Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :

Ukuran: px
Mulai penontonan dengan halaman:

Download "Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :"

Transkripsi

1 1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x= terdiri dari 3 puluhan dan 8 satuan.3+8=11 terdiri dari 1 puluhan dan 1 satuan.1+1= =51. Sehingga H(38)=51. Ada berapa banyak solusi nilai x yang memenuhi H(x)=60? Jawab :

2 2. 1 t arctan t dt 0 =. Jawab :

3 3. Buktikan bahwa jika x dan y bilangan rasional yang memenuhi x y 2x y maka 1-xy adalah kuadrat dari suatu bilangan rasional.

4 4. Diberikan polinomial p(x) = x n + a 1 x n-1 + a 2 x n a n-1 x + a n dengan koefisien a 1, a 2,, a n semuanya bilangan bulat. Jika p(0) dan p(1) keduanya bilangan ganjil, tunjukkan bahwa p(x) tidak mempunyai akar bilangan bulat. Jawab :

5 5. Untuk n bilangan bulat, tunjukkan bahwa n 2 + 2n + 12 bukan merupakan kelipatan 121. Jawab :

6 6. Misalkan P(x, y) adalah polinomial dengan dua variabel x, y yang memenuhi P(x, y) = P(y, x) untuk setiap x, y (sebagai contoh polinomial x 2 2xy + y 2 memenuhi kondisi demikian). Jika (x y) adalah faktor dari P(x, y), maka tunjukkan bahwa (x y) 2 adalah faktor dari P(x, y). Jawab :

7 7. Tentukan bilangan yang tepat memiliki 8 pembagi positif, dan hasil kali pembagipembaginya sama dengan Jawab :

8 8. Tentukan semua bilangan prima p yang memenuhi 2 p + p 2 juga prima.

9 9. Misalkan a, b, c adalah bilangan real berbeda yang memenuhi a 3 = 3(b 2 + c 2 ) 25, b 3 = 3(c 2 + a 2 ) 25 dan c 3 = 3(a 2 + b 2 ) 25. Tentukan nilai abc.

10 10. Sebanyak n orang pengurus sebuah organisasi akan dibagi ke dalam empat komisi mengikuti ketentuan berikut: (i) setiap anggota tergabung kedalam tepat dua komisi, dan (ii) setiap dua komisi memiliki tepat satu anggota bersama. Berapakah n?

11 11. Jika a, b dan c bilangan bulat tunjukkan bahwa abc(a 3 b 3 )(b 3 c 3 )(c 3 a 3 ) habis dibagi 7. Jawab :

12 12. Jika x, y, z dan n adalah bilangan asli yang memenuhi x n + y n = z n maka buktikan bahwa x, y dan z semuanya lebih dari n.

13 13. Tentukan semua bilangan tiga angka yang merupakan penjumlahan dari faktorial digit-digitnya.

14 14. Tentukan semua bilangan bulat n yang memenuhi bahwa n n adalah bilangan bulat

15 15. Tentukan semua 3 x 3 magic square. Definisi : Sebuah n x n magic square adalah sebuah matriks dengan ukiuran n x n yang elemen-elemennya adalah bilangan bulat - bilangan bulat 1, 2, 3,, n 2 dan memenuhi jumlah elemen pada masing-masing baris, masing-masing kolom dan kedua diagonal utama sama. Contoh 4 x 4 magic square adalah :

16 16. Buktikan atau berikan bantahan bahwa ada bilangan bulat yang menjadi dua kali nilai semula jika angka pertama dipindahkan menjadi angka terakhir.

17 17. Buktikan bahwa selalu bernilai bilangan bulat.

18 18. Pada bulan Desember, masing-masing 20 orang siswa dalam satu kelas yang sama megirimkan 10 kartu ucapan selamat kepada kawan-kawannya yang lain yang juga berada dalam satu kelas yang sama. Kelas tersebut hanya berisi ke-20 orang siswa tersebut. (i) Buktikan bahwa terdapat sedikitnya satu pasang siswa yang saling mengirim kartu. (ii) Misalkan sebuah kelas terdiri dari n siswa masing-masing mengirimkan m kartu ucapan selamat kepada m orang kawan-kawannya yang lain yang juga berada dalam satu kelas yang sama. Bagaimanakah hubungan m dan n sedikitnya satu pasang siswa yang saling mengirim kartu?

19 19. Banyaknya soal matematika yang dikerjakan Fina hari ini bertambah tepat 40% dibandingkan dengan yang dikerjakannya kemarin. Banyaknya soal yang dikerjakan Fina hari ini paling sedikit ada?

20 20. Buktikan bahwa satu-satunya solusi positif dari persamaan adalah (a, b, c) = (1, 1, 1). a + b 2 + c 3 = 3 b + c 2 + a 3 = 3 c + a 2 + b 3 = 3

21 21. Buktikan ( )( )( ) ( )( ) ( )( )

22 22. Jika bilangan riil memenuhi ( ) ( ), buktikan bahwa ( ) ( )

23 23. Jika ( ) ( ), buktikan bahwa.

24 24. Luas daerah yang berwarna hitam adalah

25 25. Tentukan nilai terkecil dari n bilangan asli yang dapat ditulis sebagai penjumlahan 9 bilangan asli berurutan, penjumlahan 10 bilangan asli berurutan dan penjumlahan 11 bilangan asli berurutan.

26 26. Tunjukkan bahwa tidak terdapat tiga buah bilangan ganjil berurutan yang masingmasing merupakan jumlahan dua buah bilangan kuadrat lebih besar dari 0.

27 27. Tentukan himpunan penyelesaian dari 12x 4 56x x 2 56x + 12 = 0

28 28. a dan b adalah bilangan bulat yang memenuhi a 2 + 3a 2 b 2 = 30b Tentukan 3a 2 b 2

29 29.,, merupakan akar-akar dari x 3 x = 0. Berapakah

30 30. ABCD adalah persegi panjang. P adalah titik tengah AB dan Q adalah titik pada PD sehingga CQ tegak lurus PD. Buktikan bahwa segitiga BQC sama kaki.

31 31. Untuk sembarang bilangan real t, t didefinisikan sebagai bilangan bulat terbesar kurang dari atau sama dengan t. Sebagai contoh : 1/3 =0,dan 5/2 = 3. Tunjukkan bahwa persamaan x + 2x + 3x + 4x + 5x + 6x = 1234 tidak mempunyai solusi x real.

32 32. Untuk nilai b yang mana persamaan 1988x 2 + bx = 0 dan 8891x 2 + bx = 0 mempunyai akar persekutuan?

33 33. Tunjukkan bahwa untuk setiap bilangan asli n dan semua bilangan asli d yang membagi 2n 2, maka bilangan n 2 + d bukan merupakan bilangan kuadrat sempurna.

34 34. Tentukan nilai a bulat yang membuat x 2 x + a membagi x 13 + x + 90.

35 35. Misalkan a, b, c dan d bilangan prima yang memenuhi a > 3b > 6c > 12d dan a 2 b 2 + c 2 d 2 = Tentukan semua kemungkinan nilai dari a 2 + b 2 + c 2 + d 2.

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2009 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional  contact person : ALJABAR ALJABAR 1. Diberikan a 4 + a 3 + a 2 + a + 1 = 0. Tentukan a 2000 + a 2010 + 1. 2. Diberikan sistem persamaan 2010(x y) + 2011(y z) + 2012(z x) = 0 2010 2 (x y) + 2011 2 (y z) + 2012 2 (z x) = 2011 Tentukan

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA 2015 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 006 TINGKAT PROVINSI TAHUN 005 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

BAB 2 : DETERMINAN. 2. Tentukan banyaknya permutasi dari himpunan bilangan bulat {1, 2, 3, 4}

BAB 2 : DETERMINAN. 2. Tentukan banyaknya permutasi dari himpunan bilangan bulat {1, 2, 3, 4} BAB 2 : DETERMINAN PERMUTASI Kita sudah cukup mengenal fungsi-fungsi sinus, fungsi kuadrat, juga fungsi konstant yang memetakan suatu bilangan riil ke bilangan riil. Pada bagian ini akan dipelajari mengenai

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 004 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN

Lebih terperinci

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab :

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab : 3 2 1. Diketahui suatu polynomial 15 A B 3C D. Berapakah koefisien dari 5 15 6 2 2 A B C D Jawab :? 2. Diberikan polinomial f(x) = x n + a 1 x n-1 + a 2 x n-2 + + a n-1 x + a n dengan koefisien a 1, a

Lebih terperinci

OSN Guru Matematika SMA (Olimpiade Sains Nasional)

OSN Guru Matematika SMA (Olimpiade Sains Nasional) ocsz Pembahasan Soal OSN Guru 2012 OLIMPIADE SAINS NASIONAL KHUSUS GURU MATEMATIKA SMA OSN Guru Matematika SMA (Olimpiade Sains Nasional) Disusun oleh: Pak Anang Halaman 2 dari 26 PEMBAHASAN SOAL OLIMPIADE

Lebih terperinci

BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH ALIYAH

BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH ALIYAH Nama : Sekolah : Kab / Kota : Propinsi : NASKAH SOAL BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH ALIYAH SELEKSI TINGKAT PROPINSI KOMPETISI SAINS MADRASAH TAHUN 2015 Halaman 1 dari 8 halaman Petunjuk Umum

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

Soal dan Pembahasan Tentang Suku Banyak

Soal dan Pembahasan Tentang Suku Banyak Soal dan Pembahasan Tentang Suku Banyak Oleh : Fendi Alfi Fauzi 9 Maret 014 1. Nilai suku banyak untuk f (x) = x 3 x 3x + 5 untuk x = adalah... f ( ) = ( ) 3 ( ) 3 ( ) + 5 = 16 4 + 6 + 5 = 0 + 11 = 9.

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL BILANGAN

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL BILANGAN PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 200 MODUL BILANGAN DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP

Lebih terperinci

GLOSSARIUM. A Akar kuadrat

GLOSSARIUM. A Akar kuadrat A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk

Lebih terperinci

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika Solusi Olimpiade Sains Tingkat Kabupaten/Kota 01 Bidang Matematika Oleh : Tutur Widodo 1. Karena 01 = 13 31 maka banyaknya faktor positif dari 01 adalah (1 + 1) (1 + 1) (1 + 1) = 8. Untuk mencari banyak

Lebih terperinci

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 015 BIDANG MATEMATIKA BAGIAN A: SOAL ISIAN SINGKAT 1. Banyak faktor persekutuan dari 1515 dan 530 yang merupakan bilangan genap positip

Lebih terperinci

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 015 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 015 = 5 13 31 Banyaknya faktor

Lebih terperinci

A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah.

A. 3 B. 1 C. 1 D. 2 E. 5 B. 320 C. 240 D. 200 E x Fungsi invers dari f x ( 1. adalah. . Diketahui premis premis : () Jika Badu rajin belajar dan, maka Ayah membelikan bola basket () Ayah tidak membelikan bola basket Kesimpulan yang sah A. Badu rajin belajar dan Badu patuh pada orang tua

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.9 Sukoharjo Telp. 0-590 55 TR OUT UJIAN NASIONAL TAHAP TAHUN PELAJARAN 0/0 Mata Pelajaran : MATEMATIKA

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

didapat !!! BAGIAN Disusun oleh :

didapat !!! BAGIAN Disusun oleh : SELEKSI OLIMPIADE TINGKAT PROVINSI 2012 TIM OLIMPIADE MATEMATIKAA INDONESIA 2013 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 2012

Lebih terperinci

1 [ABC] = 3 1 X = [AFG] 1 X [CGB] = 3

1 [ABC] = 3 1 X = [AFG] 1 X [CGB] = 3 Solusi Olimpiade Matematika Kota/Kabupaten 006 Bagian Pertama. (Jawaban : C) Tiga bilangan prima pertama yang lebih besar dari 0 adalah 3, 9 dan 6. 3 + 9 + 6 = 73 Jumlah tiga bilangan prima pertama yang

Lebih terperinci

BERKAS SOAL BIDANG STUDI : MATEMATIKA

BERKAS SOAL BIDANG STUDI : MATEMATIKA BERKAS SOAL BIDANG STUDI : MADRASAH TSANAWIYAH SELEKSI TINGKAT PROVINSI KOMPETISI SAINS MADRASAH NASIONAL 2014 Petunjuk Umum 1. Tuliskan nama dan asal sekolah, kabupaten, dan provinsi anda pada setiap

Lebih terperinci

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN Dosen : Fitri Yulianti, SP. MSi Skema Himpunan Kompleks Real Rasional Bulat Cacah Asli Genap Ganjil Prima Komposit Nol Bulat Negatif Pecahan Irasional Imajiner Pengertian

Lebih terperinci

Induksi 1 Matematika

Induksi 1 Matematika Induksi 1 Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo Tutur Widodo OSN Matematika SMA 01 Pembahasan OSN Matematika SMA Tahun 01 Seleksi Tingkat Nasional Tutur Widodo 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada

Lebih terperinci

1 INDUKSI MATEMATIKA

1 INDUKSI MATEMATIKA 1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut

Lebih terperinci

SIMAK UI 2015 Matematika Dasar

SIMAK UI 2015 Matematika Dasar SIMAK UI 015 Matematika Dasar Soal Doc. Name: SIMAKUI015MATDAS999 Version: 016-05 halaman 1 01. Pernyataan berikut yang BENAR mengenai perkalian matriks (A) Jika A dan B adalah matriks persegi, maka (A+B)(A

Lebih terperinci

1. Suatu kubus mempunyai panjang diagonal ruang 6 cm, maka panjang rusuk kubus tersebut adalah. A. cm. B. cm. C. cm D. 2 cm A. 0,2 B. 0,5 C. 1,5 D.

1. Suatu kubus mempunyai panjang diagonal ruang 6 cm, maka panjang rusuk kubus tersebut adalah. A. cm. B. cm. C. cm D. 2 cm A. 0,2 B. 0,5 C. 1,5 D. 1. Suatu kubus mempunyai panjang diagonal ruang 6 cm, maka panjang rusuk kubus tersebut adalah. cm cm cm 2 cm 2.. 0,2 0,5 1,5 15 3. Suatu pekerjaan jika dikerjakan 15 orang dapat selesai bekerja dalam

Lebih terperinci

Individual Contest Section I: 1. Colleen menggunakan kalkulator untuk

Individual Contest Section I: 1. Colleen menggunakan kalkulator untuk 2006 Wenzhou Invitational World Youth Mathematics Intercity Competition Individual Contest Section I: 1. Colleen menggunakan kalkulator untuk menghitung a+b, dimana a, b dan c adalah bulat c positif. Dia

Lebih terperinci

0,1,2,3,4. (e) Perhatikan jawabmu pada (a) (d). Tuliskan kembali sifat-sifat yang kamu temukan dalam. 5. a b c d

0,1,2,3,4. (e) Perhatikan jawabmu pada (a) (d). Tuliskan kembali sifat-sifat yang kamu temukan dalam. 5. a b c d 1 Pada grup telah dipelajari himpunan dengan satu operasi. Sekarang akan dipelajari himpunan dengan dua operasi. Ilustrasi 1.1 Perhatikan himpunan 0,1,2,3,4. (a) Apakah grup terhadap operasi penjumlahan?

Lebih terperinci

SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA

SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA SOAL DAN PEMBAHASAN SELEKSI MASUK UNIVERSITAS INDONESIA SIMAK UI KEMAMPUAN DASAR Matematika Dasar Universitas Indonesia 0 FReS-TA SIMAK UI - Matematika Dasar 45 Kode Naskah Soal: PETUNJUK KHUSUS PETUNJUK

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2012 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPA 01 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA KOTA BATAM

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPA 01 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA KOTA BATAM TRY OUT UJIAN NASIONAL SMA/MA 2016 MATEMATIKA IPA 01 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA KOTA BATAM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : Matematika : SMA/MA : IPA WAKTU PELAKSANAAN

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012 Tutur Widodo Pembahasan OSK Matematika SMA 01 Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi (n 1(n 3(n 5(n 013 = n(n + (n

Lebih terperinci

1. Sebuah bangun pejal terbuat dari dua kubus bersisi 1 dan 3 meter. Berapa luas bangun tersebut dalam m 2? A) 56 B) 58 C) 59 D) 60

1. Sebuah bangun pejal terbuat dari dua kubus bersisi 1 dan 3 meter. Berapa luas bangun tersebut dalam m 2? A) 56 B) 58 C) 59 D) 60 1. Sebuah bangun pejal terbuat dari dua kubus bersisi 1 dan 3 meter. Berapa luas bangun tersebut dalam m 2? A) 56 B) 58 C) 59 D) 60 2. Sebuah botol dengan volume liter, diisi air hingga volumenya. Berapa

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 1. Perhatikan himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = { 1 < 11, bilangan ganjil} C = {semua faktor dari 12}

Lebih terperinci

Matematika: Persamaan Kuadrat 11/22/2011 PERSAMAAN KUADRAT. Oleh Syawaludin A. Harahap, MSc

Matematika: Persamaan Kuadrat 11/22/2011 PERSAMAAN KUADRAT. Oleh Syawaludin A. Harahap, MSc Matematika: Persamaan Kuadrat //0 MATA KULIAH : MATEMATIKA KODE MATA KULIAH : UNM0.0 SKS : (-) ) PERSAMAAN KUADRAT Oleh Syawaludin A. Harahap, MSc UNIVERSITAS PADJADJARAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN

Lebih terperinci

KISI-KISI SOAL UJIAN SEKOLAH SEKOLAH MENENGAH KEJURUAN (SMK)

KISI-KISI SOAL UJIAN SEKOLAH SEKOLAH MENENGAH KEJURUAN (SMK) 0 KISI-KISI UJIAN SEKOLAH SEKOLAH MENENGAH KEJURUAN (SMK) MATA PELAJARAN : MATEMATIKA KELAS : XII KELOMPOK : TEKNOLOGI, PERTANIAN DAN KESEHATAN BENTUK & JMl : PILIHAN GANDA = 35 DAN URAIAN = 5 WAKTU :

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n )

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n ) Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi adalah... (n 1)(n 3)(n 5)(n 013) = n(n + )(n + )(n + 01) Jawaban : 0 ( tidak

Lebih terperinci

Silabus. - Membedakan berbagai jenis bilangan yang ada. Tugas individu, tugas kelompok, kuis.

Silabus. - Membedakan berbagai jenis bilangan yang ada. Tugas individu, tugas kelompok, kuis. Silabus Nama Sekolah : SMK Mata Pelajaran : MATEMATIKA Kelas / Program : X / AKUNTANSI DAN PENJUALAN Semester : GANJIL Sandar Kompetensi: 1. Memecahkan masalah berkaitan dengan konsep operasi bilangan

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta

Lebih terperinci

1. Kompetisi ISPO diselenggarakan rutin setiap tahun sejak Maka pada 2006, adalah penyelenggaraan yang ke- A) 15 B) 16 C) 17 D) 13

1. Kompetisi ISPO diselenggarakan rutin setiap tahun sejak Maka pada 2006, adalah penyelenggaraan yang ke- A) 15 B) 16 C) 17 D) 13 1. Kompetisi ISPO diselenggarakan rutin setiap tahun sejak 1991. Maka pada 2006, adalah penyelenggaraan yang ke- A) 15 B) 16 C) 17 D) 13 2. A) 0 B) 106 C) 114 D) 126 3. Titik O terletak di tengah bidang

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : E57 NO SOAL PEMBAHASAN. Ingat! a = a a a A = 643 = 64 = 4 2 = 16. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : E57 NO SOAL PEMBAHASAN. Ingat! a = a a a A = 643 = 64 = 4 2 = 16. Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : E57 NO SOAL PEMBAHASAN Hasil dari 64 adalah.... a = a a a A. 8 B. 6. = C.. = D. 56 Hasil dari 6 8 adalah... A. 6 B. 4 C. 4 D. 4 6 4 Hasil dari 5 + ( : ) adalah...

Lebih terperinci

C. B dan C B. A dan D

C. B dan C B. A dan D 1. Perhatikan Himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = {x < x 11, x bilangan ganjil} C = {semua faktor dari 12} D = {bilangan genap antara 2 dan 14} Himpunan di atas yang ekuivalen

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 004 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN

Lebih terperinci

TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0.

TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. TEORI BILANGAN Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Sifat Pembagian pada Bilangan Bulat Misalkan a dan b adalah dua buah bilangan

Lebih terperinci

Pembahasan Simak UI Matematika Dasar 2012

Pembahasan Simak UI Matematika Dasar 2012 Pembahasan Simak UI Matematika Dasar 2012 PETUNJUK UMUM 1. Sebelum mengerjakan ujian, periksalah terlebih dulu, jumlah soal dan nomor halaman yang terdapat pada naskah soal. Naskah soal ini terdiri dari

Lebih terperinci

UAN MATEMATIKA SMA IPA 2009 P45

UAN MATEMATIKA SMA IPA 2009 P45 1. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut bertanding Ingkaran dari kesimpulan kedua premis di atas adalah.

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

1.Tentukan solusi dari : Rubrik Penskoran :

1.Tentukan solusi dari : Rubrik Penskoran : 1.Tentukan solusi dari : 1 7 1 Rubrik Penskoran : Skor Kriteria Langkah langkah untuk membentuk persamaan kuadrat telah benar. 4 Langkah pemfaktoran telah benar. (jika digunakan) Terdapat dua solusi yang

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci

MATEMATIKA (Paket 1) Waktu : 120 Menit

MATEMATIKA (Paket 1) Waktu : 120 Menit MATEMATIKA (Paket ) Waktu : 0 Menit (0) 77 0 Website : Pilihlah jawaban yang paling tepat!. Hasil dari 0 : 7 + ( ) adalah.... 0 0. Agus mempunyai sejumlah kelereng, diberikan kepada Rahmat, bagian diberikan

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 00 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 003 Bidang Matematika Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

Petunjuk Pengerjaan Soal Semifinal Olimpiade Matematika ITS (OMITS) tingkat SMP/Sederajat tahun 2012

Petunjuk Pengerjaan Soal Semifinal Olimpiade Matematika ITS (OMITS) tingkat SMP/Sederajat tahun 2012 Petunjuk Pengerjaan Soal Semifinal Olimpiade Matematika ITS (OMITS) tingkat SMP/Sederajat tahun 202 Bagian Kedua. Soal Semifinal OMITS 2 tingkat SMP/Sederajat Bagian Kedua terdiri dari 20 Soal Isian Singkat

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : E57. NO SOAL PEMBAHASAN 1 Hasil dari adalah = Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : E57. NO SOAL PEMBAHASAN 1 Hasil dari adalah = Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : E57 NO SOAL PEMBAHASAN Hasil dari 64 adalah... A. 8. a = a a a B. 6. a n n = a C.. a m n n = a m D. 56 Hasil dari 6 8 adalah... A. 6 B. 4 C. 4 D. 4 6 4 Hasil dari

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

BAB I BILANGAN. Skema Bilangan. I. Pengertian. Bilangan Kompleks. Bilangan Genap Bilangan Ganjil Bilangan Prima Bilangan Komposit

BAB I BILANGAN. Skema Bilangan. I. Pengertian. Bilangan Kompleks. Bilangan Genap Bilangan Ganjil Bilangan Prima Bilangan Komposit BAB I BILANGAN Skema Bilangan Bilangan Kompleks Bilangan Real Bilangan Imajiner Bilangan Rasional Bilangan Irasional Bilangan Bulat Bilangan Pecahan Bilangan Cacah Bilangan Bulat Negatif Bilangan Asli

Lebih terperinci

MATEMATIKA EKONOMI 1. Oleh : Muhammad Imron H

MATEMATIKA EKONOMI 1. Oleh : Muhammad Imron H MATEMATIKA EKONOMI 1 Oleh : Muhammad Imron H UNIVERSITAS GUNADARMA 015 Universitas Gunadarma Halaman BAB I HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan dari objek tertentu (dinamakan unsur,

Lebih terperinci

BIDANG STUDI : MATEMATIKA

BIDANG STUDI : MATEMATIKA BERKAS SOAL BIDANG STUDI : MADRASAH TSANAWIYAH SELEKSI TINGKAT PROVINSI KOMPETISI SAINS MADRASAH NASIONAL 2013 Petunjuk Umum 1. Tuliskan identitas Anda (Nama, Asal Sekolah dan Kabupaten/Kota Sekolah) secara

Lebih terperinci

FAKTORISASI SUKU ALJABAR

FAKTORISASI SUKU ALJABAR 1 FAKTORISASI SUKU ALJABAR Pernahkah kalian berbelanja di supermarket? Sebelum berbelanja, kalian pasti memperkirakan barang apa saja yang akan dibeli dan berapa jumlah uang yang harus dibayar. Kalian

Lebih terperinci

PENERAPAN AKSIOMA KETERBAGIAN DALAM PEMBELAJARAN KONSEP AKAR PANGKAT DUA DI KELAS VII SMP Oleh : Andi Syamsuddin*

PENERAPAN AKSIOMA KETERBAGIAN DALAM PEMBELAJARAN KONSEP AKAR PANGKAT DUA DI KELAS VII SMP Oleh : Andi Syamsuddin* PENERAPAN AKSIOMA KETERBAGIAN DALAM PEMBELAJARAN KONSEP AKAR PANGKAT DUA DI KELAS VII SMP Oleh : Andi Syamsuddin* A. Aksioma Keterbagian Sebuah bilangan dikatakan habis dibagi (terbagi) dengan sebuah bilangan

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

E59 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh

E59 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh DOKUMEN NEGARA SANGAT RAHASIA Pembahasan soal oleh http://pak-anang.blogspot.com E9 MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Pak Anang http://pakhttp://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April

Lebih terperinci

Soal Semifinal Perorangan OMV2011 SMP/MTs

Soal Semifinal Perorangan OMV2011 SMP/MTs BAGIAN 1 BERIKAN JAWABAN AKHIR! 1. Jika dibagi 9, maka sisanya sama dengan. 2. Perhatikan gambar berikut. Pada segiempat ABCD dibuat setengah lingkaran pada sisi AD dengan pusat E dan segitiga BEC sama

Lebih terperinci

BILANGAN CACAH. b. Langkah 1: Jumlahkan angka satuan (4 + 1 = 5). tulis 5. Langkah 2: Jumlahkan angka puluhan (3 + 5 = 8), tulis 8.

BILANGAN CACAH. b. Langkah 1: Jumlahkan angka satuan (4 + 1 = 5). tulis 5. Langkah 2: Jumlahkan angka puluhan (3 + 5 = 8), tulis 8. BILANGAN CACAH a. Pengertian Bilangan Cacah Bilangan cacah terdiri dari semua bilangan asli (bilangan bulat positif) dan unsur (elemen) nol yang diberi lambang 0, yaitu 0, 1, 2, 3, Bilangan cacah disajikan

Lebih terperinci

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar.

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar. SOAL 1. Diketahui bangun persegi panjang berukuran 4 dengan beberapa ruas garis, seperti pada gambar. Dengan menggunakan ruas garis yang sudah ada, tentukan banyak jajar genjang tanpa sudut siku-siku pada

Lebih terperinci

BAB I INDUKSI MATEMATIKA

BAB I INDUKSI MATEMATIKA BAB I INDUKSI MATEMATIKA 1.1 Induksi Matematika Induksi matematika adalah suatu metode yang digunakan untuk memeriksa validasi suatu pernyataan yang diberikan dalam suku-suku bilangan asli. Dalam pembahasan

Lebih terperinci

ENGLISH MEDIUM OF INSTRUCTION. Fakultas Keguruan dan Ilmu Pendidikan - Universitas Jember. By: Risky Cahyo Purnomo ( )

ENGLISH MEDIUM OF INSTRUCTION. Fakultas Keguruan dan Ilmu Pendidikan - Universitas Jember. By: Risky Cahyo Purnomo ( ) ENGLISH MEDIUM OF INSTRUCTION Fakultas Keguruan dan Ilmu Pendidikan - Universitas Jember By: Risky Cahyo Purnomo (110210101007) Suci Rahmawati (110210101076) SMART SOLUTION 0.1 Number Theory 0.1.1 Exercise

Lebih terperinci

D. 90 meter E. 95 meter

D. 90 meter E. 95 meter 1. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah... A. x² + 7x + 10 = 0 B. x² - 7x + 10 = 0 C. x² + 3x + 10 = 0 Kunci : E Rumus : (x - x 1 ) (x - x 2 ) = 0 dimana x 1 = 5, dan x 2 = -2 (x - 5) (x

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 200 BIDANG MATEMATIKA TEKNOLOGI SESI II (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 20 MENIT ============================================================

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT Jenis-jenis soal persamaan kuadrat yang sering diujikan adalah soal-soal tentang :. Menentukan akar-akar. Jenis-jenis akar 3. Jumlah dan hasil kali akar-akar 4. Tanda-tanda

Lebih terperinci

WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP

WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP Ilham Rizkianto FMIPA Universitas Negeri Yogyakarta Ilham_rizkianto@uny.ac.id Wonosari, 9 Mei 2014 MASALAH KOMBINATORIK Mengecoh,

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS.

HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS. 15, 20, 23, 25 HAPUS SALAH SATU BILANGAN DAN BERIKAN ALASAN, KENAPA BILANGAN ITU ANDA HAPUS. Dst. KESIMPULAN : (hubungkan dengan SIKAP yang harus Anda miliki untuk memilih dan memberikan alasan) PROBLEM

Lebih terperinci

INVARIAN DAN MONOVARIAN

INVARIAN DAN MONOVARIAN 1 olimpiadematematika.wordpress.com INVARIAN DAN MONOVARIAN Invarian adalah sebuah prinsip yang sangat berguna dalam pemecahan berbagai masalah. Secara harafiah, arti dari invarian adalah tidak berubah

Lebih terperinci

MATEMATIKA (Paket 2) Waktu : 120 Menit

MATEMATIKA (Paket 2) Waktu : 120 Menit MATEMATIKA (Paket 2) Waktu : 20 Menit (025) 77 2606 Website : Pilihlah jawaban yang paling tepat!. Hasil dari A. B. D. 8 5 8 2 2 8 2 adalah. 2. Hasil dari A. B. D. 8 adalah.. Bentuk sederhana dari A. 2

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2008 BIDANG MATEMATIKA SMP 19 APRIL 2008

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2008 BIDANG MATEMATIKA SMP 19 APRIL 2008 SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 008 BIDANG MATEMATIKA SMP 9 APRIL 008 A. SOAL PILIHAN GANDA. Jika P, Q, R adalah angka-angka dari suatu bilangan dan (00P + 0Q + R)(P + Q +

Lebih terperinci

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA SOAL PM MATEMATIKA SMA NEGERI 9 JAKARTA. Dengan merasionalkan penyebut, bentuk sederhana dari 5 5 + 5 4 5 5 e. + 5 6 + 5 adalah. Persamaan x (m + ) x = 0 mempunyai akar-akar yang berlawanan, maka nilai

Lebih terperinci