KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama"

Transkripsi

1 KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika Halaman dari 4 halaman Disusun oleh : Raja Octovin PD

2 Matematikawan August de Morgan menghabiskan seluruh usianya pada tahun 800-an Pada tahun terakhir dalam masa hidupnya dia mengatakan bahwa: Dulu aku berusia x tahun pada tahun x Pada tahun berapa ia dilahirkan? Lima ekor kambing memakan rumput seluas 5 kali ukuran lapangan bola dalam waktu 5 hari Berapa harikah yang dibutuhkan oleh ekor kambing untuk menghabiskan rumput seluas kali ukuran lapangan bola? Budi berlari tiga kali lebih cepat dari kecepatan Iwan berjalan kaki Misalkan Iwan, yang lebih cerdas dari Budi menyelesaikan ujian pada pukul :00 dan mulai berjalan pulang Budi menyelesaikan ujian pada pukul : dan berlari mengejar Iwan Pada pukul berapakah Budi tepat akan menyusul Iwan? 4 Misalkan a dan b bilangan real berbeda sehingga a a + 0 b + = b b + 0a Tentukanlah nilai b a 5 Berapakah banyaknya digit ? 6 Misalkan 00 a = K+ dan 5 00 bilangan bulat yang nilainya paling dekat dengan 00 b = K a b Tentukan 7 Suatu persegi panjang berukuran 8 kali mempunyai titik pusat yang sama dengan suatu lingkaran berjari-jari Berapakah luas daerah irisan antara persegi panjang dan lingkaran tersebut? 8 Masing-masing dari kelima pernyataan berikut bernilai benar atau salah (a) pernyataan (c) dan (d) keduanya benar Halaman dari 4 halaman

3 (b) pernyataan (d) dan (e) tidak keduanya salah (c) pernyataan (a) benar (d) pernyataan (c) salah (e) pernyataan (a) dan (c) keduanya salah Berapakah banyak diantara kelima pernyataan di atas yang benar? 9 Misalkan N adalah bilangan bulat terkecil yang bersifat: bersisa jika dibagi 5, bersisa jika dibagi oleh 7, dan bersisa 4 jika dibagi 9 Berapakah hasil penjumlahan digitdigit N? 0 Berapakah hasil perkalian K? 4 00 Untuk menentukan wakilnya dalam cabang lari 0 m gawang putra, sebuah SMU mengadakan seleksi yang diikuti 5 orang siswa Dalam seleksi tersebut diadakan tiga kali lomba yang pada setiap lomba, pelari tercepat diberi nilai 5, sedangkan peringkat di bawahnya berturut-turut mendapat nilai,,, Tidak ada dua pelari yang menempati peringkat yang sama Jika pemenang seleksi diberikan kepada yang nilai totalnya paling tinggi pada ketiga lomba, berapakah nilai terendah yang mungkin dicapai oleh pemenang seleksi? Misalkan a, b, c, d, e, f, g, h, i menyatakan bilangan-bilangan bulat positif berbeda yang kurang dari atau sama dengan sembilan Jika jumlah setiap bilangan dalam setiap lingkaran sama, berapakah nilai a + d + g? Halaman dari 4 halaman

4 Kuadrat sebuah bilangan bulat bila dibagi dengan 9 memberikan suatu bilangan prima dan sisa pembagian 9 Berapakah bilangan prima yang dimaksud? 4 Dari sembilan orang siswa akan dibentuk kelompok, masing-masing beranggota tiga orang Berapa banyaknya cara membentuk kelompok ini? 5 Dalam sebuah kotak terdapat 5 bola merah dan 0 bola putih Jika diambil dua bola bersamaan, berapakah peluang memperoleh dua bola berwarna sama? 6 Pada segitiga ABC, titik F membagi sisi AC dalam perbandingan : Misalkan G titik tengah BF dan E titik perpotongan antara sisi BC dengan AG Berapakah perbandingan sisi BC yang terbagi oleh titik E? 7 Dalam suatu pertemuan terjadi 8 jabat tangan Setiap dua orang saling berjabat tangan paling banyak sekali Berapakah banyak orang minimum yang hadir dalam pertemuan tersebut? 8 Di antara lima orang gadis, Arinta, Elsi, Putri, Rita, dan Venny, dua orang memakai rok dan tiga orang memakai celana panjang Arinta dan Putri memakai jenis pakaian yang sama Jenis pakaian Putri dan Elsi berbeda, demikian pula dengan Elsi dan Rita Kedua gadis yang memakai rok adalah 9 Barisan,, 5, 6, 7, 8, 0, adalah barisan terdiri dari semua bilangan asli yang bukan kuadrat atau pangkat tiga bilangan bulat Suku ke-50 dalam barisan adalah 0 Nanang mencari semua bilangan empat digit yang selisihnya dengan jumlah keempat digitnya adalah 007 Tentukan semua bilangan yang ditemukan Nanang Gaji David 0% lebih banyak dari gaji Andika Ketika Andika memperoleh kenaikan gaji, gajinya menjadi 0% lebih banyak dari gaji David Persentase kenaikan gaji Andika adalah Halaman 4 dari 4 halaman

5 Banyak pasangan bilangan bulat positif ( x, y) yang memenuhi persamaan x + 5y = 50 adalah Jika N = K9900, maka tiga angka pertama N adalah 4 Jika a dan b dua bilangan asli memenuhi a b 0 sehingga a b bilangan rasional, maka a + b bernilai 5 Keliling sebuah segitiga sama sisi adalah s Misalkan Q adalah sebuah titik di dalam segitiga tersebut Jika jumlah jarak dari Q ke ketiga sisi segitiga adalah p, nyatakanlah p dalam s 6 Empat buah titik berbeda terletak pada sebuah garis Jarak antara sebarang dua titik dapat diurutkan menjadi barisan, 4, 5, k, 9, 0 Maka k = 7 Sebuah kelompok terdiri dari 005 anggota Setiap anggota memiliki rahasia Setiap anggota dapat mengirim surat kepada anggota lain manapun untuk menyampaikan SATU rahasia yang dipegangnya Banyaknya surat yang perlu dikirim agar semua anggota kelompok mengetahui seluruh rahasia adalah 8 Sebuah kelompok terdiri dari 005 anggota Setiap anggota memiliki rahasia Setiap anggota dapat mengirim surat kepada anggota lain manapun untuk menyampaikan SELURUH rahasia yang dipegangnya Banyaknya surat yang perlu dikirim agar semua anggota kelompok mengetahui seluruh rahasia adalah 9 Himpunan A dan B saling lepas dan A B = {,,,4,5,6,7,8,9 } Hasil perkalian semua unsur A sama dengan jumlah semua unsur B Unsur terkecil B adalah Halaman 5 dari 4 halaman

6 0 Bentuk sederhana dari ( )( )( 4 ) K( 00 ) ( K( 00 + adalah Bilangan n terbesar sehingga n 8 membagi adalah Garis AB dan CD sejajar dan berjarak 4 satuan Misalkan AD memotong BC di P di antara kedua garis Jika AB = 4 dan CD =, berapa jauh P dari garis CD? Tentukan hasil penjumlahan semua bilangan prima yang memenuhi sifat: satu lebihnya dari suatu bilangan kelipatan 5 dan satu kurangnya dari bilangan kelipatan 6 4 Berapakah banyak tripel bilangan bulat positif ( x y, z), memenuhi x + y + z = 99? 5 Tentukan himpunan semua bilangan asli n sehingga ( n )( n ) n habis dibagi 6 6 Pada sebuah trapesium dengan tinggi 4, kedua diagonalnya saling tegak lurus Jika salah satu diagonal tersebut panjangnya 5, berapakah luas trapesium tersebut? 7 Dua bilangan real y x + y? x + x y y x, memenuhi ( + )( + + ) = Berapakah nilai 8 Pada suatu persegi ABCD, terdapat titik E di dalam persegi Berapakah peluang AEB sudut lancip? 9 Sepuluh tim mengikuti turnamen sepakbola Setiap tim bertemu satu kali dengan setiap tim lainnya Pemenang setiap pertandingan memperoleh nilai dan yang kalah memperoleh nilai 0 Untuk pertandingan yang berakhir seri, kedua tim memperoleh nilai masing-masing Di akhir turnamen, jumlah nilai seluruh tim adalah 4 Banyaknya pertandingan yang berakhir seri adalah Halaman 6 dari 4 halaman

7 40 Diberikan tiga bilangan positif x, y, z semuanya berbeda Jika y x z = x + y z = x y, tentukan nilai y x Nilai sin 75 cos 75 sama dengan 4 Jika p = dan q = , maka ( p + q) + 4 pq = 4 Sebuah keluarga terdiri dari ayah, ibu, dan beberapa anak Rata-rata umur keluarga tersebut adalah 8 tahun Tanpa ayah yang berumur 8 tahun, rata-rata umur keluarga tersebut adalah 4 tahun Berapakah banyak anak dalam keluarga tersebut? 44 Ketiga titik pusat lingkaran adalah berbeda tetapi terletak pada satu garis Dua lingkaran pada gambar menyinggung tali busur AB yang panjangnya 4, tentukan luas yang diarsir 45 Tentukan jarak titik pusat lingkaran luar dan lingkaran dalam suatu segitiga yang panjang sisi-sisinya adalah 6, 8, dan 0 46 Jika + + = 0 a b c a, berapakah nilai ( a + b) + ( b + c) + ( c + a) b b 47 Jika f ( x) x x 9 8 =, berapakah nilai f + f + f + K + f Misalkan a, b, c adalah bilangan bulat memenuhi a + b + c a + b 5 + =, hitung nilai c Halaman 7 dari 4 halaman

8 49 Suatu bilangan tujuh digit sebut saja N semuanya digitnya berbeda Maka N tidak mungkin mengandung digit 50 Hitunglah nilai ( ) + ( 4 ) + ( 4 5 ) + K+ ( ) K Suatu kertas akan dibuat menjadi dadu seperti gambar Masih ada tiga kotak kosong yang akan diisi,, atau 4 Jika jumlah setiap sisi berhadapan adalah 7, berapakah nilai x + y? 5 Jika x 5x + = 0, hitunglah nilai 6 0 x + x + x 6 5 Tentukan bilangan tiga digit abc sehingga bca + cab + bac + cba + acb = Bilangan asli A, B, C, D memenuhi D B 5 4 A = B, C = D, A = C 9 Tentukan nilai 55 Tentukan nilai K Tentukan jumlah = k 4 k + 5 k k + k 57 Jika a ab = 6 dan ab b = 8, tentukanlah nilai a + b 58 Jika p dan p + adalah bilangan prima besar dari, tentukan sisa p dibagi 6 Halaman 8 dari 4 halaman

9 59 Jika bilangan lima digit a679 b adalah kelipatan 7, tentukan nilai a dan b 60 Suatu konferensi dihadiri oleh 47 tamu Ada beberapa tamu pria dan beberapa tamu wanita Tamu pria pertama kenal 6 tamu wanita, tamu pria kedua kenal 7 tamu wanita, dan seterusnya hingga tamu wanita pria terakhir kenal seluruh tamu wanita Tentukan banyaknya tamu wanita yang dikenal tamu pria terakhir 6 Apakah jumlah 984 bilangan asli berurutan dapat menjadi suatu bilangan kuadrat? 6 Tentukanlah nilai Jika α, β, γ adalah akar-akar persamaan kubik x x = 0, tentukanlah nilai + α + β + γ + + α β γ 64 Tentukanlah nilai real x sehingga x = x + x x 65 Buktikan bahwa n + n dan n + n tidak memiliki faktor persekutuan lebih besar dari 66 Buktikan K + habis dibagi a + b + c = 0 a + b ab b + c c + a ( a + b c ) + ( b + c a ) + ( c + a b ) =? bc ca 68 Seseorang mengambil sebuah kartu dari 4 kartu yang bernomor,,, 4, dari sebuah kotak kemudian mencatatnya dan meletakkannya kembali Dia melakukan hal tersebut Halaman 9 dari 4 halaman

10 sebanyak 4 kali Jika pada akhir didapatkan jumlah nomor-nomor kartu adalah, berapakah peluang bahwa kartu yang terambil selalu? 69 Tentukan himpunan penyelesaian ( x x + ) ( x x + ) + = x 70 Jumlah dari rata-rata aritmatik himpunan A dan rata-rata aritmatik himpunan B adalah 500 Himpunan A dan B terdiri dari bilangan-bilangan asli berurutan Jika A B = { 005}, tentukan kemungkinan unsur himpunan B yang terbesar 7 Tentukan semua segitiga yang sisi-sisinya bilangan bulat dimana nilai keliling dan luasnya sama 7 Tentukan nilai K 7 Nyatakan jawaban soal no 7 dalam bentuk a + c b, dimana a, b, c bilangan bulat 74 Diketahui n adalah semua bilangan asli tidak lebih dari 6 Suatu bilangan enam digit, sebut saja X, jika dikali jelas digit-digitnya sama Jika X dikali, digit-digitnya sama, namun urutannya diubah Jika X dikali, digit-digitnya juga sama, namun urutannya diubah Hingga jika X dikali n, maka digit-digitnya sama, namun urutannya diubah Tentukan X 75 Tunjukkan K + > K Halaman 0 dari 4 halaman

11 76 Misalkan x menyatakan bilangan bulat terbesar yang tidak lebih dari x, tentukan m m agar m = 77 Misalkan x menyatakan bilangan bulat terbesar yang tidak lebih dari x, tentukan semua penyelesaian positif dari x + = 0 x 78 Untuk x i = i 0 i = i + 0 x, hitung i x x i 79 ABC adalah segitiga siku-siku dengan sudut A 00 dan panjang AB = BC Garis bagi sudut B memotong sisi AC di D Tunjukkan BD + AD = BC 80 Bilangan prima berbentuk 000 memiliki n digit Tentukan semua n yang memungkinkan 8 Perhatikan gambar Untuk setiap i,,,4 ( A = A ) bidang B BB = 5, maka OB i sejajar A A i i+ Tentukan perbandingan luas 8 Perhatikan gambar Halaman dari 4 halaman

12 Jika panjang AB = CD =, tentukan panjang AC 8 Diketahui f ( ) = 008 dan f ( ) f ( ) + f ( ) + + f ( n) = n f ( n) f ( 008) + f 84 Jika ( ) ( x) f x + = dan f ( ) =, hitung ( 008) f ( x) + K Tentukan f 85 Misalkan segitiga ABC adalah suatu segitiga sehingga BC AB + BC = AB BC AC Tentukan rasio A : C 86 Suatu paket soal terdiri dari 8 soal essay disiapkan untuk suatu ujian Setiap siswa hanya menerima soal Tetapi, tidak ada dua siswa yang menerima lebih dari satu soal yang sama Berapakah jumlah siswa paling banyak? 87 Tentukan semua pasangan bilangan rasional ( b) a, memenuhi a + b = + 88 Misalkan p ( n) menyatakan hasil kali digit-digit n Tentukan semua nilai n yang memenuhi ( n) = n 005 p 89 Tentukan semua pasangan bilangan real ( x, y) yang memenuhi x x y + y = 4 = ( x y) ( x + y) p Tentukan semua bilangan bulat positif p agar juga bulat positif p 5 9 Tentukan semua ( x y, z), memenuhi Halaman dari 4 halaman

13 x y z + 4 = y + 4 = z + 4 = x + 4x z + 4y x + 4z y 9 Misalkan A adalah jumlah digit-digit Tentukanlah jumlah digit-digit B dan B adalah jumlah digit-digit A 9 Pada suatu kompetisi matematika, tiga soal, yaitu A, B, C, diberikan Di antara semua peserta, ada 5 peserta yang paling sedikit menyelesaikan satu soal Dari semua peserta yang tidak menyelesaikan A, banyak peserta yang menyelesaikan B adalah dua kali yang menyelesaikan C Banyak peserta yang menyelesaikan A saja adalah satu lebih banyak dari peserta yang mengerjakan soal A dan paling sedikit satu yang lainnya Dari semua yang menyelesaikan satu soal saja, setengahnya menyelesaikan A Berapa peserta yang menyelesaikan B saja? 94 Tentukan bilangan terbesar yang merupakan hasil kali bilangan-bilangan asli yang jumlahnya Tentukan batas-batas x sehingga 4x ( + x ) < x + 9? 96 Tentukan semua penyelesaian cos θ + cos θ + cos θ = 97 Jika x = + dan = y, buktikan y x x = y Tentukan semua bilangan prima p sehingga persamaan p + = x p + = y memiliki penyelesaian bilangan bulat ( x, y) Halaman dari 4 halaman

14 99 Tentukan penyelesaian ( x, y) bilangan bulat memenuhi ( x y ) = + 6y 00 Suatu segibanyak dapat dibagi menjadi 00 persegi panjang, tetapi tidak dapat dibagi menjadi 99 persegi panjang Tunjukkan bahwa segibanyak tersebut tak dapat dibagi 99 segitiga Halaman 4 dari 4 halaman

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

1 [ABC] = 3 1 X = [AFG] 1 X [CGB] = 3

1 [ABC] = 3 1 X = [AFG] 1 X [CGB] = 3 Solusi Olimpiade Matematika Kota/Kabupaten 006 Bagian Pertama. (Jawaban : C) Tiga bilangan prima pertama yang lebih besar dari 0 adalah 3, 9 dan 6. 3 + 9 + 6 = 73 Jumlah tiga bilangan prima pertama yang

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 006 TINGKAT PROVINSI TAHUN 005 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 004 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA 2015 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional  contact person : ALJABAR ALJABAR 1. Diberikan a 4 + a 3 + a 2 + a + 1 = 0. Tentukan a 2000 + a 2010 + 1. 2. Diberikan sistem persamaan 2010(x y) + 2011(y z) + 2012(z x) = 0 2010 2 (x y) + 2011 2 (y z) + 2012 2 (z x) = 2011 Tentukan

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat Pembahasan OSN Matematika SMA Tahun 013 Seleksi Tingkat Provinsi Tutur Widodo Bagian Pertama : Soal Isian Singkat 1. Diberikan tiga lingkaran dengan radius r =, yang saling bersinggungan. Total luas dari

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2013 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 00 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 003 Bidang Matematika Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika. Tingkat SMK se DIY

Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika. Tingkat SMK se DIY Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika Tingkat SMK se DIY Disusun oleh : DWI LESTARI, M.Sc. Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 200 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

OLIMPIADE MATEMATIKA NASIONAL SELEKSI TINGKAT KABUPATEN/KOTA TAHUN 2006

OLIMPIADE MATEMATIKA NASIONAL SELEKSI TINGKAT KABUPATEN/KOTA TAHUN 2006 BAGIAN PERTAMA OLIMPIADE MATEMATIKA NASIONAL SELEKSI TINGKAT KABUPATEN/KOTA TAHUN 006 Pilih satu jawaban yang paling benar. Dalam hal lebih dari satu jawaban yang benar, pilih jawaban yang paling baik..

Lebih terperinci

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab :

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab : 3 2 1. Diketahui suatu polynomial 15 A B 3C D. Berapakah koefisien dari 5 15 6 2 2 A B C D Jawab :? 2. Diberikan polinomial f(x) = x n + a 1 x n-1 + a 2 x n-2 + + a n-1 x + a n dengan koefisien a 1, a

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2009 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

METHODIST-2 EDUCATION EXPO 2016

METHODIST-2 EDUCATION EXPO 2016 TK/SD/SMP/SMA Methodist- Medan Jalan MH Thamrin No. 96 Medan Kota - 0 T: (+66)56 58 METHODIST- EDUCATION EXPO 06 Lomba Sains Plus Antar Pelajar Tingkat SMA se-sumatera Utara NASKAH SOAL MATEMATIKA - Petunjuk

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

Soal Babak Penyisihan MIC LOGIKA 2011

Soal Babak Penyisihan MIC LOGIKA 2011 Soal Babak Penyisihan MIC LOGIKA 2011 1. Jika adalah bilangan bulat dan angka puluhan dari adalah tujuh, maka angka satuan dari adalah... a. 1 c. 5 e. 9 b. 4 d. 6 2. ABCD adalah pesergi dengan panjang

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2006 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2007

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2006 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2007 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 006 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 007 Bidang Matematika Waktu : 3,5 Jam DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

SOAL DAN SOLUSI PENYISIHAN KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PENYISIHAN KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PENYISIHAN KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 011 (90 menit) 1. Misalkan 1995 a. ( x) x 9 1 1995. Maka nilai dari... x 9 3... 1995 1995 b. c. d. e. 3 4 3 4 ( x) 9 9 x x 3 (1

Lebih terperinci

1. Diketahui fungsi : f mempunyai sifat f x 1 1 f x untuk setiap x. Jika f 2. 2, maka nilai fungsi f B. 2 C. 3 D E.

1. Diketahui fungsi : f mempunyai sifat f x 1 1 f x untuk setiap x. Jika f 2. 2, maka nilai fungsi f B. 2 C. 3 D E. f x f mempunyai sifat f x f x untuk setiap x. Jika f, maka nilai fungsi f 06. Diketahui fungsi : 06 06. Perhatikan gambar berikut ini! Berapakah ukuran luas daerah yang diarsir jika diketahui ukuran luas

Lebih terperinci

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO DIURUTKAN BERDASARKAN TAHUN DAN DIKUMPULKAN BERDASARKAN TOPIK MATERI BILANGAN 2011 1. Jika x adalah jumlah 99 bilangan

Lebih terperinci

KUMPULAN SOAL-SOAL OMITS

KUMPULAN SOAL-SOAL OMITS KUMPULAN SOAL-SOAL OMITS SOAL Babak Penyisihan Olimpiade Matematika ITS 2011 (OMITS 11) Tingkst SMP Se-derajat BAGIAN I.PILIHAN GANDA 1. Berapa banyak faktor positif/pembagi dari 2011? A. 1 B. 2 C. 3 D.

Lebih terperinci

Soal Komat DKI Jakarta Klas 10 1 x

Soal Komat DKI Jakarta Klas 10 1 x . Jika 6 8 = + + maka nilai dari Soal Komat DKI Jakarta Klas + adalah: y z. Jika + + =, maka nilai dari y+ z + z + y 6 - y z + + =. y+ z + z + y. Nilai yang memenuhi dari < adalah:..

Lebih terperinci

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 2 YOGYAKARTA5528 lmnas@ugm.ac.id http://lmnas.fmipa.ugm.ac.id

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 015 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 015 = 5 13 31 Banyaknya faktor

Lebih terperinci

PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA

PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA 1. Sebelum mengerjakan soal, telitilah dahulu jumlah dan nomor halaman yang terdapat pada naskah soal. Pada naskah soal ini terdiri dari 30 soal pilihan ganda

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 21 YOGYAKARTA55281 lmnas@ugm.ac.id http://lmnas.fmipugm.ac.id

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2012 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 013 TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 013

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-25 Babak Penyisihan Tingkat SMA Minggu, 9 November 20 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi , yaitu. c. 1 d.

2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi , yaitu. c. 1 d. Halaman: 1 1. Akar pangkat empat dari 4 adalah a. 4 b. 4 c. 4 d. 4 2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi 100 000 064, yaitu a. 10404 b. 10408 c. 10804 d. 10808 3. Banyaknya

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 007

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA PETUNJUK UNTUK PESERTA: 1. Tes bagian pertama ini terdiri dari 20 soal. 2. Waktu yang disediakan adalah

Lebih terperinci

MATEMATIKA EBTANAS TAHUN 2002

MATEMATIKA EBTANAS TAHUN 2002 MATEMATIKA EBTANAS TAHUN UAN-SMP-- Notasi pembentukan himpunan dari B = {, 4, 9} adalah A. B = { kuadrat tiga bilangan asli yang pertama} B = { bilangan tersusun yang kurang dari } C. B = { kelipatan bilangan

Lebih terperinci

Kontes Terbuka Olimpiade Matematika

Kontes Terbuka Olimpiade Matematika Kontes Terbuka Olimpiade Matematika Kontes Bulanan Januari 2017 20 23 Januari 2017 Berkas Soal Definisi dan Notasi Berikut ini adalah daftar definisi yang digunakan di dokumen soal ini. 1. Notasi N menyatakan

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n )

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n ) Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi adalah... (n 1)(n 3)(n 5)(n 013) = n(n + )(n + )(n + 01) Jawaban : 0 ( tidak

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Waktu : 210 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika Tutur Widodo Pembahasan OSP Matematika SMA 011 Pembahasan OSN Tingkat Provinsi Tahun 011 Jenjang SMA Bidang Matematika Bagian A : Soal Isian Singkat 1. Diberikan segitiga sama kaki ABC dengan AB = AC.

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI SESI III (ISIAN SINGKAT DAN ESSAY) WAKTU : 180 MENIT ============================================================

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMA Minggu, 0 Oktober HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR

Lebih terperinci

C. 30 Januari 2001 B. 29 Januari 2001

C. 30 Januari 2001 B. 29 Januari 2001 1. Notasi pembentuk himpunan dari B = {1, 4, 9} adalah... A. B = {x x kuadrat tiga bilangan asli yang pertama} B. B = {x x bilangan tersusun yang kurang dari 10} C. B = {x x kelipatan bilangan 2 dan 3

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 01 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 0 soal isian singkat dan tes

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2012 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 01 BAGIAN

Lebih terperinci

Menemukan Dalil Pythagoras

Menemukan Dalil Pythagoras Dalil Pythagoras Menemukan Dalil Pythagoras 1. Perhatikan gambar di bawah ini. Segitiga ABC adalah sebuah segitiga siku-siku di B dengan sisi miring AC. Jika setiap petak luasnya 1 satuan, tentukan luas

Lebih terperinci

P-M01A LOMBA OLIMPIADE MATEMATIKA TINGKAT SD/MI KECAMATAN CILEUNGSI TAHUN 2015

P-M01A LOMBA OLIMPIADE MATEMATIKA TINGKAT SD/MI KECAMATAN CILEUNGSI TAHUN 2015 LOMBA OLIMPIADE MATEMATIKA TINGKAT SD/MI KECAMATAN CILEUNGSI TAHUN 2015 PEMERINTAH KABUPATEN BOGOR DINAS PENDIDIKAN UPT VII KECAMATAN CILEUNGSI Jl. Camat Enjan No. 05 Des. Cileungsi Kec. Cileungsi Kab.

Lebih terperinci

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI Oleh : Himmawati P.L Soal matematika yang diujikan di sekolah-sekolah maupun di Ujian Nasional pada umumnya dapat diselesaikan dengan cara-cara biasa.

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 00 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 003 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT PROVINSI 007 TIM OLIMPIADE MATEMATIKA INDONESIA 008 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA 1. ABC adalah segitiga sama

Lebih terperinci

MATEMATIKA SMP/MTs 1 C Hasil dari adalah... adalah... C. 31 D. 31 A. 21 B Hasil dari. b adalah D. 5

MATEMATIKA SMP/MTs 1 C Hasil dari adalah... adalah... C. 31 D. 31 A. 21 B Hasil dari. b adalah D. 5 C0. Hasil dari 6 6 6 6. Hasil dari 5: 5 ( ). Hasil dari 4 : 4 5 5 8 8 4 4 5 5 4. Sebuah taman berbentuk persegi panjang luasnya dengan skala : 00, maka luas taman pada gambar 800 m. Jika taman tersebut

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 004 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota

Lebih terperinci

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA 1) Sebuah barisan baru diperoleh dari barisan bilangan bulat positif 1, 2, 3, 4, dengan menghilangkan bilangan kuadrat yang ada di dalam barisan tersebut.

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 003 TIM OLIMPIADE MATEMATIKA INDONESIA 004 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 014

Lebih terperinci

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah : 1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x=38. 38 terdiri dari 3 puluhan

Lebih terperinci

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Tim Pembahas : Th. Widyantini Untung Trisna Suwaji Wiworo Choirul Listiani Estina Ekawati Nur Amini Mustajab PPPPTK Matematika Yogyakarta

Lebih terperinci

NASKAH SOAL PENYISIHAN MATHEMATICS BATTLE CHALLENGE GOES TO SCHOOL 2016

NASKAH SOAL PENYISIHAN MATHEMATICS BATTLE CHALLENGE GOES TO SCHOOL 2016 NASKAH SOAL PENYISIHAN MATHEMATICS BATTLE CHALLENGE GOES TO SCHOOL 2016 HIMPUNAN MAHASISWA MATEMATIKA FMIPA UNIVERSITAS PADJADJARAN 2016 PETUNJUK DAN PERATURAN BABAK PENYISIHAN MBCGS 2016 1. Sebelum mengerjakan

Lebih terperinci

=============================================================

============================================================= OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 00 BIDANG MATEMATIKA NON TEKNOLOGI SESI II (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 0 MENIT ============================================================

Lebih terperinci

PEMABAHASAN SOAL-SOAL OLIMPIADE SAINS NASIONAL SMP TAHUN 2007 MATA PELAJARAN MATEMATIKA

PEMABAHASAN SOAL-SOAL OLIMPIADE SAINS NASIONAL SMP TAHUN 2007 MATA PELAJARAN MATEMATIKA PEMABAHASAN SOAL-SOAL OLIMPIADE SAINS NASIONAL SMP TAHUN 007 MATA PELAJARAN MATEMATIKA OLEH: ROHADI USMAN M, S.Pd GURU SMP NEGERI 6 WATAMPONE KAB. BONE SOAL PILIHAN GANDA. Urutan bilangan-bilangan 5555,5,

Lebih terperinci

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika Solusi Olimpiade Sains Tingkat Kabupaten/Kota 01 Bidang Matematika Oleh : Tutur Widodo 1. Karena 01 = 13 31 maka banyaknya faktor positif dari 01 adalah (1 + 1) (1 + 1) (1 + 1) = 8. Untuk mencari banyak

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 015 TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 015

Lebih terperinci

didapat !!! BAGIAN Disusun oleh :

didapat !!! BAGIAN Disusun oleh : SELEKSI OLIMPIADE TINGKAT PROVINSI 2012 TIM OLIMPIADE MATEMATIKAA INDONESIA 2013 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 2012

Lebih terperinci

1. Pada operasi di bawah, tiap titik mewakili satu angka tertentu. Bilangan 3 angka yang ada pada baris IV adalah... A) 830 C) 622 B) 720 D) 525

1. Pada operasi di bawah, tiap titik mewakili satu angka tertentu. Bilangan 3 angka yang ada pada baris IV adalah... A) 830 C) 622 B) 720 D) 525 1. Pada operasi di bawah, tiap titik mewakili satu angka tertentu Kompetisi Matematika PASIAD Se-Indonesia IV + 1. I.. II.... III.... IV... V Bilangan angka ang ada pada baris IV adalah... 80 6 B) 70 D)

Lebih terperinci

1 C12. b c adalah... dengan skala 1 : 200, maka luas taman pada gambar adalah... A. C. 14 pekerja B. 13 pekerja

1 C12. b c adalah... dengan skala 1 : 200, maka luas taman pada gambar adalah... A. C. 14 pekerja B. 13 pekerja C. Hasil dari 6 8 4 4. Hasil dari 4 : 4 6 ( ) 4 4. Hasil dari : 5 4 4. Sebuah taman berbentuk persegi panjang luasnya 4 6 4 8 5 5 600 m. Jika taman tersebut digambar dengan skala : 00, maka luas taman

Lebih terperinci

03. Selisih dari 7,2 dari 3,582 adalah... (A) 3,618 (B) 3,628 (C) 3,682 (D) 3,728

03. Selisih dari 7,2 dari 3,582 adalah... (A) 3,618 (B) 3,628 (C) 3,682 (D) 3,728 01. Notasi pembentukan himpunan dari B {1,4,9} (A) B = { kuadrat tiga bilangan asli yang pertama } (B) B = { bilangan tersusun yang kurang dari 10 } (C) B = { kelipatan bilangan dan yang pertama } (D)

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 27 BIDANG MATEMATIKA SMP A. SOAL PILIHAN GANDA. Urutan Bilangan-bilangan 2 5555, 5 2222, dan dari yang terkecil sampai yang terbesar adalah.

Lebih terperinci

ENGLISH MEDIUM OF INSTRUCTION. Fakultas Keguruan dan Ilmu Pendidikan - Universitas Jember. By: Risky Cahyo Purnomo ( )

ENGLISH MEDIUM OF INSTRUCTION. Fakultas Keguruan dan Ilmu Pendidikan - Universitas Jember. By: Risky Cahyo Purnomo ( ) ENGLISH MEDIUM OF INSTRUCTION Fakultas Keguruan dan Ilmu Pendidikan - Universitas Jember By: Risky Cahyo Purnomo (110210101007) Suci Rahmawati (110210101076) SMART SOLUTION 0.1 Number Theory 0.1.1 Exercise

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45. NO SOAL PEMBAHASAN 1 Hasil dari adalah... Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45. NO SOAL PEMBAHASAN 1 Hasil dari adalah... Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : D45 NO SOAL PEMBAHASAN 1 Hasil dari 8 5 3 adalah... 1. a A. 10 5 = a a a a a B. 5. a 1 n n = a C. 3 3. a m n n = a m D. 64 Hasil dari 8 3 adalah... A. 6 B. 8 C.

Lebih terperinci

Soal Semifinal Perorangan OMV2011 SMP/MTs

Soal Semifinal Perorangan OMV2011 SMP/MTs BAGIAN 1 BERIKAN JAWABAN AKHIR! 1. Jika dibagi 9, maka sisanya sama dengan. 2. Perhatikan gambar berikut. Pada segiempat ABCD dibuat setengah lingkaran pada sisi AD dengan pusat E dan segitiga BEC sama

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A SMP N Kalibagor Hasil dari 5 + [6 : ( )] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. Pangkat ; Akar D.

Lebih terperinci

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006 OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat, maka salah satu

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012 Tutur Widodo Pembahasan OSK Matematika SMA 01 Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi (n 1(n 3(n 5(n 013 = n(n + (n

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional Tahun 1986 Matematika

Evaluasi Belajar Tahap Akhir Nasional Tahun 1986 Matematika Evaluasi Belajar Tahap Akhir Nasional Tahun 986 Matematika EBTANAS-SMP-86-0 Himpunan faktor persekutuan dari dan 0 {,,, 6} {,, 6} {, } {6} EBTANAS-SMP-86-0 Bilangan 0,0000 jika ditulis dalam bentuk baku.0

Lebih terperinci

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 015 BIDANG MATEMATIKA BAGIAN A: SOAL ISIAN SINGKAT 1. Banyak faktor persekutuan dari 1515 dan 530 yang merupakan bilangan genap positip

Lebih terperinci

Hak Cipta 2014 Penerbit Erlangga

Hak Cipta 2014 Penerbit Erlangga 003-300-011-0 Hak Cipta 2014 Penerbit Erlangga Berilah tanda silang (X) pada huruf A, B, C, atau D pada jawaban yang benar! 1. Nilai dari 20 + 10 ( 5) ( 20) : 10 adalah.... A. 7 C. 68 B. 5 D. 72 2. Dea

Lebih terperinci

WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP

WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP Ilham Rizkianto FMIPA Universitas Negeri Yogyakarta Ilham_rizkianto@uny.ac.id Wonosari, 9 Mei 2014 MASALAH KOMBINATORIK Mengecoh,

Lebih terperinci

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3 . 4% uang Ani diberikan kepada adiknya dan 5% dari uang tersebut untuk membayar rekening listrik dan 5% untuk membayar rekening telpon, sisa uang Ani adalah Rp 4.,. Berapakah jumlah uang Ani a. Rp 4.,

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMP Minggu, 0 Oktober 2016 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 Pembahasan UN 0 A3 by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A3 Hasil dari 5 + [6 : ( 3)] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung

Lebih terperinci

MATEMATIKA (Paket 1) Waktu : 120 Menit

MATEMATIKA (Paket 1) Waktu : 120 Menit MATEMATIKA (Paket ) Waktu : 0 Menit (0) 77 0 Website : Pilihlah jawaban yang paling tepat!. Hasil dari 0 : 7 + ( ) adalah.... 0 0. Agus mempunyai sejumlah kelereng, diberikan kepada Rahmat, bagian diberikan

Lebih terperinci

E59 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh

E59 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh DOKUMEN NEGARA SANGAT RAHASIA Pembahasan soal oleh http://pak-anang.blogspot.com E9 MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Pak Anang http://pakhttp://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April

Lebih terperinci