[ 1 1 PENDAHULUAN SCILAB. Modul Praktikum Metode Numerik. 1. Struktur Scilab

dokumen-dokumen yang mirip
Oleh : Anna Nur Nazilah Chamim

Modul Praktikum Analisis Numerik

Mengenal Bahasa Pemprograman Scilab

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

Modul Dasar dasar C. 1. Struktur Program di C++

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR

BAGIAN 1 SINTAK DASAR MATLAB

BAB I ARTI PENTING ANALISIS NUMERIK

Modul Praktikum Analisis Numerik

Pendahuluan

PETUNJUK PRAKTIKUM MATLAB LANJUT

Selection, Looping, Branching

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR

DIKTAT PRAKTIKUM METODE NUMERIK

MODUL I PENGENALAN MATLAB

MODUL 1. Command History Window ini berfungsi untuk menyimpan perintah-perintah apa saja yang sebelumnya dilakukan oleh pengguna terhadap matlab.

UJIAN AKHIR SEMESTER METODE NUMERIS I

Pendahuluan Metode Numerik Secara Umum

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

1 Penyelesaian Persamaan Nonlinear

Mulyono (NIM : ) BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Penelitian ini menghasilkan diagram alir, kode program serta keluaran

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU),

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

Bab 1. Pendahuluan Metode Numerik Secara Umum

Pengantar Metode Numerik

oleh : Edhy Suta tanta

Laporan Praktikum 7 Analisis Numerik

SATUAN ACARA PERKULIAHAN (SAP)

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan

METODE NUMERIK. Akar Persamaan (2) Pertemuan ke - 4. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

Studi Kasus Penyelesaian Pers.Non Linier. Studi Kasus Non Linier 1

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)

RENCANA PEMBELAJARAN SEMESTER (RPS)

GARIS BESAR PROGRAM PENGAJARAN (GBPP)

LAPORAN AKHIR MATA KULIAH FISIKA KOMPUTASI

Studi Pencarian Akar Solusi Persamaan Nirlanjar Dengan Menggunakan Metode Brent

Pendahuluan Metode Numerik Secara Umum

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB III : SISTEM PERSAMAAN LINIER

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW

Silabus dan Satuan Acara Perkuliahan

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 3 & 4

DIKTAT KULIAH (3 sks) MX 211: Metode Numerik

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON

PENDAHULUAN METODE NUMERIK

METODE NUMERIK SOLUSI PERSAMAAN NON LINEAR

untuk i = 0, 1, 2,..., n

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB II LANDASAN TEORI

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN

BAB II TINJAUAN PUSTAKA

Penggunaan Metode Numerik dan MATLAB dalam Fisika

LAPORAN PRAKTIKUM ALGORITMA DAN STRUKTUR DATA Searching ( Pencarian ) Modul III

Sequential Search (Linear Search)

MATERI KULIAH 25 NOVEMBER DESEMBER 2015 Sri Istiyari Uswatun Chasanah G Struktur aliran atau bagan program kontrol.

SISTEM PERSAMAAN LINEAR ( BAGIAN II )

Langkah Penyelesaian Example 1) Tentukan nilai awal x 0 2) Hitung f(x 0 ) kemudian cek konvergensi f(x 0 ) 3) Tentukan fungsi f (x), kemudian hitung f

Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK

Pendahuluan. Praktikum Pengantar Pengolahan Citra Digital Departemen Ilmu Komputer Copyright 2008 All Rights Reserved

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

Interpolasi dan Ekstrapolasi

PERSAMAAN NON LINIER

BAB I PENDAHULUAN. analitik, misalnya persamaan berikut sin x 7. = 0, akan tetapi dapat

untuk setiap x sehingga f g

KATA PENGANTAR. Penulis. Raizal Dzil Wafa M.

Kata Pengantar... Daftar Isi... Daftar Padan Kata...

MATA KULIAH ANALISIS NUMERIK

BAB I PENDAHULUAN. 1.1 Latar Belakang

Modul Metode Numerik Ghofar Paturrohman, S.Kom.

Contoh Tentukanlah prakiraan nilai f pada titik x 8 dengan menggunakan metode polinomial interpolasi Lagrange dengan ketelitian hingga desimal, jika d

PRAKTIKUM 1. Dasar-Dasar Matlab. (-), perkalian (*), pembagian (/) dan pangkat (^). Simbol ^ digunakan untuk

MODUL PRAKTIKUM FISIKA KOMPUTASI. Disusun Oleh:

Teori Algoritma. Algoritma Perulangan

Interpolasi dan Ekstrapolasi

5. INTERPOLASI. orde 1 orde 2 orde 3 menghubungkan 2 titik menghubungkan 3 titik menghubungkan 4 titik. Gambar 5.1

SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP


Pertemuan I Mencari Akar dari Fungsi Transendental

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK

BAB II LANDASAN TEORI

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner

MODUL I MENGENAL MATLAB

BAB IV MENGHITUNG AKAR-AKAR PERSAMAAN

Buat program untuk menghitung volume dari sebuah kubus

3. Struktur Perulangan dalam Bahasa C++

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

PENURUNAN FUNGSI SECARA NUMERIK

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI

9. Teori Aproksimasi

BAB I PENDAHULUAN. 1.1 Latar Belakang

Pemrograman pada MATLAB

KAIDAH SIMPSON 3/8 DAN INTEGRASI NUMERIK. Kelompok 6

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN : 8

Transkripsi:

PENDAHULUAN SCILAB 1. Struktur Scilab Program Scilab sudah memiliki text editor di dalamnya. Perintah/kode program Scilab dapat dituliskan di dalam window Scilab Execution (Scilex) ataupun di window Scipad (text editor Scilab). Namun untuk praktikum Metode Numerik ini, program dituliskan di dalam Scipad.. File Extension File program Scilab memiliki extension.sce. File ini masih dalam bentuk text format. Untuk mengeksekusi file.sce, pertama kali file tersebut dibuka di dalam Scilab. Kemudian dieksekusi (ctrl + l). 3. Perintah Scilab 3.1. Vektor Cara untuk membuat vektor dalam Scilab sbb : (vektor disebut juga dengan array satu dimensi) x=[0 ; ;5] 3.. Matriks Cara untuk membuat matriks dalam Scilab sbb : (matriks disebut juga array dua dimensi) [ 1 1 4 3 3 4 5] 5 perintahnya sbb : A=[1 3 4 ; 1 5 ; 4 3 5] 3.3. Vector Otomatis 1 Lab Komputer Dasar

Cara menciptakan vector secara otomatis dari 1 hingga 7 dengan faktor kenaikan sebesar 0. w = 1:0.:7 3.4. Menjalankan Function pada Vector Vektor dapat diberlakukan suatu function secara bersamaan dengan perintah : z = sin(w) 3.5. Membuat Plot dari Vector Dua vector z dan w dapat dibuat plot w versus z dengan perintah : plotd(w,z) 3.6. Matriks Bilangan Random Cara membuat matriks m x n yang berisi bilangan random sbb : rand(n,m) 3.7. Loops dan Condition Looping dan condition di dalam Scilab sbb : ans = 0; n = 1; term = 1; while( ans + term ~= ans ) ans = ans + term; term = term*x/n; n = n + 1; end ans kemudian dijalankan perintah sbb : Lab Komputer Dasar

x = 1.0 exec( ex.sci ) Selain itu : for j= 4::6 disp(j**) end Hasilnya adalah : 16, 4, 0, 4, 16, 36 3.8. Statement IF Statement IF di dalam Scilab sbb : if expression then statements else if expression then statements else statements end 3.9. Function Contoh function pada Scilab : function y = ex(x) // EX A simple function to calculate exp(x) y = 0; n = 1; term = 1; while( y + term ~= y ) y = y + term; term = term*x/n; 3 Lab Komputer Dasar

n = n + 1; end endfunction cara menjalankan : exec('ex.sci') ex(1.0) 4 Lab Komputer Dasar

A. PENYELESAIAN AKAR AKAR PERSAMAAN KARAKTERISTIK Akar akar persamaan karakteristik adalah penyelesaian dari suatu persamaan polinomial. Polinomial tersebut berorde (berpangkat) atau lebih, biasa disebut dengan persamaan Non Linear. Untuk persamaan orde atau tiga masih mudah untuk menyelesaikan. Namun untuk persamaan berorde tinggi diperlukan metode numerik untuk mempermudah pencarian akar persamaan tersebut. Beberapa metode yang bisa digunakan akan dijelaskan di bawah ini : 1. METODE BISECTION Metode Bisection digunakan untuk mencari akar persamaan non linear melalui proses iterasi dengan persamaan : X c = X a X b /...(1.1) dimana nilai f X a. f X b 0...(1.). Kelemahan metode ini adalah : 1. Jika akar persamaan lebih dari satu, maka nilai tersebut hanya bisa ditemukan satu per satu/tidak bisa sekaligus.. Tidak dapat mencari akar kompleks (imajiner). 3. Proses iterasi tergolong lambat. Berikut algoritma penyelesaian Metode Bisection : 5 Lab Komputer Dasar

Langkah pertama, menentukan dua nilai x (Xa dan Xb) sebagai nilai awal perkiraan. Kedua nilai ini harus memenuhi syarat persamaan 1. Langkah kedua, jika nilai awal telah didapatkan selanjutnya menentukan nilai x (misal Xc) baru menggunakan persamaan 1.1 Langkah ketiga, mencari nilai f(xc) Langkah selanjutnya, melakukan langkah dan 3 hingga didapatkan f(xc) = 0 atau mendekati 0. Contoh : Carilah akar persamaan f x =x 3 7x 1 Langkah pertama, menentukan dua nilai x awal. Misal : Xa =.6 dan Xb =.5. Kemudian cek apakah kedua nilai tersebut memenuhi syarat? f(xa) = f(.6) =.6 3 7.6 1=0.376 f(xb) = f(.5) =.5 3 7.5 1= 0.875 Karena f(xa).f(xb) < 0 maka kedua nilai perkiraan di atas benar. Langkah kedua, mencari nilai Xc X c = X a X b / atau X c =.6.5 / =.55 dan f X c =.55 3 7.55 1= 0.686 karena nilai f(xc) negatif maka f(xc) menggantikan f(xb). Langkah ketiga, mencari nilai Xd 6 Lab Komputer Dasar

X d =.6.55 /=.575 dan f X d =.575 3 7.575 1= 0.04886 Langkah keempat, mencari nilai Xe X e =.6.575 /=.565 dan f X e =.565 3 7 5.565 1= 0.11108 Langkah berikutnya, ulangi langkah langkah di atas hingga menemukan f(xn) yang mendekati nol atau f x n 1 f x n e. Sedangkan e dapat ditentukan sendiri, misalnya E x10 5 Tugas Anda 1. Buatlah program implementasi dari algoritma di atas! Hasil program di atas f(x) tidak pernah nol bulat ( 3,47 x 10 8 ) dengan x =.57101.. Seorang peneliti atom menemukan hubungan waktu luruh radioaktif (t) dengan energi (E) yang dimiliki atom tersebut dengan suatu persamaan t=4 E 3 3 E E. Berapakah energi yang diperlukan untuk meluruh dalam waktu nol. 7 Lab Komputer Dasar

. METODE NEWTON RAPHSON Metode Newton Raphson juga digunakan untuk menyelesaikan persamaan non linear f(x). Rumus penyelesaian X n 1 = X n f X n / f ' X n... a Sedangkan persamaan non linear dapat diselesaikan jika memenuhi syarat sbb : f x 1. f '' x 1 / f ' x 1. f ' x 1 < 1... b dimana X 1 adalah titik awal yang ditentukan sebelum melakukan iterasi. Keterbatasan dari metode ini adalah : 1. jika fungsi f(x) mempunyai beberapa titik penyelesaian, maka akar akar penyelesaian tersebut tidak dapat dicari secara bersamaan.. Tidak dapat mencari akar imajiner(kompleks). 3. Tidak dapat mencari akar persamaan yang tidak memenuhi syarat persamaan b, meskipun sebenarnya persamaan memiliki akar persamaan. 4. Untuk persamaan yang sangat kompleks, pencarian turunan pertama dan kedua sangatlah sulit. Berikut algoritma Metode Newton Raphson : 1. Mencari turunan pertama dan kedua dari persamaan yang ada.. Menentukan nilai X 1 sebagai nilai perkiraan awal dan kemudian mengecek apakah memenuhi persyaratan persamaan b. 3. Jika memenuhi, maka iterasi dilakukan untuk mencari nilai X n. 4. Begitu seterusnya hingga antara X n 1 X n = 0 atau <= nilai e (error). Nilai error ini dapat ditentukan sendiri. 8 Lab Komputer Dasar

Contoh : Carilah persamaan non linear di bawah ini dengan Metode Newton Raphson : f x =e x 3x =0 Langkah pertama, mencari turunan persamaan tersebut f ' x =e x 6x f '' x =e x 6 Langkah kedua, menentukan nilai X 1, misalnya X 1 = 1. f(1) = e 3 3 1 = 0.81718 f'(1) = e 3 6 1 = 3.81718 f''(1) = e 3 6= 3.81718 jadi f x 1. f '' x 1 / f ' x 1. f ' x 1 =0.085845 1 karena syarat dipenuhi maka proses iterasi dapat dilanjutkan. Langkah ketiga, melakukan iterasi persamaan a untuk mencari X n jika e (error) = E x10 7. x =x 1 f x 1 / f ' x 1 =0.9141155 x 1 x =0.0858845 Langkah keempat, karena selisih x lebih besar dari e dan bukan 0 maka x 3 =x f x / f ' x =0.910018 x x 3 =0.0040975 dst. hingga selisihnya sama dengan nol atau lebih kecil dari e. Tugas Anda 9 Lab Komputer Dasar

1. Buatlah program yang menerapkan algoritma di atas. Jika jawaban benar maka akar f(x) = 0.9100076 atau mendekatinya.. Seorang ekonom menemukan bahwa hubungan permintaan (x) dengan besar inflasi (y) adalah y =x 4 9x x. Tentukan jumlah permintaan yang menandakan bahwa inflasi sebesar nol! (error = 0.01). 10 Lab Komputer Dasar

B. PENYELESAIAN PERSAMAAN LINEAR SERENTAK Persamaan Linear serentak adalah suatu persamaan dengan variabel bebas, misalnya : y 1 = a 11 x 1 + a 1 x + a 13 x 3 +... + a 1n x n y = a 1 x 1 + a x + a 3 x 3 +... + a n x n y = a 31 x 1 + a 3 x + a 33 x 3 +... + a 3n x n Penyelesaian dari persamaan tersebut bisa menggunakan bantuan matriks. Namun untuk ordo (jumlah variabel dan jumlah persamaan) yang tinggi, penyelesaian dapat menggunakan nilai pendekatan. Oleh sebab itu, metode numerik bisa digunakan untuk persamaan ini. Metode yang bisa dipakai akan dijelaskan di bawah ini. 1. METODE JACOBI Metode iterasi Jakobi adalah metode penyelesaian persamaan serentak melalui proses iterasi dengan menggunakan persamaan sbb : n x n 1 1 =h i /a ii a ij /a ii x n j...3a j=1 dimana j <> i Kelemahan dari metode ini adalah : 1. Jika ordo persamaan cukup tinggi maka konsumsi waktu untuk eksekusi program menjadi lama.. Metode ini hanya bisa dipakai jika persamaan yang akan diselesaikan memenuhi syarat persamaan berikut n a ii a ij, i=1,,...,n persamaan 3b j=1 11 Lab Komputer Dasar

dimana j <> I Berikut algoritma Metode Jacobi 1. Cek apakah susunan persamaan yang akan diselesaikan memenuhi syarat persamaan 3b. Jika ya, maka lanjut ke langkah kedua.. Menyusun matriks koefisien, matriks variabel, dan matriks hasil. 3. Langkah ketiga adalah menentukan titik variabel x awal kemudian melakukan iterasi dengan persamaan 3a hingga didapatkan nilai variabel x yang tidak berubah atau hampir tidak berubah dari iterasi yang sebelumnya. Contoh : Carilah penyelesaian dari persamaan sbb : 8x 1 x x 3 =8 x 1 7x x 3 = 4 x 1 x 9x 3 =1 Langkah pertama, menyusun urutan persamaan sehingga memenuhi persyaratan pada persamaan 3b. Urutannya sebagai berikut : persamaan 8x 1 x x 3 =8 diletakkan pada posisi paling pertama dikarenakan koefisien a 11 memiliki nilai paling besar. Kemudian posisi nomer dua adalah persamaan x 1 7x x 3 = 4 dikarenakan koefisien a memiliki nilai paling besar dari ketiga persamaan. Dan yang terakhir adalah persamaan x 1 x 9x 3 =1. Langkah kedua, menyusun matriks koefisien, matriks variabel dan matriks hasil. matriks koefisien : 1 Lab Komputer Dasar

A= 8 1 1 1 7 1 9 matriks variabel : 1 x= x x 3 x matriks hasil : h= 8 4 1 Langkah ketiga, menentukan titik awal variabel, misal diambil nilai awal dari x 1, x, x 3 = 0. Kemudian melakukan iterasi dengan persamaan 3a hingga nilai x 1, x, x 3 tidak berubah. Contoh iterasi pertama sbb : x 1 = 8 8 a 1 a 11 x a 13 a 11 x 3 x 1 =8/8 0 0 =1 x = 4 7 a 1 a x 1 a 3 a x 3 x =0.571 0 0 =0.571 x 3 = 1 9 a 31 a 33 x 1 a 3 a 33 x x 3 =1.333 0 0 =1.333 setelah dilanjutkan hingga iterasi ke 8 maka hasil dari x 1, x, x 3 semuanya adalah 1. 13 Lab Komputer Dasar

Tugas Anda 1. Buatlah program yang mengimplementasikan algoritma di atas.. Seorang peneliti melakukan penelitian mengenai lintasan elektron yang dipengaruhi oleh 3 faktor, katakanlah x, y, dan z. Hasil dari penelitian tersebut memberikan 3 buah persamaan sbb : 4x 10y 6z=30 3x 5y 7z=15 6x 8y 6z= 8 Tugas Anda sebagai programmer adalah membantu peneliti tersebut dengan membuatkan program untuk mencari nilai x, y, dan z. nilai error = 0.01 dengan menggunakan Metode Jacobi. 14 Lab Komputer Dasar

. METODE GAUSS SEIDEL Metode Gauss Seidel digunakan untuk menyelesaikan persamaan serentak. Metode ini lebih cepat dibandingkan dengan Metode Jacobi. Metode Gauss Seidel ini menggunakan persamaan sbb : x i n 1 = b i i 1 a ij a ii j=1 N x n 1 a j ii j=i 1 a ij n x a j ii persamaan 4.a dimana : i = 1,,...N n = 1,, Algoritma Gauss Seidel, sbb : 1. Cek apakah susunan persamaan yang akan diselesaikan memenuhi syarat persamaan 4a. Jika ya, maka lanjut ke langkah kedua.. Menyusun matriks koefisien, matriks variabel, dan matriks hasil. 3. Menentukan titik variabel x awal kemudian melakukan iterasi dengan persamaan 4a hingga didapatkan nilai variabel x yang tidak berubah atau hampir tidak berubah dari iterasi yang sebelumnya. Contoh : Carilah penyelesaian dari persamaan ini menggunakan metode Gauss Seidel : 8x 1 x x 3 =8 x 1 7x x 3 = 4 x 1 x 9x 3 =1 Langkah pertama, menyusun urutan persamaan sehingga memenuhi persyaratan pada persamaan 3b. Urutannya sebagai berikut : 15 Lab Komputer Dasar

persamaan 8x 1 x x 3 =8 diletakkan pada posisi paling pertama dikarenakan koefisien a 11 memiliki nilai paling besar. Kemudian posisi nomer dua adalah persamaan x 1 7x x 3 = 4 dikarenakan koefisien a memiliki nilai paling besar dari ketiga persamaan. Dan yang terakhir adalah persamaan x 1 x 9x 3 =1. Langkah kedua, menyusun matriks koefisien, matriks variabel dan matriks hasil. matriks koefisien : A= 8 1 1 1 7 1 9 matriks variabel : 1 x= x x 3 x matriks hasil : h= 8 4 1 Langkah ketiga, menetukan titik awal misalnya : x 1 1,x 1,x 3 1 =0 kemudian melakukan iterasi dengan persamaan 4.a, yaitu : x 1 = h 1 0 a 1j a 11 j=1 a 11 x j 3 a n 1 1j j= a 11 x j x 1 = h 1 a 11 0 a 1 a 11 x 1 a 13 a 11 x 3 1 x 1 =1 0 0 0 =1 n 16 Lab Komputer Dasar

x = h 1 a j a j=1 a x j 3 a n 1 j j=3 a x j x = h a 0 a 1 a x 1 a 3 a x 3 1 x =0.571 1/7 0 =0.7147 x 3 = h a 3j a j=1 a 33 x j 3 a n 1 3j j=4 a 33 x j x 3 = h 3 a 33 0 a 31 a 33 x 1 a 3 a 33 x x 3 =1.333 /9 0.714/9 =1.03 n n Setelah dilanjutkan sampai iterasi ke N ditemukan hasil dari x 1, x,x 3 =1. Tugas Anda : 1. Buatlah implementasi program dengan Scilab pada persoalan di atas. 3. Seorang peneliti melakukan penelitian mengenai lintasan elektron yang dipengaruhi oleh 3 faktor, katakanlah x, y, dan z. Hasil dari penelitian tersebut memberikan 3 buah persamaan sbb : 4x 10y 6z=30 3x 5y 7z=15 6x 8y 6z= 8 Tugas Anda sebagai programmer adalah membantu peneliti tersebut dengan membuatkan program untuk mencari nilai x, y, dan z. nilai error = 0.01 menggunakan Metode Gauss Seidel. 17 Lab Komputer Dasar

C. PENYELESAIAN PERSAMAAN NON LINEAR SERENTAK Persamaan Non Linear serentak adalah dua buah persamaan berordo(pangkat) lebih dari satu. Masingmasing persamaan memiliki kaitan sehingga penyelesaian persamaan satu dapat digunakan sebagai penyelesaian dalam persamaan yang lainnya. Salah satu metode yang bisa digunakan untuk menyelesaikan persamaan non linear serentak adalah Metode Newton Raphson. METODE NEWTON RAPHSON Metode Newton Raphson ini memiliki proses iterasi yang cepat. Namun hanya terbatas pada persamaan berordo dua atau tiga. Untuk ordo yang lebih besar, persoalan akan menjadi kompleks dikarenakan ada penghitungan determinan matriks ordo tinggi. Algoritma Newton Raphson 1. Menyelesaikan persamaan Non Linear serentak menjadi : F x 1,x =0 dan G x 1,x =0. Mencari nilai fungsi F x 1,x dan G x 1,x =0 dan turunan fungsi tersebut terhadap masing masing variabelnya, yaitu df /dx 1, df/ dx, dg/dx 1, dg/dx pada titik awal yang ditentukan yaitu x 1 0 dan x 0. 3. Mencari nilai r 1 dan s 1 ( r 1 dan s 1 adalah deviasi dari nilai x 1 dan x ), dengan aturan sbb : x 1, x df /dx r 1 = F G x 1, x dg/dx df /dx 1 df /dx dg /dx 1 dg/dx /dx 1 F x 1,x s 1 = df dg/dx 1 df /dx 1 df /dx dg/ dx 1 dg/dx G x 1, x kemudian dengan pendekatan didapatkan 18 Lab Komputer Dasar

x 1 1 =x 1 0 r 1 x 1 =x 0 s 1 4. melakukan operasi iterasi dengan mengulang langkah kedua sampai didapatkan nilai r dan s nol atau mendekati nol/error. Contoh : Carilah penyelesaian dari persamaan non linear serentak sbb : x x 1 =1.6 x 1 e x 4ln x x 1 0.3=3x 1 x Penyelesaiannya adalah : Langkah pertama, menyusun persamaan di atas menjadi bentuk F x 1,x =0 G x 1,x =0 yaitu : F x 1,x =x 1 e x x x 1 1.6=0 G x 1,x =4ln x x 1 0.3 3x 1 x Langkah kedua, Mencari nilai fungsi dan turunannya pada x 0 1 dan x 0 misalkan ditentukan nilai awalnya sebesar x 0 1 =4 dan x 0 =3 akan didapatkan : F x 1,x =x 1 e x x x 1 1.6 F x 1,x =4exp 3 3 4 1.6 F x 1,x = 0.79914873 dan G x 1, x =4ln x x 1 0.3 3x 1 x 19 Lab Komputer Dasar

G x 1, x =4ln 3 4 0.4 3 4 3 G x 1,x = 0.090160536 nilai turunannya : df /dx 1 = x e x = 3 exp 3 =.9590193 df /dx = x 1 x 1 e x = 4 4exp 3 = 4.19914873 dg/dx 1 =x 1 3x = 4 33=.803847577 dg /dx =4/x 3x 1 /x =4/3 3 4 / 3 =.1307688 Langkah ketiga, mencari nilai r 1 dan s 1 r 1 = 0.79914873 4.19914873 0.090160536.1307688.950193 4.19914873.803847577.1307688 =0.11549096 s 1 =.950193 0.79914873.803847577 0.090160536.950193 4.199414873.803847577.1307688 =0.109340978 sehingga x 1 1 =x 1 0 r 1 =4 0.11549096=4.11549096 x 1 =x 0 s 1 =3 0.109340978=3.109340978 Langkah keempat, mengulang langkah kedua dan ketiga hingga didapatkan nilai r 1 dan s 1 sama dengan nol. Hasil akhirnya adalah x 1 =4.1131531474 dan x =3.108030798 Tugas Anda 1. Buatlah program menggunakan Scilab pada persoalan di atas.. Buatlah program untuk menyelesaikan persamaan non linear serentak dari persamaan sbb 0 Lab Komputer Dasar

x 1 =log x x 1 x dan x 1 x =e x 3 ln x 1 1 Lab Komputer Dasar

D. INTERPOLASI Interpolasi adalah mencari nilai dari suatu fungsi yang tidak diketahui melalui nilai nilai fungsi yang diketahui. Dengan kata lain, fungsi tersebut tidak diketahui persamaannya namun yang diketahui hanya nilainya. Misalnya suatu fungsi yang bernilai sbb : x f(x) 0 0 0. 0.406 0.4 0.846 0.6 1.386 0.8.060 1.0 3.114 1. 5.114 Kemudian dicari nilai x dimana f(x) = 3.015. Penyelesaian dari interpolasi dapat menggunakan bantuan Tabel Beda Hingga. Berikut penjelasan mengenai Tabel Beda Hingga. Tabel Beda Hingga dari kasus di atas jika dibuat tabel beda hingga sbb : x f(x) f(x) f(x) f(x) 3 f(x) 4 f(x) 5 f(x) 6 0.0 0.000 0.406 0. 0.406 0.034 0.440 0.048 0.4 0.846 0.08 0.040 0.55 0.088 0.064 0.6 1.368 0.170 0.104 0.54 0.69 0.19 0.318 0.8.060 0.361 0.4 1.054 0.614 1.0 3.114 0.976.030 1. 5.144 Lab Komputer Dasar

1. INTERPOLASI METODE NEWTON GREGORY FORWARD (NGF) Interpolasi metode Newton Gregory Forward adalah metode yang digunakan untuk menyelesaikan persoalan interpolasi dengan menggunakan persamaan sbb : f x s = f 0 s f 0 s s 1! persamaan 1.D f 0 s s 1 s 3! 3 f 0... s s 1 s... s n 1 n f n! 0 dimana s= x s x 0 h dan f 0 didapatkan melalui Tabel Beda Hingga. Metode ini memiliki keterbatasan antara lain : 1. Hanya dapat digunakan untuk menyelesaikan persoalan interpolasi equispaced. ( x 1 x 0 =x x 1 =x 3 x =...=x n x n 1 =konstan atau h = konstan). Hanya cocok untuk menyelesaikan persoalan interpolasi untuk nilai xs terletak di dekat nilai awal x 1 dan x 0 (nilai errornya kecil). 3. Tidak dapat digunakan untuk menyelesaikan permasalahan interpolasi balik (invers interpolation). Namun metode ini sangat efektif digunakan untuk mencari nilai f(x) di sekitar titik awal. Algoritma NGF Langkah pertama, mencari nilai nilai beda hingga dari f(x) dengan bantuan Tabel Beda Hingga. Langkah kedua, mencari nilai s dan nilai fungsi f(xs) dengan persamaan 1.D. Contoh : Carilah nilai dari f(xs) dengan xs = 1.03 menggunakan metode NGF. 3 Lab Komputer Dasar

n x f(x) 0 1.0 1.449 1 1.3.060 1.6.645 3 1.9 3.16 4. 3.779 5.5 4.338 6.8 4.898 Penyelesaian : Langkah pertama, mencari nilai nilai beda hingga dari data yang diberikan. s x f(x) f(x) f(x) f(x) 3 f(x) 4 f(x) 5 f(x) 6 0 1 1.45 0.611 1 1.3.06-0.06 0.585 0.01 1.6.65-0.014-0.006 0.571 0.006 0.004 3 1.9 3. -0.008-0.00-0.001 0.563 0.004 0.003 4. 3.78-0.004 0.001 0.559 0.005 5.5 4.34 0.001 0.560 6.8 4.9 Langkah kedua, mencari nilai s dengan persamaan 1D. s= x x s 0 h =1.03 1 1.3 1 =0.1 dengan bantuan tabel didapatkan f 0 =0.611 ; f 0 = 0.06 ; 3 f 0 =0.01 ; 4 f 0 =0.006 ; 5 f 0 =0.004 ; 6 f 0 = 0.001 sehingga : 4 Lab Komputer Dasar

f x s = f 0 s f 0 s s 1! f 0 s s 1 s 3 f 3! 0 s s 1 s s 3 4 s s 1 s s 3 s 4 f 4! 0 5 f 5! 0 s s 1 s s 3 s 4 s 5 6 f 6! 0 =1.5118136 Tugas Anda 1. Buatlah program menggunakan Scilab dari persoalan di atas.. Buatlah program untuk mendapatkan nilai f(x) dimana x =.09 menggunakan NGF n x f(x) 0 1.0 4.90 1 1.5 5.00 1.5 5.43 3 1.75 5.467 4.0 5.689 5.5 5.887 6.5 6.03 7.75 6.88 8 3 6.489 5 Lab Komputer Dasar

. INTERPOLASI METODE STIRLING Interpolasi Metode Stirling adalah metode penyelesaian interpolasi menggunakan persamaan sbb : f x s = f 0 s 1 f f 1 0 s 1 s f 1 s 1 3 3 f 3 f 1 s 4 s 1 4 4 f 6 s 6 6 f 3...persamaan.D dimana : s= x s x 0 h s 5 5 f 3 5 f s 3 dan s j s j s j 1 s j s j 3... s j k 1 = k k! Keuntungan dari metode ini adalah jika nilai f(x) yang dicari berada di sekitar nilai tengah maka nilai errornya kecil. Algoritma Stirling Langkah pertama, mencari nilai beda hingga dan membuat Tabel Beda Hingga. Langkah kedua, mencari nilai s dan mencari nilai f(xs) dengan persamaan D. Contoh Carilah nilai f(xs) pada xs = 1.87 dengan Metode Stirling n x f(x) 3 1.0 1.449 1.3.060 1 1.6.645 0 1.9 3.16 6 Lab Komputer Dasar

1. 3.779.5 4.338 3.8 4.898 Penyelesaian : Langkah pertama, mencari nilai beda hingga dari data di atas. s x f(x) f(x) f(x) f(x) 3 f(x) 4 f(x) 5 f(x) 6-3 1 1.45 0.611-1.3.06-0.06 0.585 0.01-1 1.6.65-0.014-0.006 0.571 0.006 0.004 0 1.9 3. -0.008-0.00-0.001 0.563 0.004 0.003 1. 3.78-0.004 0.001 0.559 0.005.5 4.34 0.001 0.560 3.8 4.9 Langkah kedua, mencari nilai s dan f(xs) s= x x s 0 h =1.87 1.9 1.3 1 = 0.1 dari tabel beda hingga diketahui f 1 =0.571 ; f 0 =0.563 ; f 1 = 0.008 ; 3 f =0.006 ; 3 f 1 =0.004 ; 4 F = 0.00 ; 5 f 3 =0.004 ; 5 f 1 =0.003 ; 6 f 3 = 0.001 sehingga f x 5 = f 0 1 5 f f 1 0 5 4 5 1 4 5 1 5 f 1 5 1 3 3 f 3 f 1 6 5 6 4 f 5 5 5 f 3 5 f 5 1 6 f 3 =3.15940 7 Lab Komputer Dasar

jadi f(1.87) = 3.15940 Tugas Anda 1. Buatlah program menggunakan Scilab dari implementasi permasalahan di atas.. Buatlah program untuk mendapatkan nilai f(x) dimana x = 1.89 menggunakan Metode Stirling n x f(x) 0 1.0 4.90 1 1.5 5.00 1.5 5.43 3 1.75 5.467 4.0 5.689 5.5 5.887 6.5 6.03 7.75 6.88 8 3 6.489 8 Lab Komputer Dasar

3. Interpolasi Metode Lagrange Interpolasi Lagrange memiliki penyelesaian dengan persamaan sbb : f x = x x x x x x... x x 1 3 n x 0 x 1 x 0 x x 0 x 3... x 0 x n f 0 x x 0 x x x x 3... x x n x 1 x 0 x 1 x x 1 x 3... x 1 x n f 1 x x 0 x x 1 x x 3... x x n x x 0 x x 1 x x 3... x x n f x x 0 x x 1 x x... x x n x 3 x 1 x 3 x x 3 x 3... x 3 x n f 3... x x x x x x... x x 1 3 n 1 x n x 1 x n x x n x 3... x n x n 1 f n...persamaan 3.D Kelebihan dari metode Lagrange adalah : 1. Interpolasi Metode Lagrange dapat digunakan untuk menyelesaikan persoalan interpolasi equispaced (h = konstan) atau non equispaced (h= todak konstan).. Metode Lagrange dapat digunakan untuk menyelesaikan kasus interpolasi dan invers interpolasi (interpolasi balik). 3. Metode Lagrange dapat digunakan untuk mencari nilai fungsi yang variabelnya terletak di daerah awal, akhir, maupun tengah. 4. Tidak membutuhkan tabel beda hingga dalam proses penyelesaiannya sehingga penyelesaian persoalaan lebih mudah. Contoh : Carilah nilai dari f(x) pada x = 1.03 dengan tabel sbb : n x f(x) 9 Lab Komputer Dasar

0 1.0 0.000 1 1. 0.65 1.5 0.913 3 1.9.3170 4.1 3.719 5.5 5.768 6 3.0 9.8875 Penyelesaian : f x = x x x x x x x x x x x x 1 3 4 5 6 x 0 x 1 x 0 x x 0 x 3 x 0 x 4 x 0 x 5 x 0 x 6 f 0 x x 0 x x x x 3 x x 4 x x 5 x x 6 x 1 x 0 x 1 x x 1 x 3 x 1 x 4 x 1 x 5 x 1 x 6 f 1 x x 0 x x 1 x x 3 x x 4 x x 5 x x 6 x x 0 x x 1 x x 3 x x 4 x x 5 x x 6 f x x 0 x x 1 x x x x 4 x x 5 x x 6 x 3 x 0 x 3 x 1 x 3 x x 3 x 4 x 3 x 5 x 3 x 6 f 3 x x 0 x x 1 x x x x 3 x x 5 x x 6 x 4 x 0 x 4 x 1 x 4 x x 4 x 3 x 4 x 5 x 4 x 6 f 4 x x 0 x x 1 x x x x 3 x x 4 x x 6 x 5 x 0 x 5 x 1 x 5 x x 5 x 3 x 5 x 4 x 5 x 6 f 5 x x 0 x x 1 x x x x 3 x x 4 x x 5 x 6 x 0 x 6 x 1 x 6 x x 6 x 3 x 6 x 4 x 6 x 5 f 6 =0.03135 Tugas Anda : 1. Buatlah implementasi program dengan Scilab dari persoalan di atas.. Carilah nilai f(x) dengan x =.39 30 Lab Komputer Dasar

n x f(x) 0 1.0 4.90 1 1.3 5.00 1.5 5.43 3 1.75 5.467 4.0 5.689 5.4 5.887 6.5 6.03 7.75 6.88 8 3 6.489 31 Lab Komputer Dasar

E. INTEGRASI NUMERIK 1. Integrasi Numerik Metode Trapzoida Integrasi numerik adalah proses menyelesaikan nilai dari suatu integral f(x) pada batas tertentu ( x=x 0 x n ) dengan menggunakan persamaan 1.E untuk non equispaced dan.e untuk equispaced. f x dx= x 1 x 0 f 1 f 0 x x 1 f x dx= h [ f 0 f 1 f f 3... f n 1 f n ]...E dimana h=x 1 x 0 =x x 1 =...dst f f 1... x x n n 1 f n f n 1...1.E Contoh : Carilah nilai integral dengan batas x = 1.0 sampai x =.8 dari tabel di bawah ini dengan Metode Trapzoida. n x f(x) 0 1.0 1.449 1 1.3.060 1.6.645 3 1.9 3.16 4. 3.779 5.5 4.338 6.8 4.898 Penyelesaian : Dari tabel di atas diketahui bahwa persamaan yang digunakan adalah equispaced (persamaan.e) f x dx= h [ f 0 f 1 f f 3 f 4 f 5 f 6 ] 3 Lab Komputer Dasar

Tugas Anda : = 1.3 1.0 1.449.060.645 3.16 3.779 4.338 4.898 =5.76345 1. Buatlah program implementasi dari penyelesaian persoalan di atas dengan Scilab dan Metode Trapzoida.. Carilah nilai dari integral dari x = 1.0 hingga x = 3 dengan Metode Trapzoida dari tabel berikut : n x f(x) 0 1.0 4.90 1 1.3 5.00 1.5 5.43 3 1.75 5.467 4.0 5.689 5.4 5.887 6.5 6.03 7.75 6.88 8 3 6.489 33 Lab Komputer Dasar

Modul ini disadur dari : Munif, Abdul, Metode Numerik ANU Computational Teaching Modules, Scilab Tutorials 34 Lab Komputer Dasar