SOAL DAN PEMBAHASAN OSN MATEMATIKA SMP 2012 TINGKAT PROVINSI (BAGIAN A : ISIAN SINGKAT)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "SOAL DAN PEMBAHASAN OSN MATEMATIKA SMP 2012 TINGKAT PROVINSI (BAGIAN A : ISIAN SINGKAT)"

Transkripsi

1 SOAL DAN PEMBAHASAN OSN MATEMATIKA SMP 2012 TINGKAT PROVINSI (BAGIAN A : ISIAN SINGKAT) BAGIAN A : ISIAN SINGKAT 1. Sebuah silinder memiliki tinggi dan volume. Luas permukaan bola terbesar yang mungkin diletakkan ke dalam silinder tersebut adalah Mencari jari-jari silinder : Karena silinder memiliki masuk ke silinder jika dan, sehingga : dimana ( ) ( ), maka bola akan bisa ( ) Jadi luas permukaan bola terbesar yang mungkin adalah 2. Jumlah tiga bilangan adalah 19. Jika bilangan pertama dan bilangan kedua masing-masing dikurangi 1, maka diperoleh dua bilangan dengan rasio 1 : 3. Jika bilangan kedua dan ketiga masing-masing ditambah 3, maka diperoleh dua bilangan dengan rasio 5 : 6. Selisih bilangan terbesar dan terkecil adalah Misal : Diketahui I : Diketahui II : Page 1

2 Diketahui III : Eleminasi : (1) dengan (2) Eleminasi : (3) dengan (4) Substitusikan : Substitusikan : Jadi selisih bilangan terbesar dan terkecil adalah 3. Jika, maka ( ) Page 2

3 ( ) 4. Lima belas bilangan prima pertama dituliskan berturut-turut pada lima belas kartu. Jika semua kartu tersebut diletakkan dalam sebuah kotak dan kemudian diambil secara acak dua buah kartu berturut-turut tanpa pengembalian, maka peluang terambil dua kartu dengan jumlah dua bilangan tertulis merupakan bilangan prima adalah { } Bilangan prima hanya mungkin dibentuk dari bilangan. Jadi pada lima belas bilangan tersebut, untuk bilangan membentuk bilangan prima. tidak mungkin akan Dari akan dilakukan dari bilangan tersebut, yaitu : hanya 2 yang merupakan bilangan genap, jadi penyusunan Karena berbeda dengan maka banyak penyusunannya ada Peluang terambilnya secara acak dua buah kartu berturut-turut tanpa pengembalian adalah Jadi peluang terambil dua kartu dengan jumlah dua bilangan tertulis merupakan bilangan prima adalah 5. Perhatikan gambar bangun datar setengah lingkaran dengan diameter dan pusat lingkaran berikut. Misalkan dan adalah titik-titik pada lingkaran sedemikian sehingga dan memotong di titip. Jika besar, maka besar Mencari : Page 3

4 Hubungan sudut pusat dengan sudut keliling : merupakan sudut antara dua tali busur dan, sehingga : Jadi besar ( ) 6. Lima angka yakni dan dapat disusun semuanya tanpa pengulangan menjadi bilangan berbeda. Jika bilangan-bilangan tersebut diurutkan dari yang terkecil ke yang terbesar, maka bilangan yang menempati urutan ke-75 adalah Peletakan Angka I II III IV V Banyak bilangan terbentuk Pola I 1 Mengikuti Pola II 2 Mengikuti Pola III 3 Mengikuti Pola IV Jumlah 75 Jadi bilangan yang menempati urutan ke-75 adalah 7. Diketahui habis dibagi 3, habis dibagi 5, habis dibagi 7. Jika adalah bilangan bulat positif, maka nilai terkecil untuk adalah, sehingga :, agar bisa dibagi oleh dan maka harus bisa dibagi oleh Page 4

5 Nilai bisa diperoleh dari ketiga persamaan tersebut. Eleminasi : (6) dengan (4) Eleminasi : (7) dengan (5) Jadi nilai terkecil untuk adalah 8. Jika dan, maka nilai sederhana dari adalah Mencari nilai : Page 5

6 Mencari nilai : Sehingga : Jadi nilai sederhana dari adalah 9. Jika dan adalah penyelesaian dari persamaan kuadrat, maka nilai dari adalah Substitusikan (1) dan (2) : Jadi nilai dari adalah 10. Pada gambar berikut, kedua ruas garis putus-putus yang sejajar membagi persegi menjadi tiga daerah yang luasnya sama. Jika jarak kedua ruas garis putus-putus tersebut 1 cm, maka luas persegi adalah Page 6

7 Diketahui : Misal : Perhatikan segitiga siku-siku : Hubungan antara dan dan : ( ) ( ) Hubungan antara dan dan : Substitusikan : ( ) ( ) Page 7

8 Jadi JIKA TERDAPAT PERBEDAAN PEMAHAMAN, KRITIK DAN SARANNYA SELALU KAMI TUNGGU,, TERIMA KASIH DAN SEMOGA BERMANFAAT,,, ^_^ Page 8

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika Pembahasan OSN Tingkat Provinsi Tahun 202 Jenjang SMP Bidang Matematika Bagian A : Soal Isian Singkat. Sebuah silinder memiliki tinggi 5 cm dan volume 20 cm 2. Luas permukaan bola terbesar yang mungkin

Lebih terperinci

April 2013 SOAL DAN PEMBAHASAN OSN MATEMATIKA SMP 2011 TINGKAT PROVINSI (BAGIAN B : URAIAN)

April 2013 SOAL DAN PEMBAHASAN OSN MATEMATIKA SMP 2011 TINGKAT PROVINSI (BAGIAN B : URAIAN) SOAL DAN PEMBAHASAN OSN MATEMATIKA SMP 2011 TINGKAT PROVINSI (BAGIAN B : URAIAN) BAGIAN B : URAIAN 1. Saat ini umur Agus dan umur Fauzan kurang dari 100 tahun. Jika umur Agus dan umur Fauzan ditulis secara

Lebih terperinci

SOAL DAN PEMBAHASAN KOMPETISI MATEMATIKA PASIAD IX 2013 TINGKAT SMP BABAK PENYISIHAN (SOAL 1-15)

SOAL DAN PEMBAHASAN KOMPETISI MATEMATIKA PASIAD IX 2013 TINGKAT SMP BABAK PENYISIHAN (SOAL 1-15) SOAL DAN PEMBAHASAN KOMPETISI MATEMATIKA PASIAD IX 2013 TINGKAT SMP BABAK PENYISIHAN (SOAL 1-15) 1. Cara I : Cara II : (Rumus BS : penyingkatan dari Cara I) 2. www.siap-osn.blogspot.com Soal dan Pembahasan

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

Soal Babak Penyisihan MIC LOGIKA 2011

Soal Babak Penyisihan MIC LOGIKA 2011 Soal Babak Penyisihan MIC LOGIKA 2011 1. Jika adalah bilangan bulat dan angka puluhan dari adalah tujuh, maka angka satuan dari adalah... a. 1 c. 5 e. 9 b. 4 d. 6 2. ABCD adalah pesergi dengan panjang

Lebih terperinci

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO DIURUTKAN BERDASARKAN TAHUN DAN DIKUMPULKAN BERDASARKAN TOPIK MATERI BILANGAN 2011 1. Jika x adalah jumlah 99 bilangan

Lebih terperinci

2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi , yaitu. c. 1 d.

2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi , yaitu. c. 1 d. Halaman: 1 1. Akar pangkat empat dari 4 adalah a. 4 b. 4 c. 4 d. 4 2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi 100 000 064, yaitu a. 10404 b. 10408 c. 10804 d. 10808 3. Banyaknya

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012 Tutur Widodo Pembahasan OSK Matematika SMA 01 Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi (n 1(n 3(n 5(n 013 = n(n + (n

Lebih terperinci

KOTA - PROVINSI - NASIONAL TAHUN 2017 MATA PELAJARAN: MATEMATIKA

KOTA - PROVINSI - NASIONAL TAHUN 2017 MATA PELAJARAN: MATEMATIKA OLIMPIADE SAINS SMP/MTs TINGKAT KOTA - PROVINSI - NASIONAL TAHUN 07 MATA PELAJARAN: MATEMATIKA Mata Pelajaran : Matematika Jenjang : SMP/MTs MATA PELAJARAN PETUNJUK UMUM () Kerjakan soal ini dengan JUJUR,

Lebih terperinci

KISI-KISI UJIAN SEKOLAH

KISI-KISI UJIAN SEKOLAH KISI-KISI UJIAN SEKOLAH Matematika SEKOLAH MENENGAH PERTAMA DAERAH KHUSUS IBUKOTA (DKI) JAKARTA TAHUN PELAJARAN 2012-2013 KISI KISI PENULISAN SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2012-2013 Jenjang : SMP

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 00 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 003 Bidang Matematika Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n )

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n ) Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi adalah... (n 1)(n 3)(n 5)(n 013) = n(n + )(n + )(n + 01) Jawaban : 0 ( tidak

Lebih terperinci

4. Sebuah toko perlengkapan olahraga menyebarkan brosur sebagai berikut :

4. Sebuah toko perlengkapan olahraga menyebarkan brosur sebagai berikut : 1. Jika 3x2006 = 2005+2007+a, maka a sama dengan A) 2003 B) 2004 C) 2005 D) 2006 2. Berapa angka terbesar yang mungkin didapat dari kombinasi susunan enam kartu angka di bawah ini? A) 6 475 413 092 B)

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Rabu, 20 Nopember 2013 : 120 menit : 40 Pilihan Ganda 1D Petunjuk :

Lebih terperinci

Lomba dan seminar matematika XXV

Lomba dan seminar matematika XXV NASKAH SOAL Lomba dan seminar matematika XXV Take a real mathematics adventure, make a better future. KODE NASKAH 002 HIMATIKA FMIPA UNY Sekretariat : Gelanggang Ormawa FMIPA UNY, Karangmalang, Depok,

Lebih terperinci

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2005 Nomor Soal: 21-30

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2005 Nomor Soal: 21-30 Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 005 Nomor Soal: -30. Garis 5y 60 memotong sumbu X dan sumbu Y masing-masing di titik A dan B, sehingga OAB membentuk segitiga siku-siku. Sebuah lingkaran

Lebih terperinci

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KOTA/KABUPATEN TAHUN 2016 BIDANG MATEMATIKA

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KOTA/KABUPATEN TAHUN 2016 BIDANG MATEMATIKA OSK MATEMATIKA SMP TAHUN 016 OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KOTA/KABUPATEN TAHUN 016 BIDANG MATEMATIKA BAGIAN A: PILIHAN GANDA 017 (016 16) 015 1. Nilai dari 00(016 1) A. 01 01 014 D. 015

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP. 3 dari yang terkecil sampai yang terbesar.

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP. 3 dari yang terkecil sampai yang terbesar. SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 007 BIDANG MATEMATIKA SMP SOAL PILIHAN GANDA. Urutan bilangan bilangan adalah.. a. b. c. d. e., 5,, 5,,, dan, dan, dan 5, dari yang terkecil

Lebih terperinci

2 x 1 dengan x anggota bilangan bulat adalah. 1 bagian senang sepakbola, 2

2 x 1 dengan x anggota bilangan bulat adalah. 1 bagian senang sepakbola, 2 PEMNTPN UJIN NSINL 03 Kerjakan dengan sungguh-sungguh dan penuh kejujuran!. alam sebuah ruangan terdapat 5 baris kursi. anyaknya kursi pada baris ke tiga terdapat 3 buah, dan pada baris ke tujuh terdapat

Lebih terperinci

SOAL FINAL CCM SMP GEBYAR MATEMATIKA 2014

SOAL FINAL CCM SMP GEBYAR MATEMATIKA 2014 SOAL FINAL CCM SMP AMPLOP A 1. Sebuah mesin dapat memproduksi setengah lusin barang selama 4 jam. Banyak barang yang dikerjakan oleh 8 buah mesin selama 3 jam adalah 2. Suatu persegi panjang yang kelilingnya

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

SOAL BRILLIANT COMPETITION 2013

SOAL BRILLIANT COMPETITION 2013 PILIHAN GANDA. Pada suatu segitiga ABC, titik D berada di AC sehingga AD : DC = 4 :. Titik E berada di BC sehingga BE : EC = : 3. Titik F adalah titik perpotongan antara garis BD dan garis AE. Jika luas

Lebih terperinci

Pembahasan OSK 2011 Bidang Matematika

Pembahasan OSK 2011 Bidang Matematika Pembahasan OSK 20 Bidang Matematika. Nilai dari a. 3 b. c. 9 73 Jawaban : c 8! 2 9! + 3 8! 2 9! + 3 adalah... = 0 9 2 0 + 3 = 73 2. Menggunakan angka - angka, 2, 5, 6 dan 9 akan dibentuk bilangan genap

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 21 YOGYAKARTA55281 lmnas@ugm.ac.id http://lmnas.fmipugm.ac.id

Lebih terperinci

14. KOMPETENSI INTI DAN KOMPETENSI DASAR MATEMATIKA SD/MI

14. KOMPETENSI INTI DAN KOMPETENSI DASAR MATEMATIKA SD/MI 14. KOMPETENSI INTI DAN MATEMATIKA SD/MI KELAS: I Tujuan kurikulum mencakup empat kompetensi, yaitu (1) kompetensi sikap spiritual, (2) sikap sosial, (3) pengetahuan, dan (4) keterampilan. Kompetensi tersebut

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

MATEMATIKA (Paket 2) Waktu : 120 Menit

MATEMATIKA (Paket 2) Waktu : 120 Menit MATEMATIKA (Paket 2) Waktu : 20 Menit (025) 77 2606 Website : Pilihlah jawaban yang paling tepat!. Hasil dari A. B. D. 8 5 8 2 2 8 2 adalah. 2. Hasil dari A. B. D. 8 adalah.. Bentuk sederhana dari A. 2

Lebih terperinci

Identitas, bilangan identitas : adalah bilangan 0 pada penjumlahan dan 1 pada perkalian.

Identitas, bilangan identitas : adalah bilangan 0 pada penjumlahan dan 1 pada perkalian. Glosarium A Akar pangkat dua : akar pangkat dua suatu bilangan adalah mencari bilangan dari bilangan itu, dan jika bilangan pokok itu dipangkatkan dua akan sama dengan bilangan semula; akar kuadrat. Asosiatif

Lebih terperinci

Soal Semifinal Perorangan OMV2011 SMP/MTs

Soal Semifinal Perorangan OMV2011 SMP/MTs BAGIAN 1 BERIKAN JAWABAN AKHIR! 1. Jika dibagi 9, maka sisanya sama dengan. 2. Perhatikan gambar berikut. Pada segiempat ABCD dibuat setengah lingkaran pada sisi AD dengan pusat E dan segitiga BEC sama

Lebih terperinci

Pola (1) (2) (3) Banyak segilima pada pola ke-15 adalah. A. 235 C. 255 B. 250 D Yang merupakan bilangan terbesar adalah. A. C. B. D.

Pola (1) (2) (3) Banyak segilima pada pola ke-15 adalah. A. 235 C. 255 B. 250 D Yang merupakan bilangan terbesar adalah. A. C. B. D. SOAL SELEKSI AWAL 1. Suhu dalam sebuah lemari es adalah 15 o C di bawah nol. Pada saat mati listrik suhu dalam lemari es meningkat 2 o C setiap 120 detik. Jika listrik mati selama 210 detik, suhu dalam

Lebih terperinci

SOAL Babak Penyisihan Olimpiade Matematika ITS 2013 (7 th OMITS) Tingkst SMP Se-derajat

SOAL Babak Penyisihan Olimpiade Matematika ITS 2013 (7 th OMITS) Tingkst SMP Se-derajat SOAL Babak Penyisihan Olimpiade Matematika ITS 01 (7 th OMITS) Tingkst SMP Se-derajat SOAL PILIHAN GANDA 1) Sebuah bilangan sempurna adalah sebuah bilangan bulat yang sama dengan jumlah semua pembagi positifnya,

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

Pembahasan OSK Tahun 2011 Tingkat SMP Bidang Matematika

Pembahasan OSK Tahun 2011 Tingkat SMP Bidang Matematika Pembahasan OSK Tahun 011 Tingkat SMP Bidang Matematika Bagian A : Pilihan Ganda 1. Nilai dari a. 113 b. c. 91 73 1 8! 9! + 3 adalah... d. e. 71 4 Jawaban : c 1 8! 9! + 3 = 10 9 10 + 3 = 73. Menggunakan

Lebih terperinci

3. Kuadrat dari hasil penjumlahan angka 5 dan 6, dikurangi hasil perkalian kedua angka tersebut

3. Kuadrat dari hasil penjumlahan angka 5 dan 6, dikurangi hasil perkalian kedua angka tersebut 1. Pada sisi kanan dan kiri sebuah jalan raya terdapat perumahan. Rumah-rumah yang terdapat di sisi kiri jalan dinomori berurutan dengan nomor ganjil dari angka 1 sampai 39. Rumah-rumah di sebelah kanan

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TAHUN 014 TINGKAT KABUPATEN/KOTA Sabtu, 8 Maret 014 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH

Lebih terperinci

PEMECAHAN MASALAH MATEMATIKA

PEMECAHAN MASALAH MATEMATIKA PEMECAHAN MASALAH MATEMATIKA Oleh: Kusnandi A. Pengantar Masalah dalam matematika adalah suatu persoalan yang siswa sendiri mampu menyelesaikannya tanpa menggunakan cara atau algoritma yang rutin. Maksudnya

Lebih terperinci

PEMANTAPAN UJIAN NASIONAL 2013 (SOAL DAN PENYELESAIAN)

PEMANTAPAN UJIAN NASIONAL 2013 (SOAL DAN PENYELESAIAN) PEMANTAPAN UJIAN NASIONAL 03 (SOAL DAN PENYELESAIAN) Kerjakan dengan sungguh-sungguh dan penuh kejujuran!. Dalam sebuah ruangan terdapat 5 baris kursi. Banyaknya kursi pada baris ke tiga terdapat 34 buah,

Lebih terperinci

PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KOTA/KABUPATEN TAHUN 2016 BIDANG MATEMATIKA

PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KOTA/KABUPATEN TAHUN 2016 BIDANG MATEMATIKA PEMBAHASAN OSK MATEMATIKA SMP TAHUN 06 PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KOTA/KABUPATEN TAHUN 06 BIDANG MATEMATIKA BAGIAN A: PILIHAN GANDA 07 (06 6) 05. Nilai dari adalah....

Lebih terperinci

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014 PETUNJUK UNTUK PESERTA 1. Tuliskan nama lengkap, kelas, asal sekolah, alamat sekolah lengkap dengan nomor telepon, faximile, email sekolah dan nama guru Matematika di tempat yang telah disediakan.. Tes

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 200

Lebih terperinci

METHODIST-2 EDUCATION EXPO 2016

METHODIST-2 EDUCATION EXPO 2016 TK/SD/SMP/SMA Methodist- Medan Jalan MH Thamrin No. 96 Medan Kota - 0 T: (+66)56 58 METHODIST- EDUCATION EXPO 06 Lomba Sains Plus Antar Pelajar Tingkat SMA se-sumatera Utara NASKAH SOAL MATEMATIKA - Petunjuk

Lebih terperinci

Soal Babak Penyisihan OMITS 2008

Soal Babak Penyisihan OMITS 2008 Soal Babak Penyisihan OMITS 008. Banyak pembagi positif dari.50.000 adalah..... a. 05 b. 0 c. 75 d. 0 e.5. Jari-jari masing-masing lingkaran adalah 5 cm. Tentukan panjang busur ketiga lingkaran tersebut.....

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 27 BIDANG MATEMATIKA SMP A. SOAL PILIHAN GANDA. Urutan Bilangan-bilangan 2 5555, 5 2222, dan dari yang terkecil sampai yang terbesar adalah.

Lebih terperinci

Kompetisi Sains Madrasah 2015 Tingkat Propinsi-Madrasah Tsanawiyah-Matematika NASKAH SOAL BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH TSANAWIYAH

Kompetisi Sains Madrasah 2015 Tingkat Propinsi-Madrasah Tsanawiyah-Matematika NASKAH SOAL BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH TSANAWIYAH Nama : Sekolah : Kab / Kota : Propinsi : NASKAH SOAL BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH TSANAWIYAH SELEKSI TINGKAT PROPINSI KOMPETISI SAINS MADRASAH TAHUN 2015 Halaman 1 dari 9 halaman Petunjuk

Lebih terperinci

BAB 2 VOLUME DAN LUAS PERMUKAAN BANGUN RUANG SISI LENGKUNG

BAB 2 VOLUME DAN LUAS PERMUKAAN BANGUN RUANG SISI LENGKUNG BAB 2 VOLUME DAN LUAS PERMUKAAN BANGUN RUANG SISI LENGKUNG A. TABUNG Tabung adalah bangun ruang yang dibatasi oleh dua lingkaran yang berhadapan, sejajar, dan kongruen serta titik-titik pada keliling lingkaran

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 007

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika

Lebih terperinci

SOAL OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN / KOTA 28 JUNI 2005

SOAL OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN / KOTA 28 JUNI 2005 SOAL OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN / KOTA 28 JUNI 2005 SOAL PILIHAN GANDA 1. 0,036 0,9 =... a. 0,002 b. 0,02 c. 0,2 d. 2 e. 20 11 13 2. Di antara bilangan-bilangan berikut, manakah yang terletak

Lebih terperinci

ULANGAN AKHIR SEMESTER 1 SEKOLAH MENENGAH PERTAMA (SMP) TAHUN PELAJARAN 2011/2012

ULANGAN AKHIR SEMESTER 1 SEKOLAH MENENGAH PERTAMA (SMP) TAHUN PELAJARAN 2011/2012 ULANGAN AKHIR SEMESTER 1 SEKOLAH MENENGAH PERTAMA (SMP) TAHUN PELAJARAN 2011/2012 LEMBAR SOAL Mata Pelajaran : Matematika Kelas / Semester : IX / 1 Alokasi Waktu : 120 menit Pilih satu jawaban yang paling

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2013

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2013 Pembahasan Olimpiade Matematika SM Tingkat Kabupaten Tahun 013 Oleh Tutur Widodo 1. Misalkan a dan b adalah bilangan asli dengan a > b. Jika 9 + 013 = a + b, maka nilai a b adalah... Untuk a, b 0 berlaku

Lebih terperinci

Kontes Terbuka Olimpiade Matematika

Kontes Terbuka Olimpiade Matematika Kontes Terbuka Olimpiade Matematika Kontes Bulanan Januari 2017 20 23 Januari 2017 Berkas Soal Definisi dan Notasi Berikut ini adalah daftar definisi yang digunakan di dokumen soal ini. 1. Notasi N menyatakan

Lebih terperinci

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran 2. 5. Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran Persamaan Lingkaran () () Bentuk Umum 0 dibagi (2) Pusat Jari-jari Pusat (,), Jumlah kuadrat pusat dikurangi Jari-jari

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 2005

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 013/014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Rabu, 0 Nopember 013 : 10 menit : 40 Pilihan Ganda 1B Petunjuk : 1. Isikan

Lebih terperinci

UJI COBA 1 UJIAN NASIONAL

UJI COBA 1 UJIAN NASIONAL UJI O 1 UJIN NSIONL SMP KUPTEN NGNJUK THUN PELJRN 2014 / 2015 NSKH SOL Mata Pelajaran : Matematika Hari, Tanggal : lokasi Waktu : 120 menit imulai Pukul : 07.00 WI iakhiri Pukul : 09.00 WI PKET KOE 4 PETUNJUK

Lebih terperinci

Pembahasan OSN SMP Tingkat Nasional Tahun 2012 Bidang Matematika

Pembahasan OSN SMP Tingkat Nasional Tahun 2012 Bidang Matematika Tutur Widodo Pembahasan OSN SMP Tahun 01 Pembahasan OSN SMP Tingkat Nasional Tahun 01 Bidang Matematika Hari Kedua Pontianak, 1 Juli 01 1. Pada suatu hari, seorang peneliti menempatkan dua kelompok spesies

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMP TAHUN 2013 #Kode Soal 212-Ani-Ina-32# Jawaban : (B) Cara I : Perbandingan uang A : I = 3 : 5, jumlah angka perbandingan = 3 + 5 = 8, sedangkan selisih angka perbandingan

Lebih terperinci

IRISAN DUA LINGKARAN. Tujuan Pembelajaran. ). Segmen garis dari P ke Q disebut sebagai tali busur. Tali busur ini memotong tegak lurus garis C 1

IRISAN DUA LINGKARAN. Tujuan Pembelajaran. ). Segmen garis dari P ke Q disebut sebagai tali busur. Tali busur ini memotong tegak lurus garis C 1 K- matematika K e l a s I IRISAN DUA LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan persamaan dan panjang tali busur dua lingkaran

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 2 YOGYAKARTA5528 lmnas@ugm.ac.id http://lmnas.fmipa.ugm.ac.id

Lebih terperinci

Soal-soal UN Matematika SMP/MTs Tahun Pelajaran 2011/2012

Soal-soal UN Matematika SMP/MTs Tahun Pelajaran 2011/2012 Soal-soal UN Matematika SMP/MTs Tahun Pelajaran 2011/2012 1. Hasil dari 17 - ( 3 x (-8) ) adalah... A. 49. 41. 7 D. -41 2. Hasil dari 1 : 2 + 1 A. 2. 2. 2 D. 3 3. Uang adik berbanding uang kakak 3 : 5.

Lebih terperinci

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 01 Tingkat SMP Oleh Tutur Widodo I. Soal Pilihan Ganda (Cara Penilaian : Benar = 1 poin, Kosong = 0, Salah = 0.5 poin) 1. Terdapat berapa

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut Kode: P8 MATEMATIKA IX SMP SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P8). Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut (A) 7 dan. (C) 8 dan 8. dan 7. (D) 8 dan

Lebih terperinci

MATEMATIKA (Paket 1) Waktu : 120 Menit

MATEMATIKA (Paket 1) Waktu : 120 Menit MATEMATIKA (Paket ) Waktu : 0 Menit (0) 77 0 Website : Pilihlah jawaban yang paling tepat!. Hasil dari 0 : 7 + ( ) adalah.... 0 0. Agus mempunyai sejumlah kelereng, diberikan kepada Rahmat, bagian diberikan

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM Mata Pelajaran Jenjang : Matematika : SMP / MTs MATA PELAJARAN Hari / Tanggal : Rabu, 9 April 009 Jam : 08.00 0.00 WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional

Lebih terperinci

1 C17. C. Rp B. Rp

1 C17. C. Rp B. Rp 1 C17 1. Joko ingin kuliah di Fakultas kedokteran UNAIR melalui SNMPTN jalur tulis. Dari 15 soal kemampuan dasar di hari pertama, Joko menjawab 5 soal benar dan soal tidak dijawab. Jika menjawab benar

Lebih terperinci

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN / KOTA TAHUN BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 9 Maret 2013

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN / KOTA TAHUN BIDANG STUDI MATEMATIKA WAKTU : 150 MENIT 9 Maret 2013 SOAL OSN MATEMATIKA SMP TINGKAT KOTA/KABUPATEN 0 OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN / KOTA TAHUN 0 KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDID KAN DASAR DIREKTORAT PEMBINAAN

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMP/MTs TAHUN PELAJARAN 2008/2009

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMP/MTs TAHUN PELAJARAN 2008/2009 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMP/MTs TAHUN PELAJARAN 2008/2009 1. Hasil dari ( 18 + 30): ( 3 1) adalah. A. -12 B. -3 C. 3 D.12 BAB I BILANGAN BULAT dan BILANGAN PECAHAN ( 18 + 30): ( 3 1) = 12

Lebih terperinci

Lingkaran. 1. Pengertian. 2. Unsur-unsur Lingkaran

Lingkaran. 1. Pengertian. 2. Unsur-unsur Lingkaran Lingkaran 1. Pengertian Lingkaran merupakan suatu kurva tertutup sederhana yang merupakan tempat kedudukan titik-titik yang berjarak sama terhadap suatu titik tertentu. Jarak yang sama tersebut disebut

Lebih terperinci

SOAL DAN PEMBAHASAN OSN MATEMATIKA SMA/MA 2013 AHMAD THOHIR

SOAL DAN PEMBAHASAN OSN MATEMATIKA SMA/MA 2013 AHMAD THOHIR SOAL DAN PEMBAHASAN OSN MATEMATIKA SMA/MA 2013 DIBAHAS OLEH : AHMAD THOHIR www.ahmadthohir1089.wordpress.com MA FUTUHIYAH JEKETRO GUBUG GROBOGAN JAWA TENGAH APA BILA ADA KESALAHAN DAN KEKELIRUAN DALAM

Lebih terperinci

KOMPETISI MATEMATIKA 2017 TINGKAT SMP SE-MANADO SOAL BABAK PENYISIHAN Rabu, 22 Februari 2017

KOMPETISI MATEMATIKA 2017 TINGKAT SMP SE-MANADO SOAL BABAK PENYISIHAN Rabu, 22 Februari 2017 KOMPETISI MATEMATIKA 07 TINGKAT SMP SE-MANADO SOAL BABAK PENYISIHAN Rabu, Februari 07 Petunjuk:. Babak penyisihan ini terdiri dari 0 soal pilihan ganda.. Waktu yang disediakan 0 menit.. Tuliskan nama,

Lebih terperinci

PROGRAM PEMBELAJARAN MATEMATIKA SEKOLAH DASAR KELAS VI SEMESTER 1

PROGRAM PEMBELAJARAN MATEMATIKA SEKOLAH DASAR KELAS VI SEMESTER 1 PROGRAM PEMBELAJARAN MATEMATIKA SEKOLAH DASAR KELAS VI SEMESTER 1 1 PROGRAM SEMESTER TAHUN PELAJARAN 20 / 20 MATA PELAJARAN : Matematika KELAS / SEMESTER : VI (enam) / 1 (satu) Standar Kompetensi : 1.

Lebih terperinci

RINGKASAN MATERI MATA PELAJARAN MATEMATIKA KELAS III SEMESTER 2 PEMBELAJARAN 1 PECAHAN SEDERHANA

RINGKASAN MATERI MATA PELAJARAN MATEMATIKA KELAS III SEMESTER 2 PEMBELAJARAN 1 PECAHAN SEDERHANA MATA PELAJARAN MATEMATIKA KELAS III SEMESTER 2 PEMBELAJARAN PECAHAN SEDERHANA. Pecahan - Pecahan Daerah yang diarsir satu bagian dari lima bagian. Satu bagian dari lima bagian artinya satu dibagi lima

Lebih terperinci

01. Perhatikan persegi panjang ABCD di bawah ini. Jika OA = 26 cm, maka panjang BO adalah... (A) 78 cm (B) 52 cm (C) 26 cm (D) 13 cm

01. Perhatikan persegi panjang ABCD di bawah ini. Jika OA = 26 cm, maka panjang BO adalah... (A) 78 cm (B) 52 cm (C) 26 cm (D) 13 cm 0. Perhatikan persegi panjang ABCD di bawah ini. Jika OA = 26 cm, maka panjang BO adalah.... (A) 78 cm (B) 52 cm (C) 26 cm (D) 3 cm 02. Bangun di bawah ini merupakan bangun yang memiliki simetri putar

Lebih terperinci

BARISAN DAN DERET. A. Pola Bilangan

BARISAN DAN DERET. A. Pola Bilangan BARISAN DAN DERET A. Pola Bilangan Perhatikan deretan bilangan-bilangan berikut: a. 1 2 3... b. 4 9 16... c. 31 40 21 30 16... Deretan bilangan di atas mempunyai pola tertentu. Dapatkah anda menentukan

Lebih terperinci

GEOMETRI ANALITIK BIDANG & RUANG

GEOMETRI ANALITIK BIDANG & RUANG HANDOUT (BAHAN AJAR) GEOMETRI ANALITIK BIDANG & RUANG Sofyan Mahfudy IAIN Mataram KATA PENGANTAR Alhamdulillah puji syukur kepada Alloh Ta ala yang dengan rahmat dan karunia-nya penulis dapat menyelesaikan

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMP Minggu, 0 Oktober 2016 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B29 NO SOAL PEMBAHASAN 362 = 362 = 36 = 6 3 = 216. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B29 NO SOAL PEMBAHASAN 362 = 362 = 36 = 6 3 = 216. Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B9 NO SOAL PEMBAHASAN Hasil dari 6 adalah... A. 48. a = a a a B. 7. = C. 08. = D. 6 6 = 6 = 6 = 6 = 6 Hasil dari 6 8 adalah... A. 6 B. 4 C. 4 D. 4 6 4 Hasil dari

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B5 SMP N Kalibagor Hasil dari 7 ( ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. 7 Pangkat ; Akar D.

Lebih terperinci

SOAL MATEMATIKA SMP OLIMPIADE SAINS NASIONAL

SOAL MATEMATIKA SMP OLIMPIADE SAINS NASIONAL SOAL MATEMATIKA SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA Sabtu, 9 Maret 2013 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH

Lebih terperinci

3. Daerah yang dibatasi oleh dua buah jari-jari dan sebuah busur pada lingkaran adalah

3. Daerah yang dibatasi oleh dua buah jari-jari dan sebuah busur pada lingkaran adalah 1. Unsur-unsur di bawah ini yang merupakan unsur lingkaran adalah. A. Jari-jari, tali busur, juring dan diagonal B. Diameter, busur, sisi dan bidang diagonal C. Juring, tembereng, apotema dan jari-jari

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

GEOMETRI LINGKARAN YANG MENANTANG

GEOMETRI LINGKARAN YANG MENANTANG GOMTRI LINGKRN YNG MNNTNG entuk lingkaran banyak ditemui dalam kehidupan sehari-hari, mulai dari ban kendaraan, logo, cermin, tatakan gelas, dan masih banyak lagi yang lainnya. kan menjadi sangat menarik

Lebih terperinci

PREDIKSI ULANGAN KENAIKAN KELAS VIII SMP/MTs TAHUN PELAJARAN 2009/2010 MATA PELAJARAN MATEMATIKA PAKET 3

PREDIKSI ULANGAN KENAIKAN KELAS VIII SMP/MTs TAHUN PELAJARAN 2009/2010 MATA PELAJARAN MATEMATIKA PAKET 3 PREDIKSI ULNGN KENIKN KELS VIII SMP/MTs THUN PELJRN 2009/2010 MT PELJRN MTEMTIK PKET 3. Untuk soal nomor 1 sampai dengan 30 pilihlah satu jawaban yang paling benar dengan memberi tanda silang (X) pada

Lebih terperinci

PREDIKSI ULANGAN KENAIKAN KELAS VIII SMP/MTs TAHUN PELAJARAN 2009/2010 MATA PELAJARAN MATEMATIKA PAKET 1

PREDIKSI ULANGAN KENAIKAN KELAS VIII SMP/MTs TAHUN PELAJARAN 2009/2010 MATA PELAJARAN MATEMATIKA PAKET 1 PREIKSI ULNGN KENIKN KELS VIII SMP/MTs THUN PELJRN 2009/2010 MT PELJRN MTEMTIK PKET 1. Untuk soal nomor 1 sampai dengan 30 pilihlah satu jawaban yang paling benar dengan memberi tanda silang (X) pada lembar

Lebih terperinci

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 LEMBAR SOAL Mata Pelajaran : MATEMATIKA Satuan Pendidikan : SMA/MA Program : BAHASA Hari, Tanggal : Sabtu, 18 Februari 2017 Waktu : 120 Menit PETUNJUK UMUM

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Waktu : 210 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

UJI COBA 1 UJIAN NASIONAL SMP KABUPATEN NGANJUK NASKAH SOAL

UJI COBA 1 UJIAN NASIONAL SMP KABUPATEN NGANJUK NASKAH SOAL UJI O 1 UJIN NSIONL SMP KUPTEN NGNJUK THUN PELJRN 2014 / 2015 NSKH SOL Mata Pelajaran : Matematika Hari, Tanggal : lokasi Waktu : 120 menit Dimulai Pukul : 07.00 WI Diakhiri Pukul : 09.00 WI PKET KODE

Lebih terperinci

Pembahasan OSN SMP Tingkat Nasional Tahun 2013 Bidang Matematika Oleh Tutur Widodo

Pembahasan OSN SMP Tingkat Nasional Tahun 2013 Bidang Matematika Oleh Tutur Widodo Pembahasan OSN SMP Tingkat Nasional Tahun 01 Bidang Matematika Oleh Tutur Widodo 1. Diketahui f adalah suatu fungsi sehingga f(x) + f Carilah nilai x yang memenuhi f(x) = f( x). ( ) 1 x = x untuk setiap

Lebih terperinci

SOAL-SOAL LATIHAN TURUNAN FUNGSI SPMB

SOAL-SOAL LATIHAN TURUNAN FUNGSI SPMB SOL-SOL LTIHN TURUNN FUNGSI SPM 00-007. SPM Matematika asar Regional I 00 Kode 0 Garis singgung kurva di titik potongnya dengan sumbu yang absisnya postif y mempunyai gradien.. 9 8 7. SPM Matematika asar

Lebih terperinci

UJI COBA 1 UJIAN NASIONAL

UJI COBA 1 UJIAN NASIONAL UJI O 1 UJIN NSIONL SMP KUPTEN NGNJUK THUN PELJRN 2014 / 2015 NSKH SOL Mata Pelajaran : Matematika Hari, Tanggal : lokasi Waktu : 120 menit imulai Pukul : 07.00 WI iakhiri Pukul : 09.00 WI PKET KOE 1 PETUNJUK

Lebih terperinci

NO SOAL PEMBAHASAN 1

NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : B5 1 Hasil dari 17 (3 ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 41 Dalam kurung 1 C. 7 Pangkat ; Akar D. 41 Kali

Lebih terperinci

Pembahasan Matematika SMP IX

Pembahasan Matematika SMP IX Pembahasan Matematika SMP IX Matematika SMP Kelas IX Bab Pembahasan dan Kunci Jawaban Ulangan Harian Pokok Bahasan : Kesebangunan Kelas/Semester : IX/ A. Pembahasan soal pilihan ganda. Bangun yang tidak

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-26

LOMBA MATEMATIKA NASIONAL KE-26 LOMBA MATEMATIKA NASIONAL KE-26 Babak Penyisihan Tingkat SMP Minggu, 8 November HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

P-M01A LOMBA OLIMPIADE MATEMATIKA TINGKAT SD/MI KECAMATAN CILEUNGSI TAHUN 2015

P-M01A LOMBA OLIMPIADE MATEMATIKA TINGKAT SD/MI KECAMATAN CILEUNGSI TAHUN 2015 LOMBA OLIMPIADE MATEMATIKA TINGKAT SD/MI KECAMATAN CILEUNGSI TAHUN 2015 PEMERINTAH KABUPATEN BOGOR DINAS PENDIDIKAN UPT VII KECAMATAN CILEUNGSI Jl. Camat Enjan No. 05 Des. Cileungsi Kec. Cileungsi Kab.

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 200 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH

Lebih terperinci

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 015 BIDANG MATEMATIKA BAGIAN A: SOAL ISIAN SINGKAT 1. Banyak faktor persekutuan dari 1515 dan 530 yang merupakan bilangan genap positip

Lebih terperinci

KUMPULAN SOAL-SOAL OMITS

KUMPULAN SOAL-SOAL OMITS KUMPULAN SOAL-SOAL OMITS SOAL Babak Penyisihan Olimpiade Matematika ITS 2011 (OMITS 11) Tingkst SMP Se-derajat BAGIAN I.PILIHAN GANDA 1. Berapa banyak faktor positif/pembagi dari 2011? A. 1 B. 2 C. 3 D.

Lebih terperinci

KOMPETISI MATEMATIKA

KOMPETISI MATEMATIKA omba & egiatan atematika " " ( ) ( ) urasi : 120 menit rganized by : ponsored by : upported by : impunan ahasiswa epartemen atematika niversitas ndonesia 2013 omba egiatan atematika 2013 =========================================================================

Lebih terperinci