LOMBA MATEMATIKA NASIONAL KE-25

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "LOMBA MATEMATIKA NASIONAL KE-25"

Transkripsi

1 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS YOGYAKARTA 558

2 LM UGM ke-5 Babak Penyisihan 9 November 04 PERATURAN BABAK PENYISIHAN LOMBA MATEMATIKA UGM KE-5. Peserta wajib mengenakan seragam sekolah dan bersepatu.. Membawa Kartu Pelajar atau Surat Keterangan Siswa Sekolah yang dilampiri pasfoto berukuran 4.. Setiap peserta diwajibkan membawa Kartu Tanda Peserta LMNas 5 yang dapat diunduh dari web. 4. Peserta tidak boleh diwakilkan atau digantikan. 5. Peserta yang datang terlambat diperbolehkan masuk dan mengerjakan soal dengan waktu yang tersisa (tidak ada tambahan waktu). 6. Tulislah semua identitas diri Anda pada lembar jawaban pilihan ganda dan lembar jawaban isian singkat. 7. Sebelum mengerjakan soal, periksalah kelengkapan naskah soal. 8. Bacalah dan kerjakan soal dengan cermat. Untuk soal pilihan ganda, pilih salah satu jawaban yang Anda anggap benar dengan menghitamkan bulatan huruf jawaban tersebut. Untuk soal isian singkat, cukup tuliskan jawaban akhir pada kotak yang tersedia. 9. Untuk soal pilihan ganda, jawaban benar bernilai +4, salah bernilai -, kosong bernilai 0 0. Untuk soal isian singkat, jawaban benar bernilai +8, sedangkan salah atau kosong bernilai 0.. Apabila terdapat nilai yang sama maka yang diperhatikan pertama kali adalah jumlah benar pada isian singkat, kemudian jumlah benar pada pilihan ganda.. Tidak diperkenankan menggunakan kalkulator, HP, tabel matematika atau alat bantu hitung lainnya selama pengerjaan soal.. Selama waktu pengerjaan soal HP, tablet, PDA atau alat elektronik lainnya harus dinonaktifkan. 4. Dilarang pinjam-meminjam alat tulis, bekerja sama, memberikan jawaban, atau melihat jawaban peserta lain selama lomba berlangsung. 5. Peserta tidak diperkenankan meninggalkan ruang lomba selama pengerjaan soal tanpa seizin pengawas ruang. 6. Jika peserta melakukan pelanggaran, maka pengawas ruang akan memberi peringatan. Jika pelanggaran dilakukan lebih dari (dua) kali, maka peserta akan didiskualifikasi. 7. Waktu pengerjaan soal adalah 0 menit. Untuk soal yang tidak ada ralat selama lomba berlangsung, maka soal harus dikerjakan apa adanya. 8. Sertifikat peserta hanya diberikan kepada peserta yang datang dan mengikuti babak penyisihan LMNAS 5 9. Keputusan dewan juri tidak dapat diganggu gugat. 0. Untuk peraturan lainnya yang belum jelas dapat ditanyakan kepada panitia pengawas. Halaman dari 7

3 LM UGM ke-5 Babak Penyisihan 9 November 04 Pilihan Ganda. Pada ABC, titik D berada pada sisi AC sehingga AB = A ABC ACB = 0 o. Tentukan CBD!. 5 o 0 o 5 o 0 o E. 5 o. Jika a, b, c adalah bilangan-bilangan taknol yang memenuhi sistem persamaan tentukan nilai dari a + b + c = a + b + c = ab c + ac b + bc a - 0 E.. Jika p(n) adalah hasil kali digit-digit taknol dari n untuk setiap bilangan bulat positif n, tentukan faktor prima terbesar p() + p() + + p(99) 7 47 E Di dalam sebuah kantong terdapat 80 anting putih, 0 anting merah, 60 anting biru, dan 50 anting kuning. Anwar diminta mengambil beberapa anting dari kantong tersebut. Andaikan Anwar tidak dapat melihat warna anting pada saat mengambilnya, berapa minimal banyaknya anting yang harus diambil Anwar agar pasti memperoleh 5 pasang anting? (sepasang anting mempunyai warna yang sama dan tidak ada anting yang dihitung dalam pasangan yang berbeda) E Tentukan banyaknya bilangan asli n sehingga ketiganya merupakan bilangan prima. (n 4), (4n 5), (5n ) 0 E Diberikan x = dimana digit-digitnya diperoleh dengan menuliskan bilangan sampai 04 secara berurutan. Tentukan digit ke 04 dari kiri x. 7 6 E Diketahui f(x) + f( x) = 4x. Tentukan penyelesaian positif dari f(x) = f( x ) 0 E. 5 Halaman dari 7

4 LM UGM ke-5 Babak Penyisihan 9 November Berapa banyak angka digit tanpa memuat angka 0, dengan digitnya berbeda atau dua digitnya sama? E Pada ABC, titik D dan E berturut-turut berada pada sisi BA dan CA sehingga BC DE. Titik F berada pada ruas garis AD sehingga DC F E. Jika AF = 4 dan F D = 6, maka tentukan panjang B E Tentukan banyaknya bilangan bulat positif di antara 4 dan 5678 yang semua digitnya berbeda E. 04. Tentukan bilangan asli terkecil n sehingga n mempunyai sisa berturut-turut,,, 4, 5, 6, 7 jika dibagi,, 4, 5, 6, 7, E. 89. Diketahui lingkaran O berpusat di titik O dengan jari-jari 4. Jika titik A dan B berada pada lingkaran O dan panjang AB = 4, tentukan luas juring AO 6 π 0 π 7 π 4 π E. π. Tentukan banyaknya bilangan bulat positif lebih dari 04 yang merupakan faktor dari E Di dalam sebuah ABC samasisi, dibuat lingkaran dengan jari-jari sama sehingga ketiganya saling bersinggungan dan masing-masing bersinggungan dengan dari sisi AB Tentukan jari-jari lingkaran tersebut E Sebuah segitiga samasisi mempunyai luas. Dari titik tengah masing-masing sisinya, ditarik garis tegak lurus terhadap sisi lainnya. Berapa luas segienam yang dibentuk oleh keenam garis tersebut? E. 6. Daniel memilih suku-suku barisan geometri,,,,... untuk membentuk barisan geometri tak 9 7 berhingga baru yang jumlahnya. Tentukan jumlah suku pertama dan rasio dari deret baru 4 tersebut E Diketahui barisan bilangan bulat (x n ) dengan x 0 =, x = 4 dan untuk setiap n N. Tentukan nilai x 04. x n+ = x n nx n E Tentukan banyaknya segitiga tumpul yang mungkin dibentuk jika panjang sisi-sisinya adalah bilangan asli dan sisi terpanjangnya E Tentukan banyaknya bilangan asli n, n 5 sehingga Halaman 4 dari 7

5 LM UGM ke-5 Babak Penyisihan 9 November 04 habis dibagi 6. n + 5n E Carilah nilai maksimum dari x + y, jika diketahui persamaan x + y 0x 4y 0 = E Tentukan sisa pembagian oleh n 0 E. 5. Carilah banyaknya pasangan bilangan rasional (x, y) dengan sifat n= x + y = x + y 0 E. tak berhingga. Dengan hanya menggunakan uang koin bernilai sen, 5 sen, 0 sen, dan 5 sen. Berapa banyak koin minimal yang dibutuhkan untuk membayar berapapun harga yang lebih rendah dari 00 sen dengan uang pas? 0 5 E Diketahui x + y =, y + z =, z + x = 5, tentukan nilai dari xyz E. 5. Diketahui LMNAS5 diikuti oleh 04 peserta. Andi berada diantara 04 peserta tersebut. Berapa peluang Andi lolos babak final dengan peringkat kedua dan mendapat peringkat di final? E Tentukan banyaknya persegi yang terdapat pada papan catur berukuran 8 x E Tentukan banyaknya pasangan bilangan bulat positif (x, y) yang memenuhi x + y = E Trapesium ABCD mempunyai sisi sejajar AB dan CD dengan panjang 0 dan 0. Jika panjang AD = 6 dan BC = 8, carilah luas AB E. Halaman 5 dari 7

6 LM UGM ke-5 Babak Penyisihan 9 November Tentukan nilai x yang memenuhi persamaan 04 + x 04 + x 04 + = E Carilah bilangan prima terkecil yang membagi habis E. 7. Bilangan-bilangan prima p, q, r memenuhi persamaan Carilah nilai dari p + q + r. pq + pr = 0 dan pq + qr = 7 0 E. 5. Terdapat dua titik A dan B pada sebuah bidang datar dengan jarak antara titik A dan B adalah 5. Berapa banyak garis lurus pada bidang datar tersebut sehingga jarak garis tersebut dari A adalah dan jarak dari B adalah? 0 4 E. tak berhingga. Tentukan banyaknya pasangan bilangan bulat positif (d, d, d ) dengan d < d < d sehingga ketiganya merupakan pembagi 44 dan d d d membagi habis E Diketahui f(x) = 4 4 x + untuk setiap bilangan real x. Hitunglah f( 05 ) + f( 05 ) + + f(04 05 ) 04 0 E Carilah bilangan bulat positif terbesar yang membagi semua bilangan 5, 5,..., n 5 n, E Berapa banyak cara menyusun huruf-huruf dan angka L, M, N, A, S,, 5 sehingga di antara kedua angka terdapat tepat satu huruf? E Diketahui persegi panjang ABCD dengan panjang AB = dan BC = 4. Titik E dan F berturut-turut merupakan titik tengah sisi AD dan B Dibentuk lingkaran O dan O dengan titik pusat berturut-turut E dan F. Jika jari-jari lingkaran O dan O adalah, tentukan luas daerah irisan kedua lingkaran tersebut. π π 4 π 4 π E. 4 π 4 8. Diberikan fungsi f : N Z + memenuhi f() = 04 dan f() + f() f(n) = n f(n) Halaman 6 dari 7

7 LM UGM ke-5 Babak Penyisihan 9 November 04 untuk setiap n >. Hitunglah nilai dari f(04) E. 9. Tentukan jumlah semua bilangan bulat p sehingga merupakan bilangan bulat. 5p + 0p E Diberikan segi empat ABCD dengan AB = 9, BC =, CD =, DA = 4, dan diagonal AC = 5. Titik P dan Q berada pada AC sehingga BP dan DQ tegak lurus A Carilah panjang P Q. 5 7 E. 7 Isian Singkat 4. Diketahui persegi panjang ABCD dengan AB = dan AD =. Titik E berada pada garis perpanjangan AB sehingga AE =. Titik G merupakan titik tengah BC dan F titik sehingga BEF G merupakan persegi panjang. Jika titik O merupakan perpotongan garis AF dan DB, maka tentukan panjang AO. 4. Tentukan himpunan solusi persamaan berikut. x + x + x x = 4. Diketahui m, n, r, p adalah bilangan-bilangan prima yang memenuhi persamaan m n = n r + dan n p = 976. Tentukan nilai maksimum dari m jika m < Diberikan AOB siku-siku sama kaki dengan AOB = 90 o. Panjang AB = m dan titik P terletak pada ruas garis AB sehingga panjang AP = AO. Tentukan panjang jari-jari lingkaran yang memenuhi syarat-syarat berikut : (i) Berpusat di ruas garis AB (ii) Melalui titik P (iii) Menyinggung ruas garis AO 45. Diketahui himpunan M i = {,,,..., i} dengan i 04. Jika dari masing-masing M i diambil satu bilangan secara acak, tentukan besar peluang hasil kali bilangan-bilangan yang terambil adalah bilangan ganjil. - Selamat Mengerjakan, Semoga Sukses - Halaman 7 dari 7

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-25 Babak Penyisihan Tingkat SMA Minggu, 9 November 20 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMP Minggu, 0 Oktober 2016 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-26

LOMBA MATEMATIKA NASIONAL KE-26 LOMBA MATEMATIKA NASIONAL KE-26 Babak Penyisihan Tingkat SMP Minggu, 8 November HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMA Minggu, 0 Oktober HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-26

LOMBA MATEMATIKA NASIONAL KE-26 LOMBA MATEMATIKA NASIONAL KE-6 Babak Penyisihan Tingkat SMA Minggu, 8 November 015 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 2 YOGYAKARTA5528 lmnas@ugm.ac.id http://lmnas.fmipa.ugm.ac.id

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 21 YOGYAKARTA55281 lmnas@ugm.ac.id http://lmnas.fmipugm.ac.id

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA 1) Sebuah barisan baru diperoleh dari barisan bilangan bulat positif 1, 2, 3, 4, dengan menghilangkan bilangan kuadrat yang ada di dalam barisan tersebut.

Lebih terperinci

Kontes Terbuka Olimpiade Matematika

Kontes Terbuka Olimpiade Matematika Kontes Terbuka Olimpiade Matematika Kontes Bulanan Januari 2017 20 23 Januari 2017 Berkas Soal Definisi dan Notasi Berikut ini adalah daftar definisi yang digunakan di dokumen soal ini. 1. Notasi N menyatakan

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional  contact person : ALJABAR ALJABAR 1. Diberikan a 4 + a 3 + a 2 + a + 1 = 0. Tentukan a 2000 + a 2010 + 1. 2. Diberikan sistem persamaan 2010(x y) + 2011(y z) + 2012(z x) = 0 2010 2 (x y) + 2011 2 (y z) + 2012 2 (z x) = 2011 Tentukan

Lebih terperinci

SOAL BRILLIANT COMPETITION 2013

SOAL BRILLIANT COMPETITION 2013 PILIHAN GANDA. Pada suatu segitiga ABC, titik D berada di AC sehingga AD : DC = 4 :. Titik E berada di BC sehingga BE : EC = : 3. Titik F adalah titik perpotongan antara garis BD dan garis AE. Jika luas

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA

PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA 1. Sebelum mengerjakan soal, telitilah dahulu jumlah dan nomor halaman yang terdapat pada naskah soal. Pada naskah soal ini terdiri dari 30 soal pilihan ganda

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Waktu : 210 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

SOAL PREDIKSI MATEMATIKA TAHUN

SOAL PREDIKSI MATEMATIKA TAHUN SOAL PREDIKSI MATEMATIKA TAHUN 2014 PAKET 1. Hasil dari 5 2 7-21 4 : 31 2 adalah... A. 3 3 14 B. 3 9 14 C. 4 3 14 D. 4 9 14 2. Dalam kompetisi matematika, setiap jawaban benar diberi skor 3, jawaban salah

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P. D APRIL 2008 SMA NEGERI 1 PEKANBARU Jl. Sulthan Syarif Qasim 159 Pekanbaru

Lebih terperinci

Soal Babak Penyisihan MIC LOGIKA 2011

Soal Babak Penyisihan MIC LOGIKA 2011 Soal Babak Penyisihan MIC LOGIKA 2011 1. Jika adalah bilangan bulat dan angka puluhan dari adalah tujuh, maka angka satuan dari adalah... a. 1 c. 5 e. 9 b. 4 d. 6 2. ABCD adalah pesergi dengan panjang

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA 2015 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

MATEMATIKA (Paket 2) Waktu : 120 Menit

MATEMATIKA (Paket 2) Waktu : 120 Menit MATEMATIKA (Paket 2) Waktu : 20 Menit (025) 77 2606 Website : Pilihlah jawaban yang paling tepat!. Hasil dari A. B. D. 8 5 8 2 2 8 2 adalah. 2. Hasil dari A. B. D. 8 adalah.. Bentuk sederhana dari A. 2

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 00 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 003 Bidang Matematika Waktu : 90 Menit DEPARTEMEN

Lebih terperinci

PEMERINTAH KOTA YOGYAKARTA DINAS PENDIDIKAN

PEMERINTAH KOTA YOGYAKARTA DINAS PENDIDIKAN DOKUMEN NEGARA RAHASIA A TAHUN PELAJARAN 2017/2018 MATEMATIKA PEMERINTAH KOTA YOGYAKARTA DINAS PENDIDIKAN 2018 MATA PELAJARAN Mata Pelajaran : Matematika PELAKSANAAN Hari/Tanggal : Jam : 07.30 09.30 (120

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 006 TINGKAT PROVINSI TAHUN 005 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2004 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

SOAL DAN PEMBAHASAN OSN 2018 KABUPATEN SUMBA TIMUR NUSA TENGGARA TIMUR

SOAL DAN PEMBAHASAN OSN 2018 KABUPATEN SUMBA TIMUR NUSA TENGGARA TIMUR SOAL DAN PEMBAHASAN OSN 08 KABUPATEN SUMBA TIMUR NUSA TENGGARA TIMUR Oleh : SUKAMTO, S.Pd.,Gr Guru Matematika SMPN Kambata Mapambuhang. Suku keempat, suku ketujuh, suku kesepuluh, dan suku ke-00 suatu

Lebih terperinci

SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012

SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012 SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012 BAGIAN A : PILIHAN GANDA SOAL 1 Pernyataan yang benar diantara pernyataan-pernyataan berikut adalah : A. {Ø} Ø D. {a,b} {a, b, {{a,b}}} B. {Ø} Ø E. {a,ø}

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika Tutur Widodo Pembahasan OSP Matematika SMA 011 Pembahasan OSN Tingkat Provinsi Tahun 011 Jenjang SMA Bidang Matematika Bagian A : Soal Isian Singkat 1. Diberikan segitiga sama kaki ABC dengan AB = AC.

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2012 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2012 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 0 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 0 BIDANG STUDI

Lebih terperinci

MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo Telepon/Fax (0275)

MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo Telepon/Fax (0275) KODE : 02/ 2B TUC2/2015 MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo 54114 Telepon/Fax (0275) 321405 UJI COBA KE 2 UJIAN NASIONAL 2015 SMP

Lebih terperinci

TRY OUT SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 011 Waktu: 10 Menit PUSAT KLINIK PENDIDIKAN INDONESIA (PKPI) bekerjasama dengan LEMBAGA BIMBINGAN BELAJAR SSCIntersolusi

Lebih terperinci

METHODIST-2 EDUCATION EXPO 2016

METHODIST-2 EDUCATION EXPO 2016 TK/SD/SMP/SMA Methodist- Medan Jalan MH Thamrin No. 96 Medan Kota - 0 T: (+66)56 58 METHODIST- EDUCATION EXPO 06 Lomba Sains Plus Antar Pelajar Tingkat SMA se-sumatera Utara NASKAH SOAL MATEMATIKA - Petunjuk

Lebih terperinci

MATEMATIKA SMP/MTs 1 C Hasil dari adalah... adalah... C. 31 D. 31 A. 21 B Hasil dari. b adalah D. 5

MATEMATIKA SMP/MTs 1 C Hasil dari adalah... adalah... C. 31 D. 31 A. 21 B Hasil dari. b adalah D. 5 C0. Hasil dari 6 6 6 6. Hasil dari 5: 5 ( ). Hasil dari 4 : 4 5 5 8 8 4 4 5 5 4. Sebuah taman berbentuk persegi panjang luasnya dengan skala : 00, maka luas taman pada gambar 800 m. Jika taman tersebut

Lebih terperinci

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO DIURUTKAN BERDASARKAN TAHUN DAN DIKUMPULKAN BERDASARKAN TOPIK MATERI BILANGAN 2011 1. Jika x adalah jumlah 99 bilangan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 202 TIM OLIMPIADE MATEMATIKA INDONESIA 203 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA. Tanpa mengurangi keumuman misalkan

Lebih terperinci

MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo Telepon/Fax (0275)

MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo Telepon/Fax (0275) KODE : 02 A / TUC 2 /2016 MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo 54114 Telepon/Fax (0275) 321405 UJI COBA KE 2 UJIAN NASIONAL 2016

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2009 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SOAL Babak Penyisihan Olimpiade Matematika ITS 2013 (7 th OMITS) Tingkst SMP Se-derajat

SOAL Babak Penyisihan Olimpiade Matematika ITS 2013 (7 th OMITS) Tingkst SMP Se-derajat SOAL Babak Penyisihan Olimpiade Matematika ITS 01 (7 th OMITS) Tingkst SMP Se-derajat SOAL PILIHAN GANDA 1) Sebuah bilangan sempurna adalah sebuah bilangan bulat yang sama dengan jumlah semua pembagi positifnya,

Lebih terperinci

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 PETUNJUK UMUM :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 01 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 0 soal isian singkat dan tes

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 013 TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 013

Lebih terperinci

MATA PELAJARAN : Matematika : SMP / MTs. WAKTU PELAKSANAAN : Rabu, 25 April 2012 :

MATA PELAJARAN : Matematika : SMP / MTs. WAKTU PELAKSANAAN : Rabu, 25 April 2012 : DOKUMEN NEGARA SANGAT RAHASIA sulisr_xxx@yahoo.co.id Mata Pelajaran Jenjang MATA PELAJARAN : Matematika : SMP / MTs Hari/Tanggal Jam WAKTU PELAKSANAAN : Rabu, 25 April 202 : 08.00 0.00 PETUNJUK UMUM. Isilah

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 004 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN

Lebih terperinci

KUMPULAN SOAL-SOAL OMITS

KUMPULAN SOAL-SOAL OMITS KUMPULAN SOAL-SOAL OMITS SOAL Babak Penyisihan Olimpiade Matematika ITS 2011 (OMITS 11) Tingkst SMP Se-derajat BAGIAN I.PILIHAN GANDA 1. Berapa banyak faktor positif/pembagi dari 2011? A. 1 B. 2 C. 3 D.

Lebih terperinci

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA PETUNJUK UNTUK PESERTA: 1. Tes bagian pertama ini terdiri dari 20 soal. 2. Waktu yang disediakan adalah

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B5 SMP N Kalibagor Hasil dari 7 ( ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. 7 Pangkat ; Akar D.

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TAHUN 014 TINGKAT KABUPATEN/KOTA Sabtu, 8 Maret 014 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH

Lebih terperinci

PEMBAHASAN SOAL OSN TK. KOTA/ KABUPATEN 2014 MATEMATIKA SMP BAGIAN A: PILIHAN GANDA

PEMBAHASAN SOAL OSN TK. KOTA/ KABUPATEN 2014 MATEMATIKA SMP BAGIAN A: PILIHAN GANDA email: koniciwa7@yahoo.co.id PEMBAHASAN SOAL OSN TK. KOTA/ KABUPATEN 0 MATEMATIKA SMP BAGIAN A: PILIHAN GANDA. Sepuluh orang guru akan ditugaskan mengajar di tiga sekolah,yakni sekolah A, B, dan C, berturut

Lebih terperinci

NO SOAL PEMBAHASAN 1

NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : B5 1 Hasil dari 17 (3 ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 41 Dalam kurung 1 C. 7 Pangkat ; Akar D. 41 Kali

Lebih terperinci

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus

A. Pengantar B. Tujuan Pembelajaran Umum C. Tujuan Pembelajaran Khusus Modul 4 SEGIEMPAT A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian berbagai macam segiempat: jajargenjang, belah ketupat, layang-layang dan trapesium. Disamping

Lebih terperinci

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut

SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P18) 1. Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut Kode: P8 MATEMATIKA IX SMP SOAL PR ONLINE IX SMP MATA UJIAN: MATEMATIKA (KODE: P8). Alas sebuah limas berbentuk segi-6. Banyak rusuk dan sisi limas berturutturut (A) 7 dan. (C) 8 dan 8. dan 7. (D) 8 dan

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 015 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 015 = 5 13 31 Banyaknya faktor

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : D45 NO SOAL PEMBAHASAN 5 Hasil dari 8 adalah... 5. a = a a a a a A. 0 B. 5. = C.. = D. 64 Hasil dari 8 adalah... A. 6 B. 8 C. 6 D. 4 6 4 Hasil dari 7 ( ( 8)) adalah...

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat Pembahasan OSN Matematika SMA Tahun 013 Seleksi Tingkat Provinsi Tutur Widodo Bagian Pertama : Soal Isian Singkat 1. Diberikan tiga lingkaran dengan radius r =, yang saling bersinggungan. Total luas dari

Lebih terperinci

Pembahasan Matematika SMP IX

Pembahasan Matematika SMP IX Pembahasan Matematika SMP IX Matematika SMP Kelas IX Bab Pembahasan dan Kunci Jawaban Ulangan Harian Pokok Bahasan : Kesebangunan Kelas/Semester : IX/ A. Pembahasan soal pilihan ganda. Bangun yang tidak

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 007

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A SMP N Kalibagor Hasil dari 5 + [6 : ( )] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. Pangkat ; Akar D.

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

Pembahasan OSK Tahun 2011 Tingkat SMP Bidang Matematika

Pembahasan OSK Tahun 2011 Tingkat SMP Bidang Matematika Pembahasan OSK Tahun 011 Tingkat SMP Bidang Matematika Bagian A : Pilihan Ganda 1. Nilai dari a. 113 b. c. 91 73 1 8! 9! + 3 adalah... d. e. 71 4 Jawaban : c 1 8! 9! + 3 = 10 9 10 + 3 = 73. Menggunakan

Lebih terperinci

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 LEMBAR SOAL Mata Pelajaran : MATEMATIKA Satuan Pendidikan : SMA/MA Program : BAHASA Hari, Tanggal : Sabtu, 18 Februari 2017 Waktu : 120 Menit PETUNJUK UMUM

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2013 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 Pembahasan UN 0 A3 by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A3 Hasil dari 5 + [6 : ( 3)] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung

Lebih terperinci

LATIHAN ULANGAN AKHIR SEMESTER GANJIL SMP NEGERI 196 JAKARTA TAHUN PELAJARAN 2010/2011 LEMBAR SOAL

LATIHAN ULANGAN AKHIR SEMESTER GANJIL SMP NEGERI 196 JAKARTA TAHUN PELAJARAN 2010/2011 LEMBAR SOAL LATIHAN ULANGAN AKHIR SEMESTER GANJIL SMP NEGERI JAKARTA TAHUN PELAJARAN 00/0 LEMBAR SOAL Mata Pelajaran : MATEMATIKA Hari / Tanggal : 0 November 00 W a k t u : 07.00 0.00 WIB (0 menit) K e l a s : IX

Lebih terperinci

1. Pada operasi di bawah, tiap titik mewakili satu angka tertentu. Bilangan 3 angka yang ada pada baris IV adalah... A) 830 C) 622 B) 720 D) 525

1. Pada operasi di bawah, tiap titik mewakili satu angka tertentu. Bilangan 3 angka yang ada pada baris IV adalah... A) 830 C) 622 B) 720 D) 525 1. Pada operasi di bawah, tiap titik mewakili satu angka tertentu Kompetisi Matematika PASIAD Se-Indonesia IV + 1. I.. II.... III.... IV... V Bilangan angka ang ada pada baris IV adalah... 80 6 B) 70 D)

Lebih terperinci

MATEMATIKA (Paket 1) Waktu : 120 Menit

MATEMATIKA (Paket 1) Waktu : 120 Menit MATEMATIKA (Paket ) Waktu : 0 Menit (0) 77 0 Website : Pilihlah jawaban yang paling tepat!. Hasil dari 0 : 7 + ( ) adalah.... 0 0. Agus mempunyai sejumlah kelereng, diberikan kepada Rahmat, bagian diberikan

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 200

Lebih terperinci

Soal Babak Penyisihan 1 Matematika

Soal Babak Penyisihan 1 Matematika Soal Babak Penyisihan 1 Matematika Petunjuk pengerjaan 1. Tuliskan identitas peserta di setiap lembar jawaban dengan lengkap dan jelas. 2. Gunakan pulpen hitam atau biru untuk mengisi lembar jawaban kecuali

Lebih terperinci

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan

Lebih terperinci

a. 15 b. 18 c. 20 d Diketahui rumus fungsi f(x) = -2x + 5. Nilai f(-4) adalah a. -13 b. -3 c. 3 d Gradien garis -3x - 2y = 7 adalah

a. 15 b. 18 c. 20 d Diketahui rumus fungsi f(x) = -2x + 5. Nilai f(-4) adalah a. -13 b. -3 c. 3 d Gradien garis -3x - 2y = 7 adalah Soal Soal Simulasi UNBK Tahun Ajaran 2015-2016 Mata Pelajaran : Matematika I. Jawablah pertanyaan berikut ini dengan (X) menyilang pilihan a, b, c, dan d! 1. Hasil dari -15 + (-12 : 3) adalah a. -19 b.

Lebih terperinci

MATA PELAJARAN : Matematika : SMP / MTs. WAKTU PELAKSANAAN : Rabu, 25 April 2012 :

MATA PELAJARAN : Matematika : SMP / MTs. WAKTU PELAKSANAAN : Rabu, 25 April 2012 : DOKUMEN NEGARA SANGAT RAHASIA sulisr_xxx@yahoo.co.id Mata Pelajaran Jenjang MATA PELAJARAN : Matematika : SMP / MTs Hari/Tanggal Jam WAKTU PELAKSANAAN : Rabu, 25 April 202 : 08.00 0.00 PETUNJUK UMUM. Isilah

Lebih terperinci

Latihan Soal Ujian Nasional Sekolah Menengah Pertama / Madrasah Tsanawiyah. SMP / MTs Mata Pelajaran : Matematika

Latihan Soal Ujian Nasional Sekolah Menengah Pertama / Madrasah Tsanawiyah. SMP / MTs Mata Pelajaran : Matematika Latihan Soal Ujian Nasional 00 Sekolah Menengah Pertama / Madrasah Tsanawiyah SMP / MTs Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

( ) = dan f 5 3 ( )( ) =? ( ) =. Hitung nilai a. 1. Operasi untuk himpunan bilangan A ={ ,,,,, } didefi nisikan sesuai tabel di bawah ini

( ) = dan f 5 3 ( )( ) =? ( ) =. Hitung nilai a. 1. Operasi untuk himpunan bilangan A ={ ,,,,, } didefi nisikan sesuai tabel di bawah ini 1. Operasi untuk himpunan bilangan A ={ 01,,,,, } didefi nisikan sesuai tabel di bawah ini 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 Jika x = x x n n 1, x = x x, Hitunglah nilai 1 0 B) 1 D). Sebuah operasi bilangan

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA 1. ABC adalah segitiga sama

Lebih terperinci

MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo Telepon/Fax (0275)

MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo Telepon/Fax (0275) KODE : 02 B / TUC 2 /2016 MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMP KABUPATEN PURWOREJO Sekretariat: Jl. Jendral Sudirman 8 Purworejo 54114 Telepon/Fax (0275) 321405 UJI COBA KE 2 UJIAN NASIONAL 2016

Lebih terperinci

PEMANTAPAN UJIAN NASIONAL Kerjakan dengan sungguh-sungguh dengan kejujuran hati!

PEMANTAPAN UJIAN NASIONAL Kerjakan dengan sungguh-sungguh dengan kejujuran hati! PEMANTAPAN UJIAN NASIONAL 203 Kerjakan dengan sungguh-sungguh dengan kejujuran hati!. Hasil dari (-5 7) : 4 x (-5) + 8 adalah. A. -26 B. -23 C. 23 D. 26 2. Perbandingan banyak kelereng Taris dan Fauzan

Lebih terperinci

1 C12. b c adalah... dengan skala 1 : 200, maka luas taman pada gambar adalah... A. C. 14 pekerja B. 13 pekerja

1 C12. b c adalah... dengan skala 1 : 200, maka luas taman pada gambar adalah... A. C. 14 pekerja B. 13 pekerja C. Hasil dari 6 8 4 4. Hasil dari 4 : 4 6 ( ) 4 4. Hasil dari : 5 4 4. Sebuah taman berbentuk persegi panjang luasnya 4 6 4 8 5 5 600 m. Jika taman tersebut digambar dengan skala : 00, maka luas taman

Lebih terperinci

= Tentukan jumlah dari : ( 1) ( jawaban boleh di faktorkan) 6. Tentukan semua penyelesaian system persamaan dari : =

= Tentukan jumlah dari : ( 1) ( jawaban boleh di faktorkan) 6. Tentukan semua penyelesaian system persamaan dari : = 1. Diberikan polynomial f(x) = x n + a 1x n-1 +...+ a n-1 x + a 0 dengan koefisien a 1, a,...a n semua bilangan bulat dan ada 4 bilangan bulat berbeda a,b,c, dan d yang memenuhi f(a) = f(b) = f(c) = f(d)

Lebih terperinci

PREDIKSI SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs DAN PEMBAHASAN

PREDIKSI SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs DAN PEMBAHASAN PREDIKSI SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs DAN PEMBAHASAN. * Indikator SKL : Menyelesaikan masalah yang berkaitan dengan operasi tambah, kurang, kali, atau bagi pada bilangan. * Indikator Soal : Menentukan

Lebih terperinci

(a) 32 (b) 36 (c) 40 (d) 44

(a) 32 (b) 36 (c) 40 (d) 44 Halaman:. Jika n = 8, maka n0 n bernilai... (a) kurang dari 00 (b) (d) lebih dari 00. Penumpang suatu pesawat terdiri dari anak-anak dari berbagai negara, 6 orang dari Indonesia yang termasuk dari anak-anak

Lebih terperinci

SIAP UJIAN NASIONAL (UCUN MANDIRI)

SIAP UJIAN NASIONAL (UCUN MANDIRI) PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SMP NEGERI 196 JAKARTA Jalan Mabes TNI, Pondok Ranggon, Cipayung, Jakarta Timur, Telp/Fax : 844198/021849992 SIAP UJIAN NASIONAL (UCUN

Lebih terperinci

1. Diketahui fungsi : f mempunyai sifat f x 1 1 f x untuk setiap x. Jika f 2. 2, maka nilai fungsi f B. 2 C. 3 D E.

1. Diketahui fungsi : f mempunyai sifat f x 1 1 f x untuk setiap x. Jika f 2. 2, maka nilai fungsi f B. 2 C. 3 D E. f x f mempunyai sifat f x f x untuk setiap x. Jika f, maka nilai fungsi f 06. Diketahui fungsi : 06 06. Perhatikan gambar berikut ini! Berapakah ukuran luas daerah yang diarsir jika diketahui ukuran luas

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C32 NO SOAL PEMBAHASAN. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C32 NO SOAL PEMBAHASAN. Ingat! Pembahasan UN 0 C by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : C NO SOAL PEMBAHASAN Hasil dari 6 adalah... A. 48. a = a a a B. 7. = C. 08. = D. 6 6 = 6 = 6 = 6 = 6 Hasil dari 8 adalah... A.

Lebih terperinci

Kompetisi Sains Madrasah 2015 Tingkat Propinsi-Madrasah Tsanawiyah-Matematika NASKAH SOAL BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH TSANAWIYAH

Kompetisi Sains Madrasah 2015 Tingkat Propinsi-Madrasah Tsanawiyah-Matematika NASKAH SOAL BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH TSANAWIYAH Nama : Sekolah : Kab / Kota : Propinsi : NASKAH SOAL BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH TSANAWIYAH SELEKSI TINGKAT PROPINSI KOMPETISI SAINS MADRASAH TAHUN 2015 Halaman 1 dari 9 halaman Petunjuk

Lebih terperinci

OSK Matematika SMP (Olimpiade Sains Kabupaten Matematika SMP)

OSK Matematika SMP (Olimpiade Sains Kabupaten Matematika SMP) Pembahasan Soal OSK SMP 2017 OLIMPIADE SAINS KABUPATEN SMP 2017 OSK Matematika SMP (Olimpiade Sains Kabupaten Matematika SMP) Disusun oleh: Pak Anang Halaman 2 dari 20 PEMBAHASAN SOAL OLIMPIADE SAINS MATEMATIKA

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 27 BIDANG MATEMATIKA SMP A. SOAL PILIHAN GANDA. Urutan Bilangan-bilangan 2 5555, 5 2222, dan dari yang terkecil sampai yang terbesar adalah.

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

PEMERINTAH KOTA YOGYAKARTA DINAS PENDIDIKAN

PEMERINTAH KOTA YOGYAKARTA DINAS PENDIDIKAN DOKUMEN NEGARA RAHASIA B TAHUN PELAJARAN 2017/2018 MATEMATIKA PEMERINTAH KOTA YOGYAKARTA DINAS PENDIDIKAN 2018 MATA PELAJARAN Mata Pelajaran : Matematika PELAKSANAAN Hari/Tanggal : Jam : 07.30 09.30 (120

Lebih terperinci

(a) 126 (b) 122 (c) 118 (d) 114

(a) 126 (b) 122 (c) 118 (d) 114 Halaman: 1 1. Seorang murid diminta menghitung hasil pembagian suatu bilangan dengan 6 lalu menambahkan hasil tersebut dengan 12. Tetapi ternyata murid tersebut melakukan kesalahan. Yang ia lakukan adalah

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 014

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP. 3 dari yang terkecil sampai yang terbesar.

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP. 3 dari yang terkecil sampai yang terbesar. SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 007 BIDANG MATEMATIKA SMP SOAL PILIHAN GANDA. Urutan bilangan bilangan adalah.. a. b. c. d. e., 5,, 5,,, dan, dan, dan 5, dari yang terkecil

Lebih terperinci

OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009

OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009 OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 009 Mata pelajaran Matematika Teknologi Kerjasama Dengan FMIPA Universitas Diponegoro Dan Dinas Pendidikan Propinsi Jawa Tengah OLIMPIADE SAINS TERAPAN

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 009 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 009 Bagian

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika Pembahasan OSN Tingkat Provinsi Tahun 202 Jenjang SMP Bidang Matematika Bagian A : Soal Isian Singkat. Sebuah silinder memiliki tinggi 5 cm dan volume 20 cm 2. Luas permukaan bola terbesar yang mungkin

Lebih terperinci