MODUL PRAKTIKUM FISIKA KOMPUTASI. Disusun Oleh:

Ukuran: px
Mulai penontonan dengan halaman:

Download "MODUL PRAKTIKUM FISIKA KOMPUTASI. Disusun Oleh:"

Transkripsi

1 MODUL PRAKTIKUM FISIKA KOMPUTASI Disusun Oleh: JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PGRI PALEMBANG 2017 i

2 PRAKATA Puji syukur penulis ucapkan kepada Tuhan yang Maha Esa yang telah memberikan kesehatan dan berkat-nya kepada penulis sehingga penulis bisa mengerjakan Modul Praktikum Fisika Komputasi ini. Penulis berharap semoga modul ini dapat membantu mahasiswa Jurusan Fisika FMIPA Universitas PGRI Palembang dalam menguasai materi kuliah Fisika Komputasi. Penulis juga mengucapkan terimakasih kepada pihak-pihak yang telah banyak membantu dalam penyusunan modul ini. Penulis menyadari dalam penulisan modul praktikum ini masih banyak terdapat kekurangan. Kritik dan saran dari penulisan modul ini sangat penulis harapkan untuk perbaikan dan penyempurnaan pada modul praktikum berikutnya. Penulis ii

3 DAFTAR ISI Halaman Halaman Sampul... i Prakata... ii Daftar Isi... iii Modul 1. Pengenalan Program Matlab... 1 Modul 2. Akar-Akar Polinomial... 5 Modul 3. Komputasi Matriks... 8 Modul 4. Sistem Persamaan Linier Modul 5. Penyelesaian Turunan dengan Matlab Modul 6. Diferensiasi Numerik dengan Metode Euler Modul 7. Diferensiasi Numerik dengan Metode Runge Kutta Modul 8. Integrasi Numerik Daftar Pustaka iii

4 MODUL I PENGENALAN PROGRAM MATLAB Matlab merupakan bahasa pemrograman komputer berbasis windows dengan orientasi dasarnya adalah matriks, namun pada program ini tidak menutup kemungkinan untuk pengerjaan permasalahan non-matriks. Selain itu, matlab juga merupakan bahasa pemrograman yang berbasis pada objek (OOP), namun di sisi lain, karena matlab bukanlah type compiler, maka program yang dihasilkan pada matlab tidak dapat berdiri sendiri. Agar hasil program dapat berdiri sendiri maka harus dilakukan transfer pada bahasa pemrograman yang lain, missal C++. Pada matlab terdapat tiga windows yang digunakan dalam operasinya yaitu Command Windows (layar perintah) dan figure windows (layar gambar), serta notepad (sebagai tempat editor program). 1. Command Windows Command windows (layar perintah) digunakan untuk menjalankan perintah/program yang dibuat pada layar editor matlab. Pada windows/layar ini, anda dapat mengakses perintah maupun komponen pendukung (help file dan sebagainya) yang ada pada matlab secara langsung. Salah satu ciri dari Command windows ditandai dengan tanda prompt (>>). Layar Menu Command windows terlihat dalam gambar di bawah ini. Gambar 1.1 Menu Command Windows Dosen Pengasu Fisika Komputasi 1

5 2. File Menu file merupakan item untuk menangai set-up statement yang berhubungan dengan file. 3. New Menu New merupakan sub menu: 4. M-File Membuka editor dengan layar kosong sehingga anda siap untuk membuat M-File baru 5. Figure Figure membuat suatu figur window (layar gambar baru) 6. Model Membuat layar model simulink (jika program matlab menyediakan fasilitas simulink) 7. Open M-File Menampilkan dialog bo untuk membuka sebuah M-File yang dipilih sesuai dengna pilihan pada dialog bo ke dalam editor. Dosen Pengasu Fisika Komputasi 2

6 Gambar 1.2 Open M-File Save Workspace As Menampilkan dialog bo penyimpanan data dalam format ASCII Gambar 1.3 Save Workspace Dosen Pengasu Fisika Komputasi 3

7 Pada menu ini anda diperintahkan untuk memilih letak drive, directory dan masukkan nama file dengan etensi mat (*.mat) untuk menyimpan workspace (lembar kerja pada matlab) Set Path Pada bagian inti digunakan untuk melakukan setting path/lintasan yang akan dikenali oleh program pada saat eksekusi file yang telah dibuat Print Mencetak semua tet yang berada pada command window. Jika yang dicetak tidak ingin semuanya maka cetak bagian (variabel) yang ingin dicetak Eit Matlab Perintah untuk keluar dari pelayanan matlab. Dosen Pengasu Fisika Komputasi 4

8 MODUL II AKAR-AKAR POLINOMIAL 1. Tujuan Praktikum Praktikan memahami dan mengetahui bahwa banyak hal di dalam perhitungan fisika melibatkan pencarian akar Praktikan dapat membuat script sederhana berkaitan dengan perhitungan akan persamaan melaui metoda yang sesuai 2. Metoda Bisection dan Metode Posisi Palsu Metoda Bisection adalah salah satu metoda numerik untuk mencari nilai yang nilai mendekati nol berdasarkan nilai dan. Ilustrasi pendekatan ini seperti Gambar 2.1 berikut ini. Gambar 2.1 Metode Bisection Metode lain yang serupa adalah metode selisih setengah adalah metode posisi palsu. Metode pencarian akar persamaan dengan memanfaatkan kemiringan dan selisih tinggi dari dua titik batas interval yang mengurung akar. Metode ini merupakan salah satu alternatif untuk mempercepat konvergensi. Ilustrasi pendekatan diberikan pada Gambar 2.2. Dosen Pengasu Fisika Komputasi 5

9 Gambar 2.2 Metode Posisi Palsu 3. Langkah-langkah Metode Bisection dan Metode Posisi Palsu Algortima Metode Bisection diberikan sebagai berikut: Masukkan: Fungsi kontinu: Interval yang mengurung akar: [ ] Maksimum interasi: Toleransi keakuratan:, misalnya Perhitungan Inti: Ketika dan, Hitung: Tentukan subinterval mana yang akan mengurung akar: a) Jika, maka, b) Jika, maka, c) Jika, maka diperoleh akar sama dengan Berhenti. Hitung: Hasil akhir: akar sedemikian sehingga Dosen Pengasu Fisika Komputasi 6

10 Sedangkan algortima Metode Posisi Palsu diberikan sebagai berikut: Masukkan: Fungsi kontinu: Interval yang mengurung akar: [ ] Maksimum interasi: Toleransi keakuratan:, misalnya Perhitungan Inti: Ketika dan, Hitung: Tentukan subinterval mana yang akan mengurung akar: a) Jika, maka, b) Jika, maka, c) Jika, maka diperoleh akar sama dengan Berhenti. Hitung: Hasil akhir: akar sedemikian sehingga 4. Tugas 1. Diberikan suatu persamaan polynomial a) Buatlah grafik hubungan dengan untuk persamaan yang diberikan di atas. b) Buatlah kode program untuk mencari akar-akar persamaan yang diberikan di atas c) Tentukan nilai keempat akar-akar persamaan yang diberikan di atas. 2. Dengan Metode Bisection, tentukan akar-akar dari persamaan:! Buatlah grafik dari persamaan tersebut. Dosen Pengasu Fisika Komputasi 7

11 MODUL III KOMPUTASI MATRIKS 1. Tujuan Praktikum Praktikan memahami dan mengetahui bahwa banyak hal di dalam perhitungan fisika melibatkan komputasi matriks Praktikan dapat membuat script sederhana untuk perhitungan matriks dengan matlab 2. Komputasi Matriks Penjumlahan dua buah matriks dapat dilakukan dengan program matlab, berikut diberikan script sederhananya Dosen Pengasu Fisika Komputasi 8

12 Sedangkan contoh script untuk perkalian dua buah matriks diberikan sebagai berikut: 3. Tugas Buatlah suatu script fungsi function eksternal untuk perkalian dua buah matriks dan simpan dengan nama function kali. Dari fungsi function yang sudah dibuat tentukan hasil dari perkaian dari matriks A dan B di bawah ini: 1. [ ] dan [ ] 2. [ ] dan [ ] Dosen Pengasu Fisika Komputasi 9

13 MODUL IV SISTEM PERSAMAAN LINIER 1. Tujuan Praktikum Praktikan memahami dan mengetahui bahwa banyak hal di dalam perhitungan fisika melibatkan system persamaan linier Praktikan dapat membuat script sederhana berkaitan dengan penyelesaian sistem persaman linier melalui metoda yang sesuai 2. Penyelesaian Sistem Persaman Linier dengan Metode Eliminasi Gauss Secara umum, sistem persamaan linier dinyatakan sebagai berikut: dimana dan merupakan konstanta, adalah variabel, =1,2, Berikut ini adalah sistem persamaan linier yang terdiri dari empat buah persamaan yaitu, dan. Permasalahan dari sistem persamaan linier adalah bagaimana mencari nila pengganti bagi variabel, dan. Sejumlah matrik bisa digunakan untuk menyatakan suatu sistem persamaan linier. Persamaan matriks tersebut dapat dinyatakan dalam bentuk operasi matrik sebagai berikut: Dosen Pengasu Fisika Komputasi 10

14 Dalam mencari solusi suatu sistem persamaan linier dengan metode eliminasi gauss, bentuk operasi matrik dapat dimanipulasi dalam bentuk matrik augmented matriks sebagai berikut: Dengan cara eliminasi Gauss, berikut ini diberikan contoh scriptnya: 3. Tugas Suatu sistem persamaan linier diberikan dengan matriks sebagai berikut. Buatlah script untuk penyelesaian system persamaan linier di atas. Tentukan nilai, dan! Dosen Pengasu Fisika Komputasi 11

15 MODUL V PENYELESAIAN TURUNAN DENGAN MATLAB 1. Tujuan Praktikum Praktikan memahami dan mengetahui bahwa banyak hal di dalam perhitungan fisika melibatkan turunan Praktikan dapat membuat script sederhana berkaitan dengan penyelesaian turunan berdasarkan rumus-rumus turunan 2. Langkah-langkah Penyelesaian Untuk mencari turunan dari suatu fungsi di matlab, terlebih dahulu gunakan perintah syms untuk mendefinisikan variabel/ekspresi simbollik secara eksplisit secara bersamaan: sym a b atau syms ( a, b ) adalah cara singkat untuk a=sym(a), b=sym(b). Jika kita tidak menuliskan sym, maka Matlab akan menampilkan fungsi yang telah kita tuliskan, akan tetapi setiap variabel tidak diketahui. Setelah kita menuliskan syms dan fungsi yang akan kita cari, maka kita harus mengetik Diff sebagai bahasa program untuk mendiferensialkan ekspresi simbolik atau elemen. Jika elemen bersifat numerik maka akan dicari diferensial dari ekspresi tersebut. Dosen Pengasu Fisika Komputasi 12

16 Di bawah ini akan ditunjukkan penggunaan Matlab dalam rumus-rumus differensial. RUMUS-RUMUS TURUNAN 1. Jika dengan c dan n konstanta real, maka Contoh: y dy d dy d cn n1 dengan program Matlab dapat dikerjakan sebagai berikut dy 2. Jika y = c dengan c R, maka 0 d Contoh: dy y 3 0 d dengan MATLAB Dosen Pengasu Fisika Komputasi 13

17 Dosen Pengasu Fisika Komputasi Jika y = f() + g(), maka Contoh dengan program MATLAB 4. Jika y = f().g(), maka Contoh Dengan MATLAB ) '( ) ( ' g f d dy d dy ) ( ) '( ) ( ) ( ' f g g f d dy y g g f f y 4 4 ) ( 2 2) ( 2 ' 2 ) '( 2) ( ) ( 2 ) '( ) ( 2) (

18 4. Tugas Kerjakan soal di bawah ini dengan matlab! 1. Jika y 2.cos3 maka tentukanlah turunan pertamanya Bila f maka tentukanlah nilai dari f (2). Dosen Pengasu Fisika Komputasi 15

19 MODUL VI DIFERENSIASI NUMERIK METODE EULER 1. Tujuan Praktikum Praktikan memahami dan mengetahui bahwa banyak hal di dalam perhitungan fisika melibatkan diferensiasi numerik Praktikan dapat membuat script sederhana berkaitan dengan penyelesaian diferensial secara numerik dengan metode Euler 2. Diferensiasi Numerik Metode Euler Diberikan PDB orde satu, Misalkan adalah hampiran nilai di yang dihitung dengan metode Euler dimana Maka, formula matematika untuk penurunan numerik persamaan diferensiasi orde satu dengan metode Euler adalah: dengan dan. 3. Galat dari Metode Euler Jika langkah dimulai dari dan berakhir di maka total galat yang terkumpul pada solusi akhir adalah Jadi, galat longgokan sebanding dengan. Dosen Pengasu Fisika Komputasi 16

20 4. Tugas Diberikan persamaan differensial Buatlah script pada matlab untuk menghitung nilai dengan. Jika diketahui fungsi asli adalah yang sudah dilakukan!, tentukan galat dari perhitungan Dosen Pengasu Fisika Komputasi 17

21 MODUL VII DIFERENSIASI NUMERIK METODE RUNGE KUTTA 1. Tujuan Praktikum Praktikan memahami dan mengetahui bahwa banyak hal di dalam perhitungan fisika melibatkan diferensiasi numerik Praktikan dapat membuat script sederhana berkaitan dengan penyelesaian diferensial secara numerik dengan metode Runge Kutta 2. Diferensiasi Numerik Metode Runge Kutta 2.1 Metode Runge Kutta Orde Tiga Metode Runge Kutta yang terkenal adalah metode Runge Kutta orde tiga dan metode Runge Kutta orde empat. Metode Runge Kutta orde tiga berbentuk: Galat per langkah metode Runge Kutta orde tiga adalah Galat longgokan metode Runge Kutta orde tiga adalah 2.2. Metode Runge Kutta Orde Empat Metode Runge Kutta orde empat berbentuk: Dosen Pengasu Fisika Komputasi 18

22 Galat per langkah metode Runge Kutta orde empat adalah Galat longgokan metode Runge Kutta orde empat adalah 3. Tugas Buatlah Script pada Matlab untuk menyelesaikan persamaan diferensial: Untuk menentukan (. ) dengan metode Runge Kutta Orde Tiga. Gunakan ukuran langkah Dosen Pengasu Fisika Komputasi 19

23 MODUL VIII INTEGRASI NUMERIK 1. Tujuan Praktikum Praktikan memahami dan mengetahui bahwa banyak hal di dalam perhitungan fisika melibatkan integrasi numerik Praktikan dapat membuat script sederhana berkaitan dengan penyelesaian integrasi secara numerik dengan metode trapezium 2. Metode Trapesium Secara umum integrasi dapat merupkan luasan yang berada di bawah fungsi. Oleh karena itu, dengan metode trapezium dapat diilustrasikan ide integrasi numeriknya sebagai berikut: Gambar 7.1 Metode Trapesium Sehingga solusi persamaan integrasi numeriknya adalah ( ), Dosen Pengasu Fisika Komputasi 20

24 3. Alur Kode Program Berikut ini adalah alur kode program untuk menyelesaikan persamaan integrasi numeric dengan metode trapesium 4. Tugas Diberikan script program sebagai berikut: Jalankanlah kode program di atas untuk mendekati nilai. Berapakah nilai hasil pendekatan? Dosen Pengasu Fisika Komputasi 21

25 Daftar Pustaka Landau R., et al. Computational Physics. Problem Solving With Computer (Wiley, 1997) Kincid D., Cheney W. Numeric Analysis (1991) Conte, de Boor. Elementary Numerical Analysis, Algorithmic Approach Anonymous Interpolasi Bilinier. Dosen Pengasu Fisika Komputasi 22

KATA PENGANTAR. Penulis. Raizal Dzil Wafa M.

KATA PENGANTAR. Penulis. Raizal Dzil Wafa M. i KATA PENGANTAR Buku ini dibuat untuk memudahkan siapa saja yang ingin belajar MATLAB terutama bagi yang baru mengenal MATLAB. Buku ini sangat cocok untuk pemula terutama untuk pelajar yang sedang menempuh

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

METODE NUMERIK Modul I

METODE NUMERIK Modul I LABORATORIUM KOMPUTASIONAL FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS YARSI METODE NUMERIK Modul I a. Estimasi waktu: 100 menit b. Tujuan Istruksional Khusus: Mahasiswa dapat menggunakan Mathlab dengan baik

Lebih terperinci

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK oleh Tim Dosen Mata Kuliah Metode Numerik Fakultas Teknik Universitas Indonesia Maret 2016 1 DAFTAR ISI hlm. PENGANTAR BAB 1 BAB 2 INFORMASI UMUM KOMPETENSI

Lebih terperinci

PEMROGRAMAN TERSTRUKTUR MENGGUNAKAN MATLAB

PEMROGRAMAN TERSTRUKTUR MENGGUNAKAN MATLAB PETUNJUK PRAKTIKUM PEMROGRAMAN TERSTRUKTUR MENGGUNAKAN MATLAB Oleh Ahmad Kamsyakawuni JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2009 MODUL 1 MENGENAL MATLAB A.

Lebih terperinci

Yogyakarta, Maret 2011 Penulis. Supardi, M.Si

Yogyakarta, Maret 2011 Penulis. Supardi, M.Si PRAKATA Puji syukur kami panjatkan kepada Alloh swt yang telah melimpahkan kasih sayangnya sehingga buku yang berjudul METODE NUMERIK dengan MATLAB ini dapat kami selesaikan penulisannya. Metode numerik

Lebih terperinci

I. PENDAHULUAN 1.1. Latar Belakang Untuk mengungkapkan perilaku dinamik suatu sistem fisik seperti mekanik, listrik, hidrolik dan lain sebagainya, umumnya sistem fisik dimaksud dimodelkan dengan sistem

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Ilmu fisika merupakan ilmu yang mempelajari berbagai macam fenomena alam dan berperan penting dalam kehidupan sehari-hari. Salah satu peran ilmu fisika

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP 10.09.04 PAF220 Revisi ke - Tanggal 13 September 2013 Dikaji Ulang Oleh Ketua Program Studi Fisika Dikendalikan Oleh GPM

Lebih terperinci

MODUL I MENGENAL MATLAB

MODUL I MENGENAL MATLAB MODUL I MENGENAL MATLAB TUJUAN Mahasiswa dapat mengenal MATLAB Mahasiswa dapat menggunakan fungsi Help Mahasiswa dapat menggunakan operasi pada MATLAB TEORI Gambaran sederhana tentang MATLAB adalah sebuah

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

Pendahuluan. Praktikum Pengantar Pengolahan Citra Digital Departemen Ilmu Komputer Copyright 2008 All Rights Reserved

Pendahuluan. Praktikum Pengantar Pengolahan Citra Digital Departemen Ilmu Komputer Copyright 2008 All Rights Reserved 1 Pengenalan Matlab Pendahuluan Matlab adalah perangkat lunak yang dapat digunakan untuk analisis dan visualisasi data. Matlab didesain untuk mengolah data dengan menggunakan operasi matriks. Matlab juga

Lebih terperinci

Silabus dan Satuan Acara Perkuliahan

Silabus dan Satuan Acara Perkuliahan Fakultas Teknik No. Dokumen : FT SSAP-S3-10 Program Studi Teknik Elektro No. Revisi : 02 Silabus dan Satuan Acara Perkuliahan Tgl.Revisi :13-07-2006 Tgl. Berlaku :13-07-2006 KOMPUTASI NUMERIK DAN SIMBOLIK

Lebih terperinci

Oleh Dr. Fahrudin Nugroho Dr. Iman Santosa

Oleh Dr. Fahrudin Nugroho Dr. Iman Santosa UNIVERSITAS GADJAH MADA PROGRAM STUDI FISIKA FMIPA Buku 1 : RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) PEMROGRAMAN DAN METODE NUMERIK Semester 2/ 2 sks/ MFF 1024 Oleh Dr. Fahrudin Nugroho

Lebih terperinci

MATA KULIAH ANALISIS NUMERIK

MATA KULIAH ANALISIS NUMERIK BAHAN AJAR MATA KULIAH ANALISIS NUMERIK Oleh: M. Muhaemin Muhammad Saukat JURUSAN TEKNIK DAN MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN 2009 Bahan Ajar Analisis

Lebih terperinci

PERBANDINGAN SOLUSI MODEL GERAK ROKET DENGAN METODE RUNGE-KUTTA DAN ADAM- BASHFORD

PERBANDINGAN SOLUSI MODEL GERAK ROKET DENGAN METODE RUNGE-KUTTA DAN ADAM- BASHFORD Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 376 PERBANDINGAN SOLUSI MODEL GERAK ROKET DENGAN METODE RUNGE-KUTTA DAN ADAM- BASHFORD KUSBUDIONO 1, KOSALA DWIDJA PURNOMO 2,

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH KODE / SKS PROGRAM STUDI : REKAYASA KOMPUTASIONAL (d/h Metode Numerik) : TI / 2 SKS : TEKNIK INFORMAA Pertemu Pokok Bahasan an ke dan 1 Pendahuluan-1 Agar mahasiswa

Lebih terperinci

Course Note Numerical Method : Interpolation

Course Note Numerical Method : Interpolation Course Note Numerical Method : Interpolation Pengantar Interpolasi. Kalimat y = f(x), xo x xn adalah kalimat yang mengkorespondensikan setiap nilai x di dalam interval x0 x xn dengan satu atau lebih nilai-nilai

Lebih terperinci

KATA PENGANTAR. FisikaKomputasi i -FST Undana

KATA PENGANTAR. FisikaKomputasi i -FST Undana Disertai Flowchart, Algoritma, Script Program dalam Pascal, Matlab5 dan Mathematica5 Ali Warsito, S.Si, M.Si Jurusan Fisika, Fakultas Sains & Teknik Universitas Nusa Cendana 2009 KATA PENGANTAR Buku ajar

Lebih terperinci

Pertemuan I Mencari Akar dari Fungsi Transendental

Pertemuan I Mencari Akar dari Fungsi Transendental Pertemuan I Mencari Akar dari Fungsi Transendental Daftar Isi: 1.1 Tujuan Perkuliahan 1. Pendahuluan 1.3 Metoda Bisection 1.3.1 Definisi 1.3. Komputasi mencari akar 1.3.3 Ilustrasi 1.4 Metoda Newton-Raphson

Lebih terperinci

Penggunaan Metode Numerik dan MATLAB dalam Fisika

Penggunaan Metode Numerik dan MATLAB dalam Fisika Tugas Akhir Mata Kuliah Metode Numerik Dr. Kebamoto Penggunaan Metode Numerik dan MATLAB dalam Fisika Oleh : A. Arif Sartono 6305220017 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

BAB I PENDAHULUAN 1 BAB I PENDAHULUAN

BAB I PENDAHULUAN 1 BAB I PENDAHULUAN BAB I PENDAHULUAN 1 BAB I PENDAHULUAN 1.1. Apakah Maple itu? Maple adalah suatu program interaktif yang mengintegrasikan kemampuan komputasi baik numerik ataupun simbolik, visualisasi (grafik) dan pemrograman.

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54812 / Metode Numerik 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1 METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS Metode Numerik 1 Materi yang diajarkan : 1. Pendahuluan - latar belakang - mengapa dan kapan menggunakan metode numerik - prinsip penyelesaian persamaan 2. Sistim

Lebih terperinci

BAB 5 KESIMPULAN DAN SARAN

BAB 5 KESIMPULAN DAN SARAN BAB 5 KESIMPULAN DAN SARAN 5.1 Kesimpulan Sistem Sturm-Liouville merupakan salah satu metode optimasi fungsional dalam kalkulus variasi yang sangat bermanfaat dalam mencari fungsi optimal dari suatu dari

Lebih terperinci

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI JURNAL MATEMATIKA DAN KOMPUTER EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Kushartantya dan Awalina Kurniastuti Jurusan Matematika

Lebih terperinci

TJUKUP MARNOTO. Carl Friedrich Gauss. Leonhard Euler. Isaac Newton. ANALISA NUMERIK dan PEMPROGRAMAN dengan BAHASA SCILAB

TJUKUP MARNOTO. Carl Friedrich Gauss. Leonhard Euler. Isaac Newton. ANALISA NUMERIK dan PEMPROGRAMAN dengan BAHASA SCILAB TJUKUP MARNOTO Carl Friedrich Gauss Leonhard Euler Isaac Newton ANALISA NUMERIK dan PEMPROGRAMAN dengan BAHASA SCILAB ANALISA NUMERIK dan PEMROGRAMAN dengan BAHASA SCILAB Penulis Tjukup Marnoto Desain

Lebih terperinci

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER Semester Ganjil Tahun 2016/2017

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER Semester Ganjil Tahun 2016/2017 RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER Semester Ganjil Tahun 2016/2017 IDENTITAS MATA KULIAH : Nama : Fisika Komputasi Kode : PAP319 sks 4 (3 sks teori + 1 sks praktikum) Status : Wajib Mata

Lebih terperinci

PETUNJUK PRAKTIKUM MATLAB LANJUT

PETUNJUK PRAKTIKUM MATLAB LANJUT PRAKTIKUM KE-1 Materi : Solusi Persamaan Non Linier Tujuan : Mahasiswa dapat menyelesaikan masalah yang berkaitan dengan persamaan non linier 1.1 Rasionalisasi Misalkan dimiliki model permasalahan sebagai

Lebih terperinci

BANK SOAL METODE KOMPUTASI

BANK SOAL METODE KOMPUTASI BANK SOAL METODE KOMPUTASI 006 iv DAFTAR ISI Halaman Bio Data Singkat Penulis.. Kata Pengantar Daftar Isi i iii iv Pengantar... Kesalahan Bilangan Pendekatan... 6 Akar-akar Persamaan Tidak Linier.....

Lebih terperinci

LAPORAN PRAKTIKUM TEKNIK DAN INSTRUMENTASI KENDALI. M-File dan Simulink

LAPORAN PRAKTIKUM TEKNIK DAN INSTRUMENTASI KENDALI. M-File dan Simulink LAPORAN PRAKTIKUM TEKNIK DAN INSTRUMENTASI KENDALI M-File dan Simulink Disusun Oleh Nama : Yudi Irwanto NIM : 021500456 Prodi Jurusan : Elektronika Instrumentasi : Teknofisika Nuklir SEKOLAH TINGGI TEKNOLOGI

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan

BAB I PENDAHULUAN. 1.1 Latar Belakang. Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan BAB I PENDAHULUAN 1.1 Latar Belakang Suatu integral dapat diselesaikan dengan 2 cara, yaitu secara analitik dan secara numerik. Perhitungan secara analitik dilakukan untuk menyelesaikan integral pada fungsi

Lebih terperinci

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Program Studi : Fisika Nama Mata Kuliah : ANALISIS NUMERIK Kode : FIS6236

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK

JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK Kasus-kasus fisika yang diangkat pada mata kuliah Fisika Komputasi akan dijawab secara numerik. Validasi jawaban

Lebih terperinci

UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MIPA RENCANA PELAKSANAAN PEMBELAJARAN

UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MIPA RENCANA PELAKSANAAN PEMBELAJARAN UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MIPA RENCANA PELAKSANAAN PEMBELAJARAN 1. Fakultas/Program Studi : MIPA/Pendidikan Matematika. Mata Kuliah/Kode : Aplikasi Komputer/MAT33 3. Jumlah SKS : Teori = Praktek

Lebih terperinci

MODUL I PENGENALAN MATLAB

MODUL I PENGENALAN MATLAB MODUL I PENGENALAN MATLAB 1. Apa Matlab itu? Matlab merupakan bahasa pemrograman dengan kemampuan tinggi dalam bidang komputasi. Matlab memiliki kemampuan mengintegrasikan komputasi, visualisasi, dan pemrograman.

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik. Disusun oleh: Rafki Imani, MT

RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik. Disusun oleh: Rafki Imani, MT RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik Disusun oleh: Rafki Imani, MT PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS PUTRA INDONESIA YPTK PADANG 2017 LEMBAR

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

Oleh : Anna Nur Nazilah Chamim

Oleh : Anna Nur Nazilah Chamim Oleh : Anna Nur Nazilah Chamim 1. Silabus 2. Referensi 3. Kriteria Penilaian 4. Tata Tertib Perkuliahan 5. Pembentukan Kelompok 6. Materi 1 : pengantar Analisa Numerik Setelah mengikuti mata kuliah metode

Lebih terperinci

METODE ITERASI SEDERHANA

METODE ITERASI SEDERHANA METODE ITERASI SEDERHANA Kelompok 4 Adnan Widya I (M0513003) Bara Okta P. J. (M0513012) Moh. Alvan P. U (M0513032) Shofwah Dinillah (M0513043) METODE EULER Bentuk umum: menghitung penyelesaian persamaan

Lebih terperinci

Prakata Hibah Penulisan Buku Teks

Prakata Hibah Penulisan Buku Teks Prakata Syukur Alhamdulillah kami panjatkan ke hadhirat Allah SwT, atas hidayah dan kekuatan yang diberikannya kepada penulis sehingga penulis dapat menyelesaikan buku Pengantar Komputasi Numerik dengan

Lebih terperinci

PENGENALAN MATLAB UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Senin, 06 Maret 2017

PENGENALAN MATLAB UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Senin, 06 Maret 2017 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER PENGENALAN MATLAB ILHAM SAIFUDIN Senin, 06 Maret 2017 Universitas Muhammadiyah Jember Ilham Saifudin MI MATEMATIKA DASAR

Lebih terperinci

Triyana Muliawati, S.Si., M.Si.

Triyana Muliawati, S.Si., M.Si. SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. [email protected] 1. Pengenalan Metode

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial berperan penting dalam kehidupan, sebab banyak permasalahan pada dunia nyata dapat dimodelkan dengan bentuk persamaan diferensial. Ada dua jenis

Lebih terperinci

BAB III PEMROGRAMAN MATLAB 2 Copyright by

BAB III PEMROGRAMAN MATLAB 2 Copyright by BAB III PEMROGRAMAN MATLAB 2 1 M-File M-file merupakan sederetan perintah matlab yang dituliskan secara berurutan sebagai sebuah file. Nama file yang digunakan berekstensi m yang menandakan bahwa file

Lebih terperinci

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN JURUSAN INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SYIAH KUALA BANDA ACEH 2012 DAFTAR ISI DAFTAR ISI... 1 KATA PENGANTAR... 2 PENDAHULUAN...

Lebih terperinci

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik.

SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik. SILABUS MATAKULIAH Matakuliah Jurusan : Metode Numerik : Matematika Deskripsi Matakuliah :Metode Numerik membahas permasalahan matematika yang bersifat numerik. Penyelesaian persamaan khususnya non liner,

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) IKG2E3 KOMPUTASI NUMERIK Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Semester (RPS) ini

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) Nama Mata Kuliah : Metode Numerik Kode Mata Kuliah : TI 016 Bobot Kredit : 3 SKS Semester Penempatan : III Kedudukan Mata Kuliah : Mata Kuliah Keilmuan Keterampilan Mata

Lebih terperinci

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)

RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54812 / Metode Numerik Revisi - Satuan Kredit Semester : 3 SKS Tgl revisi : - Jml Jam kuliah dalam seminggu : 3 x 50

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

DIKTAT PRAKTIKUM METODE NUMERIK

DIKTAT PRAKTIKUM METODE NUMERIK DIKTAT PRAKTIKUM METODE NUMERIK LABORATORIUM KOMPUTER PROGRAM STUDI FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN 2014 KATA PENGANTAR Diktat ini disusun untuk pedoman dalam

Lebih terperinci

Kata Pengantar... Daftar Isi... Daftar Padan Kata...

Kata Pengantar... Daftar Isi... Daftar Padan Kata... Daftar Isi Kata Pengantar... Daftar Isi... Daftar Padan Kata... iii v xi 1. Metode Numerik Secara Umum... 1 1.1 Metode Analitik versus Metode Numerik... 4 1.2 Metode Numerik dalam Bidang Rekayasa... 6

Lebih terperinci

Kode Makalah PM-12. Pendahuluan

Kode Makalah PM-12. Pendahuluan Kode Makalah PM-12 Pembelajaran Terintegrasi Pada Perkuliahan Metode Numerik I: Upaya Peningkatan Kualitas Struktur Logik Mahasiswa Dalam Penyelesaian Masalah Secara Numerik Oleh: Atik Wintarti, Budi Rahajeng

Lebih terperinci

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT

SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT Vera Alvionita Harahap 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 117 124. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

Modul Praktikum Fisika Komputasi Dengan Matlab GUI IGA Widagda Fisika FMIPA UNUD 2014

Modul Praktikum Fisika Komputasi Dengan Matlab GUI IGA Widagda Fisika FMIPA UNUD 2014 Modul Praktikum Fisika Komputasi II Dengan Matlab GUI IGA Widagda Fisika FMIPA UNUD 014 Kata Pengantar Sebelumnya kami memanjatkan puji syukur kepada Tuhan Yang Maha Esa, karena berkat rahmat-nya maka

Lebih terperinci

MODUL 1. Command History Window ini berfungsi untuk menyimpan perintah-perintah apa saja yang sebelumnya dilakukan oleh pengguna terhadap matlab.

MODUL 1. Command History Window ini berfungsi untuk menyimpan perintah-perintah apa saja yang sebelumnya dilakukan oleh pengguna terhadap matlab. MODUL 1 1. Pahuluan Matlab merupakan bahasa pemrograman yang hadir dengan fungsi dan karakteristik yang berbeda dengan bahasa pemrograman lain yang sudah ada lebih dahulu seperti Delphi, Basic maupun C++.

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 125 134. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH

Lebih terperinci

DIKTAT KULIAH (3 sks) MX 211: Metode Numerik

DIKTAT KULIAH (3 sks) MX 211: Metode Numerik DIKTAT KULIAH (3 sks) MX : Metode Numerik (Revisi Terakhir: Juni 009 ) Oleh: Didit Budi Nugroho, M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA PENGANTAR

Lebih terperinci

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Suhartono dan Solikhin Zaki Jurusan Matematika FMIPA UNDIP Abstrak Penelitian

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

Modul Praktikum 1 Pemograman Berorientasi Objek

Modul Praktikum 1 Pemograman Berorientasi Objek Modul Praktikum 1 Pemograman Berorientasi Objek 1. Judul : Mengenal Lingkup Pemograman 2. Tujuan Percobaan : Diakhir praktikum, mahasiswa diharapkan mampu : Menuliskan program Java menggunakan text editor

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

Bahasa FORTRAN. Saifoe El Unas. Apa FORTRAN itu?

Bahasa FORTRAN. Saifoe El Unas. Apa FORTRAN itu? Bahasa FORTRAN Saifoe El Unas Apa FORTRAN itu? FORTRAN = Formula Translation Merupakan bahasa pemrograman pertama (1957) untuk Scientists& Engineers. Perkembangan FORTRAN : FORTRAN 66 FORTRAN 77 FORTRAN

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU),

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU), PENDAHULUAN A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar yang akan digunakan sebagai landasan berpikir seperti beberapa literatur yang berkaitan dengan penelitian ini. Dengan begitu akan mempermudah

Lebih terperinci

Pendahuluan

Pendahuluan Pendahuluan Pendahuluan Numerik dengan Matlab KOMPUTASI NUMERIK dengan MATLAB Oleh : Ardi Pujiyanta Edisi Pertama Cetakan Pertama, 2007 Hak Cipta 2007 pada penulis, Hak Cipta dilindungi undang-undang.

Lebih terperinci

BAB I PENDAHULUAN Pengantar Bahasa ISETL

BAB I PENDAHULUAN Pengantar Bahasa ISETL BAB I PENDAHULUAN 1.1. Pengantar Bahasa ISETL 1.1.1. Pemrograman Dewasa ini perkembangan teknologi berkembang dengan pesatnya dan dapat digunakan dalam segala bidang, diantaranya bidang kesehatan, bidang

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata Kuliah : Metode Numerik Bobot Mata Kuliah : 3 Sks Deskripsi Mata Kuliah : Unified Modelling Language; Use Case Diagram; Class Diagram dan Object Diagram;

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah komputer ( computer ) berasal dari bahasa latin computere yang berarti

BAB 2 LANDASAN TEORI. Istilah komputer ( computer ) berasal dari bahasa latin computere yang berarti BAB 2 LANDASAN TEORI 2.1 Pengertian Komputer Istilah komputer ( computer ) berasal dari bahasa latin computere yang berarti menghitung. Dalam bahasa Inggris berasal dari kata computer yang artinya menghitung.

Lebih terperinci

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari

Lebih terperinci

UJIAN AKHIR SEMESTER METODE NUMERIS I

UJIAN AKHIR SEMESTER METODE NUMERIS I PETUNJUK UJIAN AKHIR SEMESTER METODE NUMERIS I DR. IR. ISTIARTO, M.ENG. KAMIS, 8 JUNI 017 OPEN BOOK 150 MENIT 1. Saudara tidak boleh menggunakan komputer untuk mengerjakan soal ujian ini.. Tuliskan urutan/cara/formula

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

Pendahuluan. Modul ini disusun untuk perkuliahan Aplikasi Komputer Jurusan Fisika

Pendahuluan. Modul ini disusun untuk perkuliahan Aplikasi Komputer Jurusan Fisika Pendahuluan Modul ini disusun untuk perkuliahan Aplikasi Komputer Jurusan Fisika Universitas Medan guna memberikan bekal pengetahuan dan Pengalaman kepada mahasiswa dalam mendalami gejala Fisika secara

Lebih terperinci

SOFTWARE LINDO I KOMANG SUGIARTHA

SOFTWARE LINDO I KOMANG SUGIARTHA SOFTWARE LINDO I KOMANG SUGIARTHA PENGERTIAN LINDO LINDO (Linear Interaktive Discrete Optimizer) merupakan software yang dapat digunakan untuk mencari penyelesaian dari masalah pemrograman linear. Prinsip

Lebih terperinci

Memulai Simulink. Memulai Simulink. Membuat Model Baru. Untuk memulai Simulink dan membuka library milik Simulink :

Memulai Simulink. Memulai Simulink. Membuat Model Baru. Untuk memulai Simulink dan membuka library milik Simulink : Memulai Simulink Memulai Simulink Untuk memulai Simulink dan membuka library milik Simulink : 1. Jalankan program MATLAB. 2. Ketik simulink pada jendela peritah MATLAB. maka akan nampak Library untuk Simulink

Lebih terperinci

Praktikum Dasar Pemrograman

Praktikum Dasar Pemrograman Praktikum Dasar Pemrograman Minggu : 04 sesi 3 Topik : 1. For 2. Break 3. Continue Aktifitas : coding Waktu pengerjaan : 110 menit Setoran PrakDaspro_04_3_DY_NIM.rar, yang terdiri dari file: 1. simple_for_dy_nim.c

Lebih terperinci

BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa

BAB I PENDAHULUAN. Akibatnya model matematika sistem dinamik mengandung derivative biasa 1 BAB I PENDAHULUAN 1.1 Latar Belakang Ilmu Pengetahuan memberikan landasan teori bagi perkembangan teknologi, salah satunya adalah matematika. Cabang matematika modern yang mempunyai cakupan wilayah penelitian

Lebih terperinci

LAPORAN PRAKTIKUM PENGOLAHAN SINYAL DIGITAL. No. Percobaan : 01 : Pengenalan Matlab Nama Praktikan : Janita Dwi Susanti NIM :

LAPORAN PRAKTIKUM PENGOLAHAN SINYAL DIGITAL. No. Percobaan : 01 : Pengenalan Matlab Nama Praktikan : Janita Dwi Susanti NIM : LAPORAN PRAKTIKUM PENGOLAHAN SINYAL DIGITAL No. Percobaan : 01 Judul : Pengenalan Matlab Nama Praktikan : Janita Dwi Susanti NIM : 3.33.12.0.13 Kelas : TK-3A PROGRAM STUDI TEKNIK TELEKOMUNIKASI JURUSAN

Lebih terperinci

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier

PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier PAM 252 Metode Numerik Bab 2 Persamaan Nonlinier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Persamaan Nonlinier Solusi persamaan

Lebih terperinci

MODUL PRAKTIKUM ALJABAR LINIER

MODUL PRAKTIKUM ALJABAR LINIER 2012 MODUL PRAKTIKUM ALJABAR LINIER LABORATORIUM MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM NIVERSITAS NEGERI GORONTALO KATA PENGANTAR Penuntun Praktikum dirancang untuk memberikan tuntunan

Lebih terperinci

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan Jurnal Matematika Integratif. Vol. 14, No. 1 (2018), pp. 51 60. p-issn:1412-6184, e-issn:2549-903 doi:10.24198/jmi.v14.n1.15953.51-60 Penyelesaian Persamaan Diferensial Linier Orde Satu dan Dua disertai

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah komputer (computer) berasal dari bahasa latin computere yang berarti

BAB 2 LANDASAN TEORI. Istilah komputer (computer) berasal dari bahasa latin computere yang berarti BAB 2 LANDASAN TEORI 2.1 Pengertian Komputer Istilah komputer (computer) berasal dari bahasa latin computere yang berarti menghitung. Dalam bahasa Inggris komputer berasal dari kata to compute yang artinya

Lebih terperinci

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN

PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER HOMOGEN ORDE TIGA KOEFISIEN KONSTAN Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 21 25 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENERAPAN METODE ADAMS-BASHFORTH-MOULTON ORDE EMPAT UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL LINIER

Lebih terperinci

PETUNJUK PRAKTIKUM METODE NUMERIK (MT318)

PETUNJUK PRAKTIKUM METODE NUMERIK (MT318) PETUNJUK PRAKTIKUM METODE NUMERIK (MT38) Oleh : Dewi Rachmatin, S.Si., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 9 Dewi Rachmatin PRAKTIKUM

Lebih terperinci

Pengkajian Metode Extended Runge Kutta dan Penerapannya pada Persamaan Diferensial Biasa

Pengkajian Metode Extended Runge Kutta dan Penerapannya pada Persamaan Diferensial Biasa JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (215 2337-352 (231-928X Print A-25 Pengkajian Metode Extended Runge Kutta dan Penerapannya pada Persamaan Diferensial Biasa Singgi Tawin Muammad, Erna Apriliani,

Lebih terperinci

BAGIAN 1 SINTAK DASAR MATLAB

BAGIAN 1 SINTAK DASAR MATLAB BAGIAN 1 SINTAK DASAR MATLAB Pada bagian 1 ini, akan diuraikan tentang bagaimana mendefinisikan data, operasi data dan teknik mengakses data pada Matlab. Untuk lebih memahami, pembaca sebaiknya mecobanya

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU

RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU 1 Nama Mata Kuliah : Pemrograman Komputer 2 Kode Mata Kuliah : TSS 2119 3 Semester : III 4 (sks) : 2 5

Lebih terperinci

Kata Pengantar. Medan, 11 April Penulis

Kata Pengantar. Medan, 11 April Penulis Kata Pengantar Puji syukur penulis panjatkan kepada Tuhan YME, bahwa penulis telah menyelesaikan tugas mata kuliah Matematika dengan membahas Numerical Optimization atau Optimasi Numerik dalam bentuk makalah.

Lebih terperinci