangan terbesar adalah. A. C. B. D.

Pola (1) (2) (3) Banyak segilima pada pola ke-15 adalah. A. 235 C. 255 B. 250 D Yang merupakan bilangan terbesar adalah. A. C. B. D. SOAL SELEKSI AWAL 1. Suhu dalam sebuah lemari es adalah 15 o C di bawah nol. Pada saat mati listrik suhu dalam lemari es meningkat 2 o C setiap 120 detik. Jika listrik mati selama 210 detik, suhu dalam

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat Pembahasan OSN Matematika SMA Tahun 013 Seleksi Tingkat Provinsi Tutur Widodo Bagian Pertama : Soal Isian Singkat 1. Diberikan tiga lingkaran dengan radius r =, yang saling bersinggungan. Total luas dari

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI TAHUN 2002 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : BAGIAN PERTAMA. A + B + C = ( )

Lebih terperinci

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 2006

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 2006 OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah 4. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat,

Lebih terperinci

a b c d e. 4030

a b c d e. 4030 I. Pilihan Ganda. What is last three digit non zero of 05! a. 34 b. 344 c. 444 d. 534 e. 544. If x x + = 0, find (x x ) + (x + x ) + (x + x ) + (x 3 + x 3) + + (x 05 + a. 0 b. 05 c. 400 d. 405 e. 4030

Lebih terperinci

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 015 BIDANG MATEMATIKA BAGIAN A: SOAL ISIAN SINGKAT 1. Banyak faktor persekutuan dari 1515 dan 530 yang merupakan bilangan genap positip

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2012 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

PENGERJAAN HITUNG BILANGAN BULAT

PENGERJAAN HITUNG BILANGAN BULAT M O D U L 1 PENGERJAAN HITUNG BILANGAN BULAT Standar Kompetensi : Melakukan operasi hitung bilangan bulat dalam pemecahan masalah Kompetensi Dasar : 1. Menggunakan sifat-sifat operasi hitung termasuk operasi

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 200 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 200

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 009 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 009 Bagian

Lebih terperinci

C. B dan C B. A dan D

C. B dan C B. A dan D 1. Perhatikan Himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = {x < x 11, x bilangan ganjil} C = {semua faktor dari 12} D = {bilangan genap antara 2 dan 14} Himpunan di atas yang ekuivalen

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota

Lebih terperinci

PEMANTAPAN UJIAN NASIONAL Kerjakan dengan sungguh-sungguh dengan kejujuran hati!

PEMANTAPAN UJIAN NASIONAL Kerjakan dengan sungguh-sungguh dengan kejujuran hati! PEMANTAPAN UJIAN NASIONAL 203 Kerjakan dengan sungguh-sungguh dengan kejujuran hati!. Hasil dari (-5 7) : 4 x (-5) + 8 adalah. A. -26 B. -23 C. 23 D. 26 2. Perbandingan banyak kelereng Taris dan Fauzan

Lebih terperinci

NO SOAL PEMBAHASAN 1

NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : D49 Hasil dari 5 + [( ) 4] adalah... Urutan pengerjaan operasi hitung A. 3 Operasi hitung Urutan pengerjaan B. 3 Dalam kurung C. 3 Pangkat ; Akar D. 3 Kali ; Bagi

Lebih terperinci

MATEMATIKA (Paket 1) Waktu : 120 Menit

MATEMATIKA (Paket 1) Waktu : 120 Menit MATEMATIKA (Paket ) Waktu : 0 Menit (0) 77 0 Website : Pilihlah jawaban yang paling tepat!. Hasil dari 0 : 7 + ( ) adalah.... 0 0. Agus mempunyai sejumlah kelereng, diberikan kepada Rahmat, bagian diberikan

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3 Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

(a) 32 (b) 36 (c) 40 (d) 44

(a) 32 (b) 36 (c) 40 (d) 44 Halaman:. Jika n = 8, maka n0 n bernilai... (a) kurang dari 00 (b) (d) lebih dari 00. Penumpang suatu pesawat terdiri dari anak-anak dari berbagai negara, 6 orang dari Indonesia yang termasuk dari anak-anak

Lebih terperinci

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP Lingkaran & Garis Singgung A. Unsur-Unsur Lingkaran Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap satu titik tetap yang disebut titik pusat lingkaran. Lambang lingkaran dengan

Lebih terperinci

MATEMATIKA EBTANAS TAHUN 1993

MATEMATIKA EBTANAS TAHUN 1993 MATEMATIKA EBTANAS TAHUN 99 EBT-SMP-9-0 Ditentukan A = {v, o, k, a, l} ; B = {a, i, u, e, o} Diagram yang menyatakan hal tersebut di atas A. B. v o u v o i a k u k l I l a e v o u v o u a k a k l e l i

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMP/MTs TAHUN PELAJARAN 2008/2009

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMP/MTs TAHUN PELAJARAN 2008/2009 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMP/MTs TAHUN PELAJARAN 2008/2009 1. Hasil dari ( 18 + 30): ( 3 1) adalah. A. -12 B. -3 C. 3 D.12 BAB I BILANGAN BULAT dan BILANGAN PECAHAN ( 18 + 30): ( 3 1) = 12

Lebih terperinci

PEMBAHASAN SOAL OSN TK. KOTA/ KABUPATEN 2014 MATEMATIKA SMP BAGIAN A: PILIHAN GANDA

PEMBAHASAN SOAL OSN TK. KOTA/ KABUPATEN 2014 MATEMATIKA SMP BAGIAN A: PILIHAN GANDA email: koniciwa7@yahoo.co.id PEMBAHASAN SOAL OSN TK. KOTA/ KABUPATEN 0 MATEMATIKA SMP BAGIAN A: PILIHAN GANDA. Sepuluh orang guru akan ditugaskan mengajar di tiga sekolah,yakni sekolah A, B, dan C, berturut

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B5 SMP N Kalibagor Hasil dari 7 ( ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. 7 Pangkat ; Akar D.

Lebih terperinci

Pembahasan Simak UI Matematika Dasar 2012

Pembahasan Simak UI Matematika Dasar 2012 Pembahasan Simak UI Matematika Dasar 2012 PETUNJUK UMUM 1. Sebelum mengerjakan ujian, periksalah terlebih dulu, jumlah soal dan nomor halaman yang terdapat pada naskah soal. Naskah soal ini terdiri dari

Lebih terperinci

Petunjuk Pengerjaan soal

Petunjuk Pengerjaan soal Petunjuk Pengerjaan soal 1. Berdoalah sebelum mengerjakan soal 2. Gunakan pensil 2B untuk mengisi lembar jawab komputer. Tulis nama, no peserta, dan asal sekolah pada lembar jawab yang tersedia. 4. Telitilah

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci

UJIAN NASIONAL SMP/MTs TAHUN PELAJARAN 2004/2005

UJIAN NASIONAL SMP/MTs TAHUN PELAJARAN 2004/2005 UJIAN NASIONAL SMP/MTs TAHUN PELAJARAN 004/005 Mata Pelajaran : MATEMATIKA Hari/Tanggal : RABU, 8 JUNI 005 Waktu : 0 MENIT PETUNJUK UMUM. Periksa dan bacalah soal-soal sebelum kamu menjawab. Tulis nomor

Lebih terperinci

ENGLISH MEDIUM OF INSTRUCTION. Fakultas Keguruan dan Ilmu Pendidikan - Universitas Jember. By: Risky Cahyo Purnomo ( )

ENGLISH MEDIUM OF INSTRUCTION. Fakultas Keguruan dan Ilmu Pendidikan - Universitas Jember. By: Risky Cahyo Purnomo ( ) ENGLISH MEDIUM OF INSTRUCTION Fakultas Keguruan dan Ilmu Pendidikan - Universitas Jember By: Risky Cahyo Purnomo (110210101007) Suci Rahmawati (110210101076) SMART SOLUTION 0.1 Number Theory 0.1.1 Exercise

Lebih terperinci

MATEMATIKA EBTANAS TAHUN 1992

MATEMATIKA EBTANAS TAHUN 1992 MATEMATIKA EBTANAS TAHUN 99 EBT-SMP-9-0 Diketahui: A = {m, a, d, i, u, n} dan B = {m, a, n, a, d, o} Diagram Venn dari kedua himpunan di atas A. m a d o a m o i e e I d u a a u n e m i d o m i d a u n

Lebih terperinci

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN / KOTA TAHUN 2011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN / KOTA TAHUN 2011 BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN / KOTA TAHUN 2011 KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDID KAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA BIDANG STUDI

Lebih terperinci