BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik"

Transkripsi

1 BAB 1 Konsep Dasar 1

2 BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik kalkulasi berulang (teknik iterasi) untuk mecari penyelesaian hampiran suatu masalah tertentu. Selanjutnya teknikteknik yang digunakan itu mempunyai potensi membuat suatu nilai kesalahan yang dievaluasi secara bertahap untuk mendapatkan nilai kesalahan yang sangat kecil. Untuk mengawali penjelasan teknik-teknik aproksimasi ini, dalam bab ini akan dimulai dengan pembahasan aproksimasi terhadap suatu titik melalui penyelesaian persamaan fungsi polinomial. f := a 1 x n + a 2 x n;1 + a 3 x n;2 + + a n = 0 10

3 BAB 2. SOLUSI PERSAMAAN FUNGSI POLINOMIAL Metoda Biseksi Denition (Prosedur Biseksi) Misal f adalah fungsi kontinyu terdenisi pada interval [a b], dimana f(a) berbeda tanda dengan f(b). Dengan teori "nilai tengah" maka ada p 2 (a b) dengan f(p) = 0 dengan asumsi akar dalam interval (a b) adalah tungal. Selanjutnya untuk melakukan perhitungan yang akurat kita set a 1 = a dan b 1 = b dan tentukan p 1 lewat p 1 = 1 2 (a 1 + b 1 ) Jika f(p 1 ) = 0, maka p = p 1. Jika tidak, f(p 1 ) akan mempunyai tanda yang sama dengan f(a 1 ) atau f(b 1 ). Jika f(p 1 ) dan f(a 1 ) mempunyai tanda yang sama maka p 2 (p 1 b 1 ) jika tidak maka p 2 (a 1 p 1 ). Selanjutnya set a 2 dan b 2 yang baru dan tentukan p 2 melalui perhitungan yang sama dengan p 1, dan lakukan pengulangan sampai tingkat akurasi tertentu. Untuk menghentikan pengulangan penghitungan dalam mencari solusi yang akurat harus dikonrmasikan dengan nilai kesalahan (selanjuntya kita sebut toleransi) dimana toleransi dalam hal ini dapat dipilih jp n ; p n;1j < e jp n ; p n;1j jp n j jf(p n )j < e < e p n 6= 0 Algoritma Metoda Biseksi INPUT batas interval a b, (Toleransi), Jumlah iterasi maximum (N) OUTPUT nilai aproksimasi p

4 BAB 2. SOLUSI PERSAMAAN FUNGSI POLINOMIAL 12 Step 1 Set i=1 FA = f(a) Step 2 While i N do Steps 3-6 Step 3 Set p = a + (b ; a)=2 FP = f(p) Step 4 IF FP = 0, atau (b ; a)=2 < OUTPUT(p) STOP Step 5 Set i = i + 1. Step 6 If FA FP > 0 then a = p FA = FP else Set b = p. Step 7 OUTPUT (Metoda gagal setelah N iterasi) 2.2 Metoda Newton-Raphson Jika f 2 C 2 [a b], dan x 2 [a b] adalah nilai aproksimasi terhadap p sehingga f 0 (x) 6= 0 dan jx ; pj sangat kecil, maka polynomial Taylor dapat dikembangkan untuk x sebagai: f(x) = f(x) + (x ; x)f 0 (x ; x)2 (x) + f 00 ((x)) + : : : 2! f(x) = f(x) + (x ; x)f 0 (x ; x)2 (x) + f 00 ((x)) (x) 2 (x x): (2.1) 2 Jika f(p) = 0 maka untuk x = p persamaan (2.1) menjadi 0 = f(x) + (p ; x)f 0 (x) + (p ; x)2 f 00 ((p)) 2

5 BAB 2. SOLUSI PERSAMAAN FUNGSI POLINOMIAL 13 Telah diasumsikan jx ; pj sangat kecil, maka suku ketiga dapatlah diabaikan sehingga 0 = f(x) + (p ; x)f 0 (x): Formulasikan untuk p didapat p x ; f(x) f 0 (x) : Dengan menggati x = p n;1 maka formulasi Newton-Raphson dapat diturunkan untuk menggeneralisasi suatu deret fp n g melalui p n = p n;1 ; f (p n;1 ) f 0 (pn;1) for n 1. (2.2) Sama halnya dengan metoda biseksi, untuk menghentikan pengulangan penghitungan dalam mencari solusi yang akurat harus dikonrmasikan dengan nilai kesalahan yang telah ditentukan sehingga jp n ; p n;1j < e jp n ; p n;1j jp n j jf(p n )j < e < e p n 6= 0 Algoritma Metoda Newton-Raphson INPUT nilai awal p 0, (Toleransi), Jumlah iterasi maximum (N) OUTPUT nilai aproksimasi p Step 1 Set i=1 Step 2 While i N do Steps 3-6 Step 3 Set p = p 0 ; f(p 0 )=f 0 (p 0 )

6 BAB 2. SOLUSI PERSAMAAN FUNGSI POLINOMIAL 14 Step 4 IF jp ; p 0 j < OUTPUT(p) Step 5 Set i = i + 1. Step 6 Set p 0 = p (Perbaharui p 0 ) Step 7 OUTPUT (Metoda gagal setelah N iterasi) Metoda Newton ini lebih baik dibandingkan metoda Biseksi, namun demikian proses menentukan f 0 (x) kadangkala merupakan proses yang lebih susah dibandingkan dengan operasi artmatikanya. Untuk menghindari hal tersebut dikembangkan metoda berikut. Ingat denisi turunan f 0 (p n;1) = lim x!pn;1 f(x) ; f(p n;1) : x ; p n;1 Misal x = p n;2 maka f 0 (p n;1) f(p n;2) ; f(p n;1) p n;2 ; p n;1 = f(p n;1) ; f(p n;2) : p n;1 ; p n;2 Substitusikan rumusan ini kedalam rumusan Newton diperoleh rumus: p n = p n;1 ; f (p n;1 )(p n;1;pn;2 ) f (pn;1 );f (p n;2 ) : (2.3) Rumus ini kemudian disebut Metoda Secant Algoritma Metoda Secant INPUT nilai awal p 0 p 1, (Toleransi), Jumlah iterasi maximum (N) OUTPUT nilai aproksimasi p Step 1 Set i=2 q 0 = f(p 0 ).

7 BAB 2. SOLUSI PERSAMAAN FUNGSI POLINOMIAL 15 q 1 = f(p 1 ). Step 2 While i N do Steps 3-6 Step 3 Set p = p 1 ; q 1 (p 1 ; p 0 )=(q 1 ; q 0 ). (hitung p i ) Step 4 IF jp ; p 1 j < OUTPUT(p) Step 5 Set i = i + 1. Step 6 Set p 0 = p 1 (Perbaharui p 0 q 0 p 1 q 1 ) q 0 p 1 q 1 = q 1 = p = f(p). Step 8 OUTPUT (Metoda gagal setelah N iterasi) 2.3 Metoda Posisi Palsu Metoda ini menggabungkan ide metoda biseksi dan metoda secant. Dalam penyelesaian f(x) = 0, ditentukan suatu interval [p 0 p 1 ] dimana f kontinyu pada interval ini, dan f(p 0 ):f(p 1 ) < 0 (berlawanan tanda). Prosedur selanjutnya dapat dilihat dalam algoritma berikut ini. Algoritma Metoda Posisi Palsu INPUT nilai awal p 0 p 1, (Toleransi), Jumlah iterasi maximum (N) OUTPUT nilai aproksimasi p Step 1 Set i=2 q 0 = f(p 0 ).

8 BAB 2. SOLUSI PERSAMAAN FUNGSI POLINOMIAL 16 q 1 = f(p 1 ). Step 2 While i N do Steps 3-7 Step 3 Set p = p 1 ; q 1 (p 1 ; p 0 )=(q 1 ; q 0 ). (hitung p i ) Step 4 IF jp ; p 1 j < OUTPUT(p) Step 5 Set i = i + 1. q = f(p) Step 6 IF q q 1 < 0 maka p 0 = p 1 q 0 = q 1 Step 7 p 1 = p 1 q 1 = q Step 8 OUTPUT (Metoda gagal setelah N iterasi)

9 BAB 2. SOLUSI PERSAMAAN FUNGSI POLINOMIAL 17 Latihan Tutorial 2 1. Gunakan algoritma biseksi untuk menentukan anilai aproksimasi pada p 3 dan 3 p Suatu model yang dipakai untuk mengadakan aproksimasi terhadap suatu masalah adalah metoda numeris, sebutkan denisi formal metoda ini. Selanjutnya implikasi dari penggunaan metoda ini, komputer programming merupakan hal yang sangat penting. Untuk mempermudah menginterpretasikan suatu metoda menjadi suatu programming dibutuhkan algoritma, jelaskan apa yang disebut dengan algoritma. Salah satu algoritma yang digunakan untuk menginterpretasikan proses kalkulasi metoda numeris adalah metoda Newton-Raphson dengan rumusan p n = p n;1 ; f(p n;1) f 0 (p n;1) untuk n 1 Metoda ini adalah metoda yang cukup terkenal, namun proses menentukan f 0 (x) kadangkala merupakan proses yang lebih sulit dibandingkan dengan operasi artmatiknya. Untuk menghindari hal tersebut ditawarkan metoda lain yaitu Metode Secant dengan rumus p n = p n;1 ; f(p n;1)(p n;1 ; p n;2) f(p n;1) ; f(p n;2) untuk n 1: Uraikan bagaimana metoda Newton dikembangkan sehingga menjadi metoda Secant ini. Kemudian bila kalkulasi iteratif diterapkan terhadap metoda ini, maka kalkulasi berulang (looping) akan terus dilakukan, jelaskan apa yang harus dilakukan untuk menghentikan kalkulasi tersebut. 3. f(x) = ;x 3 ; cos x dan p 0 = ;1, gunakan metoda Newton Raphson untuk menentukan p 2

10 BAB 2. SOLUSI PERSAMAAN FUNGSI POLINOMIAL Gunakan algoritma Newton untuk menentukan masing-masing soal dibawah ini dengan tingkat ketelitian (toleransi) e = 1e ; 5 (a) e x + 2 ;x + 2 cos x ; 6 = 0 untuk [1,2] (b) ln(x ; 1) + cos(x ; 1) = 0 untuk [1.3,2] (c) 2x cos 2x ; (x ; 2) 2 = 0 untuk [2,3] 5. Ulangi soal nomor 8 diatas dan gunakan metoda secant 6. Ulangi soal nomor 8 diatas dan gunakan metoda posisi palsu

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

p2(x)

p2(x) BAB 1 Konsep Dasar 1.1 Denisi dan Teorema Dalam Kalkulus Pengembangan metoda numerik tidak terlepas dari pengembangan beberapa denisi dan teorema dalam mata kuliah kalkulus yang berkenaan dengan fungsi

Lebih terperinci

1.1 Definisi dan Teorema Dalam Kalkulus Representasi bilangan dalam komputer Algoritma Software Komputer...

1.1 Definisi dan Teorema Dalam Kalkulus Representasi bilangan dalam komputer Algoritma Software Komputer... Daftar Isi Contents ii Daftar Tabel iii Daftar Gambar iv 1 Konsep Dasar 1 1.1 Definisi dan Teorema Dalam Kalkulus................ 1 1.2 Representasi bilangan dalam komputer................ 4 1.3 Algoritma................................

Lebih terperinci

BAB 1 Konsep Dasar 1

BAB 1 Konsep Dasar 1 BAB Konsep Dasar BAB Solusi Persamaan Fungsi Polinomial BAB Interpolasi dan Aproksimasi Polinomial BAB 4 Metoda Numeris untuk Sistem Nonlinier Suatu tekanan p dibutuhkan untuk menancapkan suatu plat sirkuler

Lebih terperinci

PERSAMAAN NON LINIER

PERSAMAAN NON LINIER PERSAMAAN NON LINIER Obyektif : 1. Mengerti penggunaan solusi persamaan non linier 2. Mengerti metode biseksi dan regulafalsi 3. Mampu menggunakan metode biseksi dan regula falsi untuk mencari solusi PENGANTAR

Lebih terperinci

BAB Solusi Persamaan Fungsi Polinomial

BAB Solusi Persamaan Fungsi Polinomial BAB Konsep Dasar BAB Solusi Persamaan Fungsi Polinomial BAB Interpolasi dan Aproksimasi Polinomial. Norm Denisi.. (Norm vektor) Norm vektor adalah pemetaan dari suatu fungsi terhadap setiap x IR N yang

Lebih terperinci

BAB 1 Konsep Dasar 1

BAB 1 Konsep Dasar 1 BAB 1 Konsep Dasar 1 BAB Solusi Persamaan Fungsi Polinomial BAB 3 Interpolasi dan Aproksimasi Polinomial 3 BAB 4 Metoda Numeris untuk Sistem Nonlinier 4 BAB 5 Metoda Numeris Untuk Masalah Nilai Awal 5

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier MK: METODE NUMERIK Oleh: Dr. I GL Bagus Eratodi FTI Undiknas University Denpasar Persamaan Non Linier Metode Tabulasi Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB 3 PENYELESAIAN PERSAMAAN NON LINIER 3.. Permasalahan Persamaan Non Linier Penyelesaian persamaan non linier adalah penentuan akar-akar persamaan non linier.dimana akar sebuah persamaan f(x =0 adalah

Lebih terperinci

Pertemuan 3: Penyelesaian Persamaan Transedental. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014

Pertemuan 3: Penyelesaian Persamaan Transedental. Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Pertemuan 3: Penyelesaian Persamaan Transedental Achmad Basuki Politeknik Elektronika Negeri Surabaya 2014 Persamaan Dalam Matematika Persamaan Linier Persamaan Kuadrat Persamaan Polynomial Persamaan Trigonometri

Lebih terperinci

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER Persamaan taklinier sudah diperkenalkan sejak di sekolah menengah, diataranya persamaan kuadrat, persamaan trigonometri dan persamaan yang memuat logaritma atau eksponen.

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN : 3 & 4 PENYELESAIAN PERSAMAAN NON LINIER METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar

Lebih terperinci

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 5 METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Persamaan Aljabar Non-Linier Tunggal atau PANLT merupakan sembarang fungsi atau persamaan aljabar

Lebih terperinci

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR Metode Biseksi Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR METODE GRAFIK DAN TABULASI A. Tujuan a. Memahami Metode Grafik dan Tabulasi b. Mampu Menentukan nilai akar persamaan dengan Metode Grafik dan Tabulasi c. Mampu membuat

Lebih terperinci

Pertemuan ke 4. Non-Linier Equation

Pertemuan ke 4. Non-Linier Equation Pertemuan ke 4 Non-Linier Equation Non-Linier Equation Persamaan Kuadrat Persamaan Kubik Metode Biseksi Metode Newton-Rapshon Metode Secant 1 Persamaan Kuadrat Persamaan kuadrat adalah suatu persamaan

Lebih terperinci

Kunci Jawaban Quis 1 (Bab 1,2 dan 3) tipe 1

Kunci Jawaban Quis 1 (Bab 1,2 dan 3) tipe 1 Kunci Jawaban Quis (Bab,2 dan 3) tipe. Tentukan representasi deret Taylor dari f(x) = ln( + x) di sekitar a =. Tuliskan sampai turunan ke 5. Kemudian estimasilah ln(.2) dengan menggunakan deret Taylor

Lebih terperinci

1 Penyelesaian Persamaan Nonlinear

1 Penyelesaian Persamaan Nonlinear 1 Penyelesaian Persamaan Nonlinear Diberikan fungsi kontinu f (x). Setiap bilangan c pada domain f yang memenuhi f (c) = 0 disebut akar persamaan f (x) = 0, atau disebut juga pembuat nol fungsi f. Dalam

Lebih terperinci

Persamaan Non Linier 1

Persamaan Non Linier 1 Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier Penentuan akar-akar persamaan

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent Tommy Gunardi / 13507109 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

BAB II AKAR-AKAR PERSAMAAN

BAB II AKAR-AKAR PERSAMAAN BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau

Lebih terperinci

Akar-Akar Persamaan. Definisi akar :

Akar-Akar Persamaan. Definisi akar : Akar-Akar Persamaan Definisi akar : Suatu akar dari persamaan f(x) = 0 adalah suatu nilai dari x yang bilamana nilai tersebut dimasukkan dalam persamaan memberikan identitas 0 = 0 pada fungsi f(x) X 1

Lebih terperinci

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 4 Akar Persamaan (2) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk = g() Metode

Lebih terperinci

Bab 2. Penyelesaian Persamaan Non Linier

Bab 2. Penyelesaian Persamaan Non Linier Bab 2. Penyelesaian Persamaan Non Linier 1 Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. 2 Persamaan Non Linier penentuan

Lebih terperinci

Persamaan Non Linier

Persamaan Non Linier Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar persamaan

Lebih terperinci

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya

METODE NUMERIK AKAR-AKAR PERSAMAAN. Eka Maulana Dept. of Electrcal Engineering University of Brawijaya METODE NUMERIK AKAR-AKAR PERSAMAAN Eka Maulana Dept. of Electrcal Engineering University of Brawijaya Pendekatan Pencarian Akar-akar Persamaan Metode Pencarian Akar Persamaan > Metode Pengurung - metode

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan

Lebih terperinci

Metode Numerik. Persamaan Non Linier

Metode Numerik. Persamaan Non Linier Metode Numerik Persamaan Non Linier Persamaan Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Iterasi Sederhana Metode Newton-Raphson Metode Secant. Persamaan Non Linier penentuan akar-akar

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

Menemukan Akar-akar Persamaan Non-Linear

Menemukan Akar-akar Persamaan Non-Linear Menemukan Akar-akar Persamaan Non-Linear Muhtadin, ST. MT. Agenda Metode Tertutup Biseksi Regula Falsi Metode Terbuka Newton Method 3 Solusi untuk Persamaan Non Linear Akar-akar dari persamaan (y = f())

Lebih terperinci

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan Modul 8 METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Pada modul 7 terdahulu, telah dijelaskan tentang keunggulan komparatif Metode Newton-Raphson dibanding metode-metode

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010 Metode Program Studi Pendidikan Matematika UNTIRTA 10 Maret 2010 (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret 2010 1 / 16 Ekspansi Taylor Misalkan f 2 C [a, b] dan x 0 2 [a, b], maka untuk

Lebih terperinci

BAB 1 Konsep Dasar 1

BAB 1 Konsep Dasar 1 BAB 1 Konsep Dasar 1 BAB 2 Solusi Persamaan Fungsi Polinomial 2 BAB 3 Interpolasi dan Aproksimasi Polinomial 3 BAB 4 Metoda Numeris untuk Sistem Nonlinier 4 BAB 5 Metoda Numeris Untuk Masalah Nilai Awal

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK Mata Kuliah: Metode Numerik Semester: 7, Kode: KMM 090 Program Studi: Pendidikan Matematika Dosen: Khairul Umam, S.Si, M.Sc.Ed Capaian Pembelajaran: SKS:

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen Mulai dengan terkaan awal yang mengurung atau memuat akar

Lebih terperinci

BAB PDB Linier Order Satu

BAB PDB Linier Order Satu BAB 1 Konsep Dasar 1 BAB PDB Linier Order Satu BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua Untuk memulai pembahasan ini terlebih dahulu akan ditinjau beberapa teorema tentang konsep umum

Lebih terperinci

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen

Lebih terperinci

APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE NEWTON RAPHSON

APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE NEWTON RAPHSON Jurnal Dinamika Informatika Volume 6, No 2, September 2017 ISSN 1978-1660 : 113-132 ISSN online 2549-8517 APLIKASI ANALISIS TINGKAT AKURASI PENYELESAIAN PERSAMAAN NON LINIER DENGAN METODE BISEKSIDAN METODE

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

2 Akar Persamaan NonLinear

2 Akar Persamaan NonLinear 2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP METODE NUMERIK Disusun oleh Ir. Sudiadi, M.M.A.E. Ir. Rizani Teguh, MT SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 2015 Metode Numerik i KATA PENGANTAR Pertama-tama penulis

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-2 SISTEM BILANGAN DAN KESALAHAN METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode

Lebih terperinci

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI Perbandingan Beberapa Metode Numerik dalam Menghitung Nilai Pi Aditya Agung Putra (13510010)1 Program Studi Teknik Informatika Sekolah Teknik

Lebih terperinci

PERSAMAAN NON LINIER. Pengantar dan permasalahan persamaan Non-Linier. Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014

PERSAMAAN NON LINIER. Pengantar dan permasalahan persamaan Non-Linier. Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014 PERSAMAAN NON LINIER Pengantar dan permasalahan persamaan Non-Linier Sumarni Adi S1 Teknik Informatika STMIK AmikomYogyakarta 2014 Pengantar 1. Persamaan linier sudah kita kenal sejak SMP. Contoh kasus

Lebih terperinci

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON ITERASI TITIK SEDERHANA METODE NEWTON RAPHSON Metode iterasi sederhana adalah metode yang memisahkan dengan sebagian yang lain sehingga diperoleh : g(. dikenal juga sebagai metode g( Bentuk iterasi satu

Lebih terperinci

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini

ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini METODE NUMERIK, oleh Sri Adi Widodo, M.Pd. Hak Cipta 2015 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-882262; 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Bernardino Madaharsa Dito Adiwidya - 13507089 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik.

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik. SILABUS MATAKULIAH Matakuliah Jurusan : Metode Numerik : Matematika Deskripsi Matakuliah :Metode Numerik membahas permasalahan matematika yang bersifat numerik. Penyelesaian persamaan khususnya non liner,

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Penyelesaian Persamaan Non Linier Pengantar Penyelesaian Pers. Non Linier Metode Tabel Metode Biseksi Metode Regula Falsi Metode Numerik Tabel/Biseksi/RegulaFalsi 1 Pengantar Penyelesaian Persamaan Non

Lebih terperinci

Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK

Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK Bentuk umum : dimana x, x,..., x n variabel tak diketahui, a ij, b i, i =,,..., m; j =,,..., n bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel. SPL Mempunyai penyelesaian disebut KONSISTEN

Lebih terperinci

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar

Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Perhitungan Nilai Golden Ratio dengan Beberapa Algoritma Solusi Persamaan Nirlanjar Danang Tri Massandy (13508051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin

Lebih terperinci

METODA NUMERIK PRAKTIKUM 3 : APROKSIMASI PERSAMAAN TAKLINEAR Pokok Bahasan: Metoda Newton dan Iterasi Titik Tetap

METODA NUMERIK PRAKTIKUM 3 : APROKSIMASI PERSAMAAN TAKLINEAR Pokok Bahasan: Metoda Newton dan Iterasi Titik Tetap METODA NUMERIK PRAKTIKUM 3 : APROKSIMASI PERSAMAAN TAKLINEAR Pokok Bahasan: Metoda Newton dan Iterasi Titik Tetap Tujuan Kompetensi Dasar Memahami cara mengimplementasikan metoda Newton dan metoda iterasi

Lebih terperinci

Persamaan yang kompleks, solusinya susah dicari. Contoh :

Persamaan yang kompleks, solusinya susah dicari. Contoh : AKAR PERSAMAAN NON LINEAR Persamaan hingga derajat dua, masih mudah diselesaikan dengan cara analitik. Contoh : a + b + c = 0 Solusi : 1 = b ± b 4 ac a Persamaan yang kompleks, solusinya susah dicari.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier

Lebih terperinci

Pertemuan 9 : Interpolasi 1 (P9) Interpolasi. Metode Newton Metode Spline

Pertemuan 9 : Interpolasi 1 (P9) Interpolasi. Metode Newton Metode Spline Pertemuan 9 : Interpolasi 1 (P9) Interpolasi Metode Newton Metode Spline Pertemuan 9 : Interpolasi 2 Interpolasi Newton Polinomial Maclaurin dan polinomial Taylor menggunakan satu titik pusat, x 0 untuk

Lebih terperinci

Course Note Numerical Method Akar Persamaan Tak Liniear.

Course Note Numerical Method Akar Persamaan Tak Liniear. Course Note Numerical Method Akar Persamaan Tak Liniear. Dalam matematika terapan seringkali harus mencari selesaian persamaan yang berbentuk f() = 0 yakni bilangan o sedemikian sehingga f( o ) = 0. Dalam

Lebih terperinci

1-x. dimana dan dihubungkan oleh teorema Pythagoras.

1-x. dimana dan dihubungkan oleh teorema Pythagoras. `2. Menyelesaikan persamaan dengan satu variabel Contoh: Berdasarkan Hukum Archimedes, suatu benda padat yang lebih ringan daripada air dimasukkan ke dalam air, maka benda tersebut akan mengapung. Berat

Lebih terperinci

BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta

BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta BAB I PENDAHULUAN A. Latar Belakang Matematika adalah cabang ilmu pengetahuan yang dapat digunakan dalam kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta tidak merupakan

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

Modul Praktikum Analisis Numerik

Modul Praktikum Analisis Numerik Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret

Lebih terperinci

PETUNJUK PRAKTIKUM MATLAB LANJUT

PETUNJUK PRAKTIKUM MATLAB LANJUT PRAKTIKUM KE-1 Materi : Solusi Persamaan Non Linier Tujuan : Mahasiswa dapat menyelesaikan masalah yang berkaitan dengan persamaan non linier 1.1 Rasionalisasi Misalkan dimiliki model permasalahan sebagai

Lebih terperinci

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

Penyelesaian Secara Numerik? Penyelesaian Secara Numerik Selesaikanlah persamaan nonlinier f(x) = x x -8 Solve : Misal f(x) = 0 x x 8 = 0 (x 4)(x + )

Penyelesaian Secara Numerik? Penyelesaian Secara Numerik Selesaikanlah persamaan nonlinier f(x) = x x -8 Solve : Misal f(x) = 0 x x 8 = 0 (x 4)(x + ) Fungsi Polinomial METODE BISEKSI Solusi Persamaan Non Linier Universitas Budi Luhur Bentuk Umum : f (x) = a + = a + 0 1 3 n 0x + a1x + a x + a 3x +... a nx 3 n 0 + a1x + ax + a3x +... anx Dengan n = derajat

Lebih terperinci

Analisis Riil II: Diferensiasi

Analisis Riil II: Diferensiasi Definisi Turunan Definisi dan Teorema Aturan Rantai Fungsi Invers Definisi (Turunan) Misalkan I R sebuah interval, f : I R, dan c I. Bilangan riil L dikatakan turunan dari f di c jika diberikan sebarang

Lebih terperinci

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU),

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU), PENDAHULUAN A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa.

Lebih terperinci

DIKTAT KULIAH (3 sks) MX 211: Metode Numerik

DIKTAT KULIAH (3 sks) MX 211: Metode Numerik DIKTAT KULIAH (3 sks) MX : Metode Numerik (Revisi Terakhir: Juni 009 ) Oleh: Didit Budi Nugroho, M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA PENGANTAR

Lebih terperinci

PRAKTIKUM 1 Penyelesaian Persamaan Non Linier Metode Tabel

PRAKTIKUM 1 Penyelesaian Persamaan Non Linier Metode Tabel PRAKTIKUM 1 Penyelesaian Persamaan Non Linier Metode Tabel Tujuan : Mempelajari metode Tabel untuk penyelesaian persamaan non linier Dasar Teori : Penyelesaian persamaan non linier adalah penentuan akar-akar

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

METODE NEWTON TERMODIFIKASI UNTUK PENCARIAN AKAR PERSAMAAN NONLINEAR

METODE NEWTON TERMODIFIKASI UNTUK PENCARIAN AKAR PERSAMAAN NONLINEAR METODE NEWTON TERMODIFIKASI UNTUK PENCARIAN AKAR PERSAMAAN NONLINEAR Tugas Akhir Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Disusun Oleh: Juliani

Lebih terperinci

MODUL 1. Command History Window ini berfungsi untuk menyimpan perintah-perintah apa saja yang sebelumnya dilakukan oleh pengguna terhadap matlab.

MODUL 1. Command History Window ini berfungsi untuk menyimpan perintah-perintah apa saja yang sebelumnya dilakukan oleh pengguna terhadap matlab. MODUL 1 1. Pahuluan Matlab merupakan bahasa pemrograman yang hadir dengan fungsi dan karakteristik yang berbeda dengan bahasa pemrograman lain yang sudah ada lebih dahulu seperti Delphi, Basic maupun C++.

Lebih terperinci

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Akar Persamaan (1) Pertemuan ke - 3. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemuan ke - 3 Akar Persamaan (1) Metode Akar Persamaan Metode Grafik Metode Tabulasi Metode Setengah Interval Metode Regula Falsi Metode Newton Rephson Metode Iterasi bentuk x = g(x)

Lebih terperinci

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SYIAH KUALA Darussalam, Banda Aceh

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SYIAH KUALA Darussalam, Banda Aceh 08/02/2017 Nama Mata Kuliah : Metode Numerik Kode Mata Kuliah : KMM 090 Bobot SKS : 2 (dua) Semester : Ganjil Hari Pertemuan : 1 (pertama) Tempat Pertemuan : Ruang kuliah Koordinator MK : Khairul Umam,

Lebih terperinci

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1 Studi Kasus Penyelesaian Pers.Non Linier Studi Kasus Non Linier 1 Contoh Kasus Penyelesaian persamaan non linier terkadang muncul sebagai permasalahan yang terpisah, tetapi terkadang pula muncul sebagai

Lebih terperinci

PRAKTIKUM 2 Penyelesaian Persamaan Non Linier Metode Tabel

PRAKTIKUM 2 Penyelesaian Persamaan Non Linier Metode Tabel PRAKTIKUM 2 Penyelesaian Persamaan Non Linier Metode Tabel 1. Tujuan : Mempelajari metode Tabel untuk penyelesaian persamaan non linier 2. Dasar Teori : Penyelesaian persamaan non linier adalah penentuan

Lebih terperinci

PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024

PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 UNIVERSITAS GADJAH MADA PROGRAM STUDI FISIKA FMIPA Bahan Ajar 5: Permasalahan Akar Suatu Fungsi (Minggu ke-9 dan ke-10) PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 Oleh Dr. Fahrudin Nugroho

Lebih terperinci

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner Hendy Sutanto - 13507011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Penyelesaian Fungsi Kontinu menggunakan Decrease and Conquer

Penyelesaian Fungsi Kontinu menggunakan Decrease and Conquer Penyelesaian Fungsi Kontinu menggunakan Decrease and Conquer Abdurosyid Broto Handoyo (13510107) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

DIKTAT PRAKTIKUM METODE NUMERIK

DIKTAT PRAKTIKUM METODE NUMERIK DIKTAT PRAKTIKUM METODE NUMERIK LABORATORIUM KOMPUTER PROGRAM STUDI FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN 2014 KATA PENGANTAR Diktat ini disusun untuk pedoman dalam

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA Rahmawati Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya,

Lebih terperinci

BAB I PENDAHULUAN. hanya ditunjukkan oleh meningkatnya jumlah modal yang diinvestasikan ataupun

BAB I PENDAHULUAN. hanya ditunjukkan oleh meningkatnya jumlah modal yang diinvestasikan ataupun BAB I PENDAHULUAN 1.1 Latar Belakang Dunia investasi tampaknya tengah mengalami perkembangan, hal ini tidak hanya ditunjukkan oleh meningkatnya jumlah modal yang diinvestasikan ataupun semakin bertambahnya

Lebih terperinci

Ëalah satu masalah yang paling umum ditemui di dalam matematika dan teknik adalah mencari akar suatu persamaan; yakni jika diketahui

Ëalah satu masalah yang paling umum ditemui di dalam matematika dan teknik adalah mencari akar suatu persamaan; yakni jika diketahui 3 AKAR PERSAMAAN TAK LINIER ܵ ¼ Ëalah satu masalah yang paling umum ditemui di dalam matematika dan teknik adalah mencari akar suatu persamaan; yakni jika diketahui fungsi ܵ, akan dicari nilai-nilai

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 17 Maret 2010 Bagi Solusi Program Studi Pendidikan Matematika UNTIRTA 17 Maret 2010 (Program Studi Pendidikan Matematika Solusi UNTIRTA) 17 Maret 2010 1 / 20 Rumusan Masalah Bagi Tentukan solusi dengan f fungsi nonlinear.

Lebih terperinci

Modul Dasar dasar C. 1. Struktur Program di C++

Modul Dasar dasar C. 1. Struktur Program di C++ Modul Dasar dasar C I 1. Struktur Program di C++ Dalam bahasa pemrograman C++ strukturnya adalah sebagai berikut: a. Header. Ex: #include b. Main adalah isi dari program diawali {. dan diakhiri

Lebih terperinci

Metode Numerik Analisa Galat & Deret Taylor. Teknik Informatika-Unitomo Anik Vega Vitianingsih

Metode Numerik Analisa Galat & Deret Taylor. Teknik Informatika-Unitomo Anik Vega Vitianingsih Metode Numerik Analisa Galat & Deret Taylor Teknik Inormatika-Unitomo Anik Vega Vitianingsih TEORI KESALAHAN (GALAT) -Penyelesaian numerik dari suatu persamaan matematik hanya memberikan nilai perkiraan

Lebih terperinci

PRAKTIKUM 2 Penyelesaian Persamaan Non Linier Metode Biseksi

PRAKTIKUM 2 Penyelesaian Persamaan Non Linier Metode Biseksi PRAKIKUM 2 Penyelesaian Persamaan Non Linier Metode Biseksi ujuan : Mempelajari metode Biseksi untuk penyelesaian persamaan non linier Dasar eori : Ide awal metode ini adalah metode table, dimana area

Lebih terperinci

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Polinomial real berderajat n 0 adalah fungsi yang mempunyai bentuk p n (x) = n a i x i = a 0 x 0 + a

Lebih terperinci

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3. BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.

Lebih terperinci