Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :

Ukuran: px
Mulai penontonan dengan halaman:

Download "Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :"

Transkripsi

1 1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x= terdiri dari 3 puluhan dan 8 satuan.3+8=11 terdiri dari 1 puluhan dan 1 satuan.1+1= =51. Sehingga H(38)=51. Ada berapa banyak solusi nilai x yang memenuhi H(x)=60? Jawab :

2 2. 1 t arctan t dt 0 =. Jawab :

3 3. Buktikan bahwa jika x dan y bilangan rasional yang memenuhi x y 2x y maka 1-xy adalah kuadrat dari suatu bilangan rasional.

4 4. Diberikan polinomial p(x) = x n + a 1 x n-1 + a 2 x n a n-1 x + a n dengan koefisien a 1, a 2,, a n semuanya bilangan bulat. Jika p(0) dan p(1) keduanya bilangan ganjil, tunjukkan bahwa p(x) tidak mempunyai akar bilangan bulat. Jawab :

5 5. Untuk n bilangan bulat, tunjukkan bahwa n 2 + 2n + 12 bukan merupakan kelipatan 121. Jawab :

6 6. Misalkan P(x, y) adalah polinomial dengan dua variabel x, y yang memenuhi P(x, y) = P(y, x) untuk setiap x, y (sebagai contoh polinomial x 2 2xy + y 2 memenuhi kondisi demikian). Jika (x y) adalah faktor dari P(x, y), maka tunjukkan bahwa (x y) 2 adalah faktor dari P(x, y). Jawab :

7 7. Tentukan bilangan yang tepat memiliki 8 pembagi positif, dan hasil kali pembagipembaginya sama dengan Jawab :

8 8. Tentukan semua bilangan prima p yang memenuhi 2 p + p 2 juga prima.

9 9. Misalkan a, b, c adalah bilangan real berbeda yang memenuhi a 3 = 3(b 2 + c 2 ) 25, b 3 = 3(c 2 + a 2 ) 25 dan c 3 = 3(a 2 + b 2 ) 25. Tentukan nilai abc.

10 10. Sebanyak n orang pengurus sebuah organisasi akan dibagi ke dalam empat komisi mengikuti ketentuan berikut: (i) setiap anggota tergabung kedalam tepat dua komisi, dan (ii) setiap dua komisi memiliki tepat satu anggota bersama. Berapakah n?

11 11. Jika a, b dan c bilangan bulat tunjukkan bahwa abc(a 3 b 3 )(b 3 c 3 )(c 3 a 3 ) habis dibagi 7. Jawab :

12 12. Jika x, y, z dan n adalah bilangan asli yang memenuhi x n + y n = z n maka buktikan bahwa x, y dan z semuanya lebih dari n.

13 13. Tentukan semua bilangan tiga angka yang merupakan penjumlahan dari faktorial digit-digitnya.

14 14. Tentukan semua bilangan bulat n yang memenuhi bahwa n n adalah bilangan bulat

15 15. Tentukan semua 3 x 3 magic square. Definisi : Sebuah n x n magic square adalah sebuah matriks dengan ukiuran n x n yang elemen-elemennya adalah bilangan bulat - bilangan bulat 1, 2, 3,, n 2 dan memenuhi jumlah elemen pada masing-masing baris, masing-masing kolom dan kedua diagonal utama sama. Contoh 4 x 4 magic square adalah :

16 16. Buktikan atau berikan bantahan bahwa ada bilangan bulat yang menjadi dua kali nilai semula jika angka pertama dipindahkan menjadi angka terakhir.

17 17. Buktikan bahwa selalu bernilai bilangan bulat.

18 18. Pada bulan Desember, masing-masing 20 orang siswa dalam satu kelas yang sama megirimkan 10 kartu ucapan selamat kepada kawan-kawannya yang lain yang juga berada dalam satu kelas yang sama. Kelas tersebut hanya berisi ke-20 orang siswa tersebut. (i) Buktikan bahwa terdapat sedikitnya satu pasang siswa yang saling mengirim kartu. (ii) Misalkan sebuah kelas terdiri dari n siswa masing-masing mengirimkan m kartu ucapan selamat kepada m orang kawan-kawannya yang lain yang juga berada dalam satu kelas yang sama. Bagaimanakah hubungan m dan n sedikitnya satu pasang siswa yang saling mengirim kartu?

19 19. Banyaknya soal matematika yang dikerjakan Fina hari ini bertambah tepat 40% dibandingkan dengan yang dikerjakannya kemarin. Banyaknya soal yang dikerjakan Fina hari ini paling sedikit ada?

20 20. Buktikan bahwa satu-satunya solusi positif dari persamaan adalah (a, b, c) = (1, 1, 1). a + b 2 + c 3 = 3 b + c 2 + a 3 = 3 c + a 2 + b 3 = 3

21 21. Buktikan ( )( )( ) ( )( ) ( )( )

22 22. Jika bilangan riil memenuhi ( ) ( ), buktikan bahwa ( ) ( )

23 23. Jika ( ) ( ), buktikan bahwa.

24 24. Luas daerah yang berwarna hitam adalah

25 25. Tentukan nilai terkecil dari n bilangan asli yang dapat ditulis sebagai penjumlahan 9 bilangan asli berurutan, penjumlahan 10 bilangan asli berurutan dan penjumlahan 11 bilangan asli berurutan.

26 26. Tunjukkan bahwa tidak terdapat tiga buah bilangan ganjil berurutan yang masingmasing merupakan jumlahan dua buah bilangan kuadrat lebih besar dari 0.

27 27. Tentukan himpunan penyelesaian dari 12x 4 56x x 2 56x + 12 = 0

28 28. a dan b adalah bilangan bulat yang memenuhi a 2 + 3a 2 b 2 = 30b Tentukan 3a 2 b 2

29 29.,, merupakan akar-akar dari x 3 x = 0. Berapakah

30 30. ABCD adalah persegi panjang. P adalah titik tengah AB dan Q adalah titik pada PD sehingga CQ tegak lurus PD. Buktikan bahwa segitiga BQC sama kaki.

31 31. Untuk sembarang bilangan real t, t didefinisikan sebagai bilangan bulat terbesar kurang dari atau sama dengan t. Sebagai contoh : 1/3 =0,dan 5/2 = 3. Tunjukkan bahwa persamaan x + 2x + 3x + 4x + 5x + 6x = 1234 tidak mempunyai solusi x real.

32 32. Untuk nilai b yang mana persamaan 1988x 2 + bx = 0 dan 8891x 2 + bx = 0 mempunyai akar persekutuan?

33 33. Tunjukkan bahwa untuk setiap bilangan asli n dan semua bilangan asli d yang membagi 2n 2, maka bilangan n 2 + d bukan merupakan bilangan kuadrat sempurna.

34 34. Tentukan nilai a bulat yang membuat x 2 x + a membagi x 13 + x + 90.

35 35. Misalkan a, b, c dan d bilangan prima yang memenuhi a > 3b > 6c > 12d dan a 2 b 2 + c 2 d 2 = Tentukan semua kemungkinan nilai dari a 2 + b 2 + c 2 + d 2.

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2009 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional  contact person : ALJABAR ALJABAR 1. Diberikan a 4 + a 3 + a 2 + a + 1 = 0. Tentukan a 2000 + a 2010 + 1. 2. Diberikan sistem persamaan 2010(x y) + 2011(y z) + 2012(z x) = 0 2010 2 (x y) + 2011 2 (y z) + 2012 2 (z x) = 2011 Tentukan

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Waktu : 210 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA 2015 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 006 TINGKAT PROVINSI TAHUN 005 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

BAB 2 : DETERMINAN. 2. Tentukan banyaknya permutasi dari himpunan bilangan bulat {1, 2, 3, 4}

BAB 2 : DETERMINAN. 2. Tentukan banyaknya permutasi dari himpunan bilangan bulat {1, 2, 3, 4} BAB 2 : DETERMINAN PERMUTASI Kita sudah cukup mengenal fungsi-fungsi sinus, fungsi kuadrat, juga fungsi konstant yang memetakan suatu bilangan riil ke bilangan riil. Pada bagian ini akan dipelajari mengenai

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 21 YOGYAKARTA55281 lmnas@ugm.ac.id http://lmnas.fmipugm.ac.id

Lebih terperinci

BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH ALIYAH

BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH ALIYAH Nama : Sekolah : Kab / Kota : Propinsi : NASKAH SOAL BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH ALIYAH SELEKSI TINGKAT PROPINSI KOMPETISI SAINS MADRASAH TAHUN 2015 Halaman 1 dari 8 halaman Petunjuk Umum

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 004 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN

Lebih terperinci

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab :

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab : 3 2 1. Diketahui suatu polynomial 15 A B 3C D. Berapakah koefisien dari 5 15 6 2 2 A B C D Jawab :? 2. Diberikan polinomial f(x) = x n + a 1 x n-1 + a 2 x n-2 + + a n-1 x + a n dengan koefisien a 1, a

Lebih terperinci

OSN Guru Matematika SMA (Olimpiade Sains Nasional)

OSN Guru Matematika SMA (Olimpiade Sains Nasional) ocsz Pembahasan Soal OSN Guru 2012 OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Berkembangnya jaman yang semakin maju dan modern turut dipengaruhi oleh perkembangan ilmu pengetahuan yang dimiliki manusia. Hal tersebut dapat dilihat secara nyata

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2013

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2013 Pembahasan Olimpiade Matematika SM Tingkat Kabupaten Tahun 013 Oleh Tutur Widodo 1. Misalkan a dan b adalah bilangan asli dengan a > b. Jika 9 + 013 = a + b, maka nilai a b adalah... Untuk a, b 0 berlaku

Lebih terperinci

Soal dan Pembahasan Tentang Suku Banyak

Soal dan Pembahasan Tentang Suku Banyak Soal dan Pembahasan Tentang Suku Banyak Oleh : Fendi Alfi Fauzi 9 Maret 014 1. Nilai suku banyak untuk f (x) = x 3 x 3x + 5 untuk x = adalah... f ( ) = ( ) 3 ( ) 3 ( ) + 5 = 16 4 + 6 + 5 = 0 + 11 = 9.

Lebih terperinci

OMITS 12. Soal Babak Penyisihan Olimpiade Matematika ITS (OMITS) Tahun 2012 Tingkat SMA/Sederajat MATEMATIKA ING NGARSA SUNG TULADHA

OMITS 12. Soal Babak Penyisihan Olimpiade Matematika ITS (OMITS) Tahun 2012 Tingkat SMA/Sederajat MATEMATIKA ING NGARSA SUNG TULADHA OMITS 2 Soal Babak Penyisihan Olimpiade Matematika ITS (OMITS) Tahun 202 Tingkat SMA/Sederajat MATEMATIKA ING NGARSA SUNG TULADHA Olimpiade? Ya OMITS Petunjuk Pengerjaan Soal Babak Penyisihan Olimpiade

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA PETUNJUK UNTUK PESERTA: 1. Tes bagian pertama ini terdiri dari 20 soal. 2. Waktu yang disediakan adalah

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

Relasi Rekursi. Matematika Informatika 4. Onggo

Relasi Rekursi. Matematika Informatika 4. Onggo Relasi Rekursi Matematika Informatika 4 Onggo Wiryawan @OnggoWr Definisi Definisi 1 Suatu relasi rekursi untuk sebuah barisan {a n } merupakan sebuah rumus untuk menyatakan a n ke dalam satu atau lebih

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik.

Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Induksi Matematika Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Contoh: 1. Buktikan bahwa jumlah n bilangan bilangan bulat positif pertama adalah n(n

Lebih terperinci

PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA

PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA 1. Sebelum mengerjakan soal, telitilah dahulu jumlah dan nomor halaman yang terdapat pada naskah soal. Pada naskah soal ini terdiri dari 30 soal pilihan ganda

Lebih terperinci

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 01 Tingkat SMP Oleh Tutur Widodo I. Soal Pilihan Ganda (Cara Penilaian : Benar = 1 poin, Kosong = 0, Salah = 0.5 poin) 1. Terdapat berapa

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci

GLOSSARIUM. A Akar kuadrat

GLOSSARIUM. A Akar kuadrat A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2009

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2009 Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 9. Bentuk x < setara (ekivalen) dengan A. - < x C. x < E. < x < B. x < D. x > - x < - + x < dibagi - + x < x - < Jawabannya adalah B x bx m. Jika

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2013 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1 TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi

II. TINJAUAN PUSTAKA. Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi 5 II. TINJAUAN PUSTAKA Pada bab ini akan dibahas konsep-konsep yang mendasari konsep representasi penjumlahan dua bilangan kuadrat sempurna. Seperti, teori keterbagian bilangan bulat, bilangan prima, kongruensi

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN SEMSTER GENAP

MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN SEMSTER GENAP MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN 05 06 SEMSTER GENAP STANDAR KOMPETENSI 4. Menggunakan aturan sukubanyak dalam penyelesaian masalah. KOMPETENSI DASAR 4. Menggunakan

Lebih terperinci

A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah.

A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah. . Diketahui premis premis : () Jika Badu rajin belajar dan, maka Ayah membelikan bola basket () Ayah tidak membelikan bola basket Kesimpulan yang sah A. Badu rajin belajar dan Badu patuh pada orang tua

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2012 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2009

Pembahasan Matematika IPA SIMAK UI 2009 Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan adalah bilangan bulat genap tak negatif. n = F P B(a, b + KP K(a, b a b Solusi. Misalkan d = F P B(a, b,

Lebih terperinci

didapat !!! BAGIAN Disusun oleh :

didapat !!! BAGIAN Disusun oleh : SELEKSI OLIMPIADE TINGKAT PROVINSI 2012 TIM OLIMPIADE MATEMATIKAA INDONESIA 2013 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 2012

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 2 YOGYAKARTA5528 lmnas@ugm.ac.id http://lmnas.fmipa.ugm.ac.id

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Matematika

K13 Revisi Antiremed Kelas 10 Matematika K Revisi Antiremed Kelas Matematika Persamaan Kuadrat - Latihan Soal Essay Do Name: RKARMATWJB5 Version : 6- halaman. Nyatakan persamaan-persamaan berikut ke dalam bentuk baku kemudian tentukan nilai b

Lebih terperinci

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL BILANGAN

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL BILANGAN PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 200 MODUL BILANGAN DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA Paket 1. . Nilai dari b. . Jika hasil dari SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika n bilangan prima ganjil maka n.. Jika n maka n 4. Ingkaran dari kesimpulan

Lebih terperinci

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika Solusi Olimpiade Sains Tingkat Kabupaten/Kota 01 Bidang Matematika Oleh : Tutur Widodo 1. Karena 01 = 13 31 maka banyaknya faktor positif dari 01 adalah (1 + 1) (1 + 1) (1 + 1) = 8. Untuk mencari banyak

Lebih terperinci

1 [ABC] = 3 1 X = [AFG] 1 X [CGB] = 3

1 [ABC] = 3 1 X = [AFG] 1 X [CGB] = 3 Solusi Olimpiade Matematika Kota/Kabupaten 006 Bagian Pertama. (Jawaban : C) Tiga bilangan prima pertama yang lebih besar dari 0 adalah 3, 9 dan 6. 3 + 9 + 6 = 73 Jumlah tiga bilangan prima pertama yang

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 015 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 015 = 5 13 31 Banyaknya faktor

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 015 BIDANG MATEMATIKA BAGIAN A: SOAL ISIAN SINGKAT 1. Banyak faktor persekutuan dari 1515 dan 530 yang merupakan bilangan genap positip

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI SESI III (ISIAN SINGKAT DAN ESSAY) WAKTU : 180 MENIT ============================================================

Lebih terperinci

TRY OUT SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 011 Waktu: 10 Menit PUSAT KLINIK PENDIDIKAN INDONESIA (PKPI) bekerjasama dengan LEMBAGA BIMBINGAN BELAJAR SSCIntersolusi

Lebih terperinci

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP

Lebih terperinci

MATRIKS. Notasi yang digunakan NOTASI MATRIKS

MATRIKS. Notasi yang digunakan NOTASI MATRIKS MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.

Lebih terperinci

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN Dosen : Fitri Yulianti, SP. MSi Skema Himpunan Kompleks Real Rasional Bulat Cacah Asli Genap Ganjil Prima Komposit Nol Bulat Negatif Pecahan Irasional Imajiner Pengertian

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

BERKAS SOAL BIDANG STUDI : MATEMATIKA

BERKAS SOAL BIDANG STUDI : MATEMATIKA BERKAS SOAL BIDANG STUDI : MADRASAH TSANAWIYAH SELEKSI TINGKAT PROVINSI KOMPETISI SAINS MADRASAH NASIONAL 2014 Petunjuk Umum 1. Tuliskan nama dan asal sekolah, kabupaten, dan provinsi anda pada setiap

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika Tutur Widodo Pembahasan OSP Matematika SMA 011 Pembahasan OSN Tingkat Provinsi Tahun 011 Jenjang SMA Bidang Matematika Bagian A : Soal Isian Singkat 1. Diberikan segitiga sama kaki ABC dengan AB = AC.

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT K-13 Kelas X matematika PEMINATAN PERSAMAAN KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum persamaan kuadrat..

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

Induksi 1 Matematika

Induksi 1 Matematika Induksi 1 Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 013 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 94 + 013 = a + b 013 = 61

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo Tutur Widodo OSN Matematika SMA 01 Pembahasan OSN Matematika SMA Tahun 01 Seleksi Tingkat Nasional Tutur Widodo 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-590 55 TR OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 00 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 003 Bidang Matematika Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

SIMAK UI 2015 Matematika Dasar

SIMAK UI 2015 Matematika Dasar SIMAK UI 015 Matematika Dasar Soal Doc. Name: SIMAKUI015MATDAS999 Version: 016-05 halaman 1 01. Pernyataan berikut yang BENAR mengenai perkalian matriks (A) Jika A dan B adalah matriks persegi, maka (A+B)(A

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 01 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 0 soal isian singkat dan tes

Lebih terperinci

1 INDUKSI MATEMATIKA

1 INDUKSI MATEMATIKA 1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : Tutur Widodo Pembahasan Matematika IPA SIMAK UI 0 Pembahasan Matematika IPA SIMAK UI 0 Kode 5 Oleh Tutur Widodo. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : maka nilai x y

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2012 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

0,1,2,3,4. (e) Perhatikan jawabmu pada (a) (d). Tuliskan kembali sifat-sifat yang kamu temukan dalam. 5. a b c d

0,1,2,3,4. (e) Perhatikan jawabmu pada (a) (d). Tuliskan kembali sifat-sifat yang kamu temukan dalam. 5. a b c d 1 Pada grup telah dipelajari himpunan dengan satu operasi. Sekarang akan dipelajari himpunan dengan dua operasi. Ilustrasi 1.1 Perhatikan himpunan 0,1,2,3,4. (a) Apakah grup terhadap operasi penjumlahan?

Lebih terperinci

Individual Contest Section I: 1. Colleen menggunakan kalkulator untuk

Individual Contest Section I: 1. Colleen menggunakan kalkulator untuk 2006 Wenzhou Invitational World Youth Mathematics Intercity Competition Individual Contest Section I: 1. Colleen menggunakan kalkulator untuk menghitung a+b, dimana a, b dan c adalah bulat c positif. Dia

Lebih terperinci

SIAP UJIAN NASIONAL (UCUN MANDIRI)

SIAP UJIAN NASIONAL (UCUN MANDIRI) PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SMP NEGERI 196 JAKARTA Jalan Mabes TNI, Pondok Ranggon, Cipayung, Jakarta Timur, Telp/Fax : 844198/021849992 SIAP UJIAN NASIONAL (UCUN

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang Pertemuan 2. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuanku Tambusai Bangkinang 0. Bilangan Real 0. Bilangan Real sebagai bentuk desimal Pada pembahasan berikutnya kita diasumsikan telah mengetahui dengan

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas Matematika Persamaan Kuadrat - Latihan Soal Essay Do Name: KARMATWJB8 Version : 4-9 halaman. Nyatakan persamaan-persamaan berikut ke dalam bentuk baku kemudian tentukan nilai b c dan a

Lebih terperinci

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2016 Bidang Matematika

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2016 Bidang Matematika Solusi Olimpiade Sains Tingkat Kabupaten/Kota 06 Bidang Matematika. Jika a, b, c, d, e merupakan bilangan asli dengan a < b, b < 3c, c < 4d, d < 5e dan e < 00, maka nilai maksimum dari a adalah... Jawaban

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2009

SOAL UN DAN PENYELESAIANNYA 2009 1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan

Lebih terperinci

& & # = atau )!"* ( & ( ( (&

& & # = atau )!* ( & ( ( (& MATRIKS ======PENGERTIAN====== Matriks merupakan Susunan bilangan-bilangan yang membentuk segi empat siku-siku. Susunan bilangan-bilangan tersebut dinamakan entri dalam matriks. Matriks dinotasikan dengan

Lebih terperinci

SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA

SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA SIMAK UI KEMAMPUAN DASAR Matematika Dasar Universitas Indonesia 0 FReS-TA SIMAK UI - Matematika Dasar 45 Kode Naskah Soal: PETUNJUK KHUSUS PETUNJUK

Lebih terperinci

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006 OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat, maka salah satu

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

Matematika: Persamaan Kuadrat 11/22/2011 PERSAMAAN KUADRAT. Oleh Syawaludin A. Harahap, MSc

Matematika: Persamaan Kuadrat 11/22/2011 PERSAMAAN KUADRAT. Oleh Syawaludin A. Harahap, MSc Matematika: Persamaan Kuadrat //0 MATA KULIAH : MATEMATIKA KODE MATA KULIAH : UNM0.0 SKS : (-) ) PERSAMAAN KUADRAT Oleh Syawaludin A. Harahap, MSc UNIVERSITAS PADJADJARAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas.

Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Modul 03 HIMPUNAN I. Cara Menyatakan Himpunan PENGERTIAN Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Contoh: Himpunan siswi kelas III SMU 6 tahun 1999-2000 yang

Lebih terperinci

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6)

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6) RUMUS-RUMUS TAUTOLOGI (Minggu ke-5 dan 6) 1 1 Rumus-rumus tautologi Rumus 1.1 (Komutatif) 1. p q q p 2. p q q p Bukti: p q p q q p T T T T T F F F F T F F F F F F 2 Rumus 1.2 (Distributif) 1. p (q r) (p

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Rabu, 20 Nopember 2013 : 120 menit : 40 Pilihan Ganda 1D Petunjuk :

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI TAHUN 2002 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : BAGIAN PERTAMA. A + B + C = ( )

Lebih terperinci

Silabus. - Membedakan berbagai jenis bilangan yang ada. Tugas individu, tugas kelompok, kuis.

Silabus. - Membedakan berbagai jenis bilangan yang ada. Tugas individu, tugas kelompok, kuis. Silabus Nama Sekolah : SMK Mata Pelajaran : MATEMATIKA Kelas / Program : X / AKUNTANSI DAN PENJUALAN Semester : GANJIL Sandar Kompetensi: 1. Memecahkan masalah berkaitan dengan konsep operasi bilangan

Lebih terperinci

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPA 01 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA KOTA BATAM

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPA 01 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA KOTA BATAM TRY OUT UJIAN NASIONAL SMA/MA 2016 MATEMATIKA IPA 01 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA KOTA BATAM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : Matematika : SMA/MA : IPA WAKTU PELAKSANAAN

Lebih terperinci