BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR
|
|
|
- Ridwan Iskandar
- 8 tahun lalu
- Tontonan:
Transkripsi
1 BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa. Seringkali model matematika tersebut muncul dalam bentuk yang rumit yang terkadang tidak dapat diselesaikan dengan rumus-rumus aljabar yang sudah baku. Solusi SPL secara numeris umumnya selalu (harus) lebih efisien dan cepat dibandingkan dengan metode-metode analitis, seperti metode Cramer. Namun demikian, solusi numerik ini secara teknis adakalanya juga berkendala, karena: (1) ada beberapa persamaan yang mendekati kombinasi linier, akibat adanya round off error dari mesin penghitung pada, (2) suatu tahap perhitungan adanya akumulasi round off error pada proses komputasi akan berakibat domain bilangan nyata (fied point) dalam perhitungan akan terlampaui (overflow), biasanya akibat dari jumlah persamaan yang terlalu besar. Metode-metode solusi numerik yang banyak dipakai, dapat diklasifikasikan sebagai: 1. Metode Langsung a. Metode Langsung Eliminasi Gauss (EGAUSS), prinsipnya: merupakan operasi eliminasi dan substitusi variabel-variabelnya sedemikian rupa sehingga dapat terbentuk matriks segitiga atas, dan akhirnya solusinya diselesaikan menggunakan teknik substitusi balik (backsubstitution), b. Metode Eliminasi Gauss ini. Eliminasi Gauss-Jordan (EGJ), prinsipnya: mirip sekali dengan metode EG, namun dalam metode ini jumlah operasi numerik yang dilakukan jauh lebih besar, karena matriks A mengalami inversi terlebih dahulu untuk mendapatkan matriks identitas (I). Karena kendala tersebut, maka metode ini sangat jarang dipakai, namun sangat bermanfaat untuk menginversikan matriks, c. Dekomposisi LU (DECOLU), prinsipnya: melakukan dekomposisi matriks A terlebih dahulu sehingga dapat terbentuk matriks-matrik segitiga atas dan bawah, kemudian secara mudah dapat melakukan substitusi balik (backsubstitution) untuk berbagai vektor VRK (vektor ruas kanan). d. Solusi sistem TRIDIAGONAL (SDIAG), prinsipnya merupakan solusi SPL dengan bentuk matrik pita (satu diagonal bawah, satu diagonal utama, dan satu diagonal atas) pada matriks A. 2. MetodeTak-Langsung (Metode Iteratif) a. Metode Jacobi, prinsipnya: merupakan metode iteratif yang melakuakn perbaharuan nilai yang diperoleh tiap iterasi (mirip metode substitusi berurutan, successive substitution), b. Metode Gauss-Seidel, prinsipnya: mirip metode Jacobi, namun melibatkan perhitungan implisit,
2 c. Metode Successive Over Relaation (SOR), prinsipnya: merupakan perbaikan secara langsung dari Metode Gauss- Seidel dengan cara menggunakan faktor relaksasi (faktor pembobot) pada setiap tahap/proses iterasi. Metode-metode tak-langsung seperti di atas pada umunya sangat tidak efisien dan time consuming (memerlukan CPU- time) yang jauh lebih besar dari metode langsung. Metode Eliminasi Gauss, metode Dekomposisi LU dan Metode Iterasi Jacobi merupakan metode yang dapat dijadikan sebagai alternatif untuk menyelesaikan model matematika. Metode Eliminasi Gauss mereduksi matriks koefisien A ke dalam bentuk matriks segitiga, dan nilai-nilai variabel diperoleh dengan teknik substitusi. Pada metode Dekomposisi LU, matriks A difaktorkan menjadi matriks L dan matriks U, dimana dimensi atau ukuran matriks L dan U harus sama dengan dimensi matriks A. Pada metode iterasi Jacobi, penyelesaian dilakukan secara iterasi, dimana proses iterasi dilakukan sampai dicapai suatu nilai yang konvergen dengan toleransi yang diberikan. Dari hasil pengujian dapat diketahui bahwa metode Iterasi Jacobi memiliki hasil ketelitian yang lebih baik dan waktu komputasi yang lebih cepat dari metode Eliminasi Gauss dan metode Dekomposisi LU. Penggunaan pendekatan dengan pemrograman MATLAB, salah satu software komputer yang dapat digunakan untuk memberikan solusi komputasi numerik. Karena metode metode numerik dengan bahasa pemrograman yang sederhana, namun dapat menyelesaikan permasalahan yang dihadapi oleh mereka yang bergerak dalam bidang matematika maupun aplikasi matematika. B. Rumusan Masalah Dari uraian di atas, dapat dirumuskan permasalahannya. 1. Apakah urutan persamaan di dalam suatu SPL berpengaruh terhadap penampilan metode iterasi Jacobi? 2. Apakah program MATLAB 7 dapat digunakan sebagai solusi pemrograman dalam metode numerik khususnya metode iterasijacobi? C. Batasan Masalah Dalam makalah ini akan membahas tentang penggunaan metode iterasi Jacobi dalam penyelesaian Sistem Persamaan Linear (SPL) berukuran besar dengan persentase elemen nol pada matriks koefisien besar dengan pemrograman MATLAB 7 for Windows. D. Tujuan Tujuan penulisan makalah sebagai berikut. 1. Memberikan solusi dalam memperoleh urutan persamaan di dalam suatu SPL dengan menggunakan metode iterasi Jacobi. 2. Penggunaan MATLAB 7 untuk membantu menyelesaikan pemrograman dalam penyelesaian Sistem Persamaan Linear (SPL) dengan metode iterasi Jacobi. E. Manfaat Dapat diambil manfaatnya sebagia berikut. 1. Dapat digunakan sebagai solusi dalam memperoleh urutan persamaan di dalam suatu SPL berukuran besar dengan menggunakan metode iterasi Jacobi.
3 2. Memberi kemudahan dalam menyelesaikan Sistem Persamaan Linear (SPL) berukuran besar dengan metode iterasi Jacobi dengan pemrograman MATLAB 7 for Windows. PEMBAHASAN A. Iterasi Jacobi Metode ini merupakan suatu teknik penyelesaian SPL berukuran n n, AX = b, secara iteratif. Proses penyelesaian dimulai dengan suatu hampiran awal terhadap penyelesaian, X, kemudian membentuk suatu serangkaian vector X 1, X 2, yang konvergen ke X. Teknik iteratif jarang digunakan untuk menyelesaikan SPL berukuran kecil karena metode-metode langsung seperti metode eliminasi Gauss lebih efisien dari pada metode iteratif. Akan tetapi, untuk SPL berukuran besar dengan persentase elemen nol pada matriks koefisien besar, teknik iteratif lebih efisien daripada metode langsung dalam hal penggunaan memori komputer maupun waktu komputasi. Metode iterasi Jacobi, prinsipnya: merupakan metode iteratif yang melakuakn perbaharuan nilai yang diperoleh tiap iterasi (mirip metode substitusi berurutan, successive substitution). B. Algoritma Iterasi Jacobi Untuk menyelesaikan system persamaan linier AX = b dengan A adalah matriks koefisien n n, b vector konstan n 1, dan X vektor n 1 yang perlu dicari. INPUT : n, A, b, dan Himpunan awal Y = (y 1 y 2 y y n ) T, batas toleransi T, dan maksimum iterasi N. OUTPUT: X = ( n ) T, atau pesan gagal. LANGKAH LANGKAH : 1. set penghitung iterasi ke =1 2. WHILE k n DO (a) FOR i = 1, 2,,..., n, hitung (b) Set X = ( n ) T (c) IF X Y < T THEN STOP i b i j i (d) Tambahan penghitung iterasi, k = k + 1 (e) FOR i = 1, 2,,..., n, Set y i = i (f) set Y = (y 1 y 2 y..y n ) T. STOP a ii a ij y j
4 C. Flow Chart Iterasi Jacobi START AX = b Input A, b, X, T, N [X, g, H]= jacobi(a,b,x,t,n) i = ( 1 2 n ) STOP D. Iterasi Jacobi dengan Menggunaan Matlab 7 Jika (k) menyatakan hampiran ke k penyelesaian SPL, AX = b, dengan () adalah hampiran awal, maka metode iterasi Jacobi dapat dinyatakan sebagai berikut : ( k ) 1 ( k 1) i bi aij j a, i = 1, 2,,..., n ; k = 1, 2,,.. ii j i Dalam bentuk matriks, rumus iterasi dapat dinyatakan sebagai X (k) = D -1 (b-(l+u)x (k-1) ), Dengan A = L + D + U ( L matriks segitiga bawah, D matriks diagonal, U Matriks segitiga atas). Berikut adalah gambaran bagaimana penggunaan metode iterasi Jacobi dengan sebuah contoh. Misalkan kita ingin menyelesaikan SPL = = = = 15 Mula mulakita nyatakan setiap variabel dalam ketiga variabel yang lainnya 1. Nyatakan 1 dari persamaan (P1) dalam 2,, dan 4, 2. Nyatakan 2 dari persamaan (P2) dalam 1,, dan 4,. Nyatakan dari persamaan (P) dalam 1,, dan 4,
5 4. Nyatakan 4 dari persamaan (P4) dalam 1, 2, dan. Hasilnya adalah SPL Misalkan kita pilih hapiran penyelesaian awal ( ) T, maka hampiran pertama terhadap penyelesaian SPL tersebut adalah 1.6 = = = = 2 8 Sekarang dengan menggunakan nilai nilai ini pada ruas kanan persamaan (P5) (P8), kita dapat menghitung hampiran kedua. Proses ini dapat diulang-ulang sampai keakuratan hampiran yang diinginkan tercapai. Berikut adalah hasil proses iterasi dengan menggunakan komputer. No Setelah iterasi ke-8 diperoleh hampiran penyelesaian = ( ) T bandingkan dengan penyelesaian eksaknya, yakni = ( ) T. Menyelesaikan contoh SPL berikut ini dengan menggunakan metode iterasi Jacobi = = = = 25
6 E. Penulisan Logaritma dalam Layar Editor MATLAB 7 function [X1,g,H]= jacobi(a,b,x,t,n) H = X'; n = length(b); X1 = X; for k=1:n, for i = 1:n, S = b(i)-a(i,[1:i-1,i+1:n])*x([1:i-1,i+1:n]); X1(i)=S/A(i,i); end g = abs(x1-x); err = norm(g); relerr = err/(norm(x1)+ eps); X = X1; H = [H;X']; if (err<t) (relerr<t),break,end end Layar Editor MATLAB 7 F. Hasil Output fungsi MATLAB 7 Berikut adalah contoh pemakaian fungsi MATLAB 7 jacobi dan hasil keluaran dari yang diperoleh: >> A=[2-1 1 ; -1 8;1-1 2 ; ] A = >> b=[-11;-11;6;25] b =
7 >> X=[;;;] X = >> T=.1 T = 1.e-5 >> N=25 N = 25 >> [X,g,H]=jacobi(A,b,X,T,N) X = 1.e+17* g = 1.e+17* H = 1.e+17*
8 Dari hasil diatas, metode Jacobi belum konvergen setelah melakukan iterasi. Untuk mengetahui penyelesaian SPL kita, selanjutnya gunakan metode langsung dengan menggunakan invers matriks A. MATLAB memberikan penyelesaian sebagai berikut. >> X=inv(A)*b X = Apakah metode jacobi tidak dapat menghasilkan penyelesaian tersebut? Dengan mengubah susunan SPL, yakni persamaan pertama dan kedua dipindah menjadi persamaan ketiga dan keempat, metode Jacobi ternyata berhasil memberikan penyelesaian tersebut, sebagaimana terlihat pada hasil keluaran MATLAB berikut. >> A=[1-1 2 ; ;2-1 1 ; -1 8] A = >> b=[6;25;-11;-11] b = >> X=[-2;1;;-1] X = >> [X,g,H]=jacobi(A,b,X,T,N) X = g = H =
9 Iterasi Jacobi konvergen (dengan menggunakan batas toleransi.1) setelah iterasi ke-1. Penyelesaian yang diberikan persis sama dengan yang dihasilkan dengan metode langsung. Hampiran penyelesaian SPL kita adalah X = ( ) T. Layar MATLAB 7 (command window) D ari con toh di ata s bah wa uru tan per sa ma an di dal am sua tu SPL san gat ber pengaruh terhadap penampilan metode iterasi Jacobi. Kalau kita amati lebih lanjut contoh di atas, kekonvergenan iterasi Jacobi pada strategi kedua dikarenakan kita telah mengubah susunan SPL sedemikian hingga elemen-elemen a ii merupakan elemen-elemen terbesar pada setiap baris. Dengan kata lain, apabila matriks koefisien A merupakan matriks dominan secara diagonal, maka metode iterasi Jacobi akan konvergen. Suatu matrik A berukuran n n dikatakan dominansecaradiagonal apabila aii ai, 1... ai, i 1 ai, i 1... ai, n untuk i = 1, 2,,..., n. SIMPULAN A. Simpulan Dari pembahasan di atas kita dapat mengambil kesimpulan bahwa. 1. Urutan persamaan di dalam suatu SPL sangat berpengaruh terhadap penampilan metode iterasi Jacobi.
10 2. Dengan menggunakan pemrograman MATLAB 7 dapat membantu pemrograman dalam dalam metode numeric khususnya metode iterasijacobi B. Saran Dari hasil pembahasan disarankan untuk. 1. Menggunakan metode iterasi Jacobi lebih efektif untuk memecahkan masalah numerik dalam SPL berukuran besar. 2. Menggunakan program MATLAB 7 for Windows dalam membantu pengolahan metode iterasi Jacobi.
11 PERSAMAAN GAUSS SEIDEL A. Tujuan a. Memahami Persamaan Gauss Seidel b. Mampu Menentukan nilai akar persamaan dengan Gauss Seidel c. Mampu membuat program untuk menentukan nilai akar dengan Metode Gauss Seidel dengan Matlab B. Perangkat dan Materi a. Software Matlab b. Metode Iterasi Gauss Seidel C. Dasar Teori Metode iterasi Gauss-Seidel untuk menyelesaikan sistem persamaan linear Suatu sistem persamaan linier terdiri atas sejumlah berhingga persamaan linear dalam sejumlah berhingga variabel. Menyelesaikan suatu sistem persamaan linier adalah mencari nilai-nilai variabel yang belum diketahui yang memenuhi semua persamaan linier yang diberikan. Rumus iterasi untuk hampiran ke-k pada metode iterasi Gauss-Seidel adalah sebagai berikut. Untuk i = 1, 2,, n dan k = 1, 2,,, Algoritma Iterasi Gauss-Seidel Untuk menyelesaikan sistem persamaan linier AX = b dengan A adalah matriks koefisien n n, b vektor konstanta n 1, dan X vektor n 1 yang perlu di cari. INPUT : n, A, b dan hampiran awal Y = (y 1 y 2 y...y n ) T, batas toleransi T dan maksimum iterasi N. OUTPUT : X = ( n ) T atau pesan "gagal". LANGKAH-LANGKAH : 1. Set penghitung iterasi k = 1 2. WHILE k<= N DO (a) FOR i = 1, 2,,..., n, hitung : (b) Set X = ( n ) T (c) IF X - Y < T THEN STOP (d) Tambah penghitung iterasi, k = k + 1 (e) FOR i = 1, 2,,..., n, Set y i = i (f) Set Y = (y 1 y 2 y...y n ) T. Tulis pesan "metode gagal setelah N iterasi"
12 4. STOP. Implementasi dengan MATLAB function [X1,g,H] = seidel(a,b,x,t,n) H = X'; n = length(b); X1 = X ; for k=1:n, for i=1:n, S=b(i)-A(i,1:i-1)*X1(1:i-1)-A(i,i+1:n)*X(i+1:n); X1(i)=S/A(i,i); end g=abs(x1-x); err=norm(g); relerr=err/(norm(x1)+eps); X=X1; H=[H,X']; if(err<t) (relerr<t),break,end end Contoh Sebagai gambaran misalkan mencari penyelesaian SPL = = = =15 Berikut pemakaian fungsi MATLAB seidel untuk penyelesaian soal di atas dan keluaran yang diperoleh : >> A=[1-1 2 ; ; ; -1 8] A = 1-1 2
13 >> b=[6;25;-11;15] b = >> X=[;;;] X = >> T=.1;N=25; >> [X,g,H]=seidel(A,b,X,T,N) X = g = 1.e-4 *.8292
14 H = Columns 1 through Columns 7 through Columns 1 through Columns 19 through Columns 25 through Proses iterasi dapat diulangi sampai tingkat keakuratan yang diinginkan tercapai, penyelesaian eksak contoh di atas adalah (1, 2, -1, 1). Soal tugas di rumah: Dikumpulkan (Buat LAPORAN PRAKTIKUM) Carilah akar-akar persamaan berikut dengan Metode Gauss-Seidel dengan Matlab : Latihan di kelas : Carilah akar-akar persamaan berikut dengan Metode Gauss-Seidel dengan Matlab: y 2z 9 2 4y z 1 6y 5z
PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU),
PENDAHULUAN A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa.
PEMANFAATAN SOFTWARE MATLAB DALAM PEMBELAJARAN METODE NUMERIK POKOK BAHASAN SISTEM PERSAMAAN LINEAR SIMULTAN
PEMANFAATAN SOFTWARE MATLAB DALAM PEMBELAJARAN METODE NUMERIK POKOK BAHASAN SISTEM PERSAMAAN LINEAR SIMULTAN Any Muanalifah Dosen Jurusan Tadris Matematika FITK IAIN Walisongo Abstrak Persoalan yang melibatkan
BAB III : SISTEM PERSAMAAN LINIER
3.1 PENDAHULUAN BAB III : SISTEM PERSAMAAN LINIER Penyelesaian suatu sistem n persamaan dengan n bilangan tak diketahui banyak dijumpai dalam permasalahan teknik. Di dalam Bab ini akan dipelajari sistem
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier
Laporan Praktikum 7 Analisis Numerik
Laporan Praktikum 7 Analisis Numerik Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB E-mail: syarif [email protected] 14 April 2016 SYSTEM PERSAMAAN LINEAR METODE
LAPORAN PRAKTIKUM FISIKA KOMPUTASI
LAPORAN PRAKTIKUM FISIKA KOMPUTASI Judul : Metode Iterasi Jacobi Pelaksanaan Praktikum Hari : Senin Tanggal : 1 Juni 2015 Jam : 5-6 Oleh : Nama : Mei Budi Utami Nim : 081211332009 Dosen Pembimbing : Endah
Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa
Bab 7 Sistem Pesamaan Linier Oleh : Devie Rosa Anamisa Pendahuluan Bentuk umum dari aljabar linier sebagai berikut: a11x1 + a12a 12X2 +... + a1na 1nXn = b1b a21x1 + a22a 22X2 +... + a2na 2nXn = b2b...............
Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :
Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier
Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK
Bentuk umum : dimana x, x,..., x n variabel tak diketahui, a ij, b i, i =,,..., m; j =,,..., n bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel. SPL Mempunyai penyelesaian disebut KONSISTEN
PENDAHULUAN METODE NUMERIK
PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum
PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR
PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Tacbir Hendro Pudjiantoro A B S T R A K Salah satu
Pertemuan 13 persamaan linier NON HOMOGEN
Pertemuan 13 persamaan linier NON HOMOGEN 10 Metode CRAMER Aljabar Linier Hastha 2016 10. PERSAMAAN LINIER NONHOMOGEN 10.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara
PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR
PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR Achmad Dimas Noorcahyo NIM 3508076 Program Studi Teknik Informatika, Institut Teknologi Bandung Jalan Ganeca 0, Bandung
Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor.
Syarif Abdullah (G551150381) Matematika Terapan FMIPA Institut Pertanian Bogor e-mail: [email protected] 25 Maret 2016 Ringkasan Kuliah ke-6 Analisis Numerik (16 Maret 2016) Materi : System
5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.
1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y
BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk
BAB 1 PENDAHULUAN 1.1 Latar belakang Sebagian besar dari sejarah ilmu pengetahuan alam adalah catatan dari usaha manusia secara kontinu untuk merumuskan konsep-konsep yang dapat menguraikan permasalahan
6 Sistem Persamaan Linear
6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus
IMPLEMENTASI METODE DEKOMPOSISI LU PADA REGRESI LINIER BERGANDA
Seminar Nasional Teknologi Informasi & Komunikasi Terapan (Semantik ) ISBN 979-6 - 55 - Semarang, 3 Juni IMPLEMENTASI METODE DEKOMPOSISI LU PADA REGRESI LINIER BERGANDA Yuniarsi Rahayu Fakultas Ilmu Komputer
Solusi Persamaan Linier Simultan
Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem
Solusi Sistem Persamaan Linear Ax = b
Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem
BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear
BAB 4 Sistem Persamaan Linear berbentuk Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear Dengan koefisien dan adalah bilangan-bilangan yang diberikan. Sistem ini disebut
Solusi Numerik Sistem Persamaan Linear
Solusi Numerik Sistem Persamaan Linear Modul #2 Praktikum AS2205 Astronomi Komputasi Oleh Dr. Muhamad Irfan Hakim Program Studi Astronomi Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi
SISTEM PERSAMAAN LINEAR ( BAGIAN II )
SISTEM PERSAMAAN LINEAR ( BAGIAN II ) D. FAKTORISASI MATRIKS D2 2. METODE ITERASI UNTUK MENYELESAIKAN SPL D3 3. NILAI EIGEN DAN VEKTOR EIGEN D4 4. POWER METHOD Beserta contoh soal untuk setiap subbab 2
SISTEM PERSAMAAN LINIER
2 SISTEM PERSAMAAN LINIER Ëistem persamaan linier merupakan salah satu model dan masalah matematika yang banyak dijumpai di dalam berbagai disiplin, termasuk matematika, statistika, fisika, biologi, ilmu-ilmu
KOMPUTASI PARALEL PERSAMAAN DIFUSI NEUTRON PADA REAKTOR CEPAT DENGAN MENGGUNAKAN INTEL THREADING BUILDING BLOCKS
KOMPUTASI PARALEL PERSAMAAN DIFUSI NEUTRON PADA REAKTOR CEPAT DENGAN MENGGUNAKAN INTEL THREADING BUILDING BLOCKS Imam Taufiq Jurusan Fisika FMIPA Universitas Andalas Kampus Limau Manis, Padang 25163 Email
Pertemuan 1 Sistem Persamaan Linier dan Matriks
Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan
BAB 4 : SISTEM PERSAMAAN LINIER
BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x
Sistem Persamaan Aljabar Linier
Sistem Persamaan Aljabar Linier Dimana: a ij = koefisien konstanta; x j = unknown ; b j = konstanta; n = banyaknya persamaan Metode-Metode untuk menyelesaikan Sistem Persamaan Aljabar Linier: 1. Metode
SISTEM PERSAMAAN LINEAR
Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL
LU DECOMPOSITION (FAKTORISASI MATRIK)
LU DECOMPOSITION (FAKTORISASI MATRIK) Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: [email protected] atau [email protected] 5 Februari 2005 Pada semua catatan
02-Pemecahan Persamaan Linier (1)
-Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:
BAB X SISTEM PERSAMAAN LINIER
BAB X SISTEM PERSAMAAN LINIER 10.1 Definisi Persamaan linier adalah persamaan aljabar yang terdiri dari satu atau lebih peubah dan masing-masing peubah mempunyai derajad satu. Sebagai contoh persamaan
Komputasi untuk Sains dan Teknik
Komputasi untuk Sains dan Teknik Dr. Eng. Supriyanto, M.Sc Edisi I Laboratorium Jaringan Komputer Departemen Fisika-FMIPA Univeristas Indonesia 2006 Untuk Muflih Syamil dan Hasan Azmi... Mottoku : Tenang,
a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA.
a11 a12 x1 b1 a a x b 21 22 2 2 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 a11 a12 x1 b1 a a x b 21 22 2 2 Setijo Bismo
MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.
KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI
PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA
PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA Yuniarsi Rahayu, S.Si, M.Kom Program Studi Teknik Informatika, Fakultas Ilmu Komputer Universitas
PENYELESAIAN SISTEM PERSAMAAN LINIER KOMPLEKS MENGGUNAKAN METODE ITERASI GAUSS-SEIDEL TUGAS AKHIR
PENYELESAIAN SISTEM PERSAMAAN LINIER KOMPLEKS MENGGUNAKAN METODE ITERASI GAUSS-SEIDEL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh :
Part II SPL Homogen Matriks
Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a
1.1 Latar Belakang dan Identifikasi Masalah
BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun
Analisis Steady-State pada Sistem Reaktor Menggunakan Solusi Sistem Persamaan Lanjar
Analisis Steady-State pada Sistem Reaktor Menggunakan Solusi Sistem Persamaan Lanjar Ghoziyah Haitan Rachman (23515074) Program Studi Magister Informatika Institut Teknologi Bandung Bandung, Indonesia
SATUAN ACARA PERKULIAHAN
1 SATUAN ACARA PERKULIAHAN Mata Kuliah : Aljabar Linear Kode Mata Kuliah : Bobot Kuliah/Praktek : 3 SKS Semester : II (Dua) Tujuan Instruksional Umum : memahami konsep-konsep dan tranformasi linier, dan
Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4
Aljabar Linear & Matriks Pert. 4 Evangs Mailoa Sistem Persamaan Linier & Matriks 1. Matriks dan Operasi Matriks 2. Pengantar Sistem Persamaan Linier 3. Eliminasi Gaus 4. Invers: Aturan Aritmatika Matriks
Pertemuan 14. persamaan linier NON HOMOGEN
Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat
Sistem Persamaan Linier FTI-UY
BAB V Sistem Persamaan Linier Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear
Bab 1. Pendahuluan Metode Numerik Secara Umum
Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian
PENYELESAIAN SISTEM PERSAMAAN LINIER INTERVAL DENGAN METODE DEKOMPOSISI TUGAS AKHIR. Oleh : YULIA DEPEGA
PENYELESAIAN SISTEM PERSAMAAN LINIER INTERVAL DENGAN METODE DEKOMPOSISI TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika Oleh : YULIA DEPEGA 18543936
dimana a 1, a 2,, a n dan b adalah konstantakonstanta
Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan
SOLUSI SISTEM PERSAMAAN LINEAR
SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,
METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT
METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Adek Putri Syafriani, Syamsudhuha 2, Zulkarnain 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan
DIKTAT KULIAH (3 sks) MX 211: Metode Numerik
DIKTAT KULIAH (3 sks) MX : Metode Numerik (Revisi Terakhir: Juni 009 ) Oleh: Didit Budi Nugroho, M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA PENGANTAR
Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT
Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui
Ilustrasi Persoalan Matematika
Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti
Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan
Modul 8 METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Pada modul 7 terdahulu, telah dijelaskan tentang keunggulan komparatif Metode Newton-Raphson dibanding metode-metode
MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR
MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR KOMPETENSI: 1. Memahami penggunaan faktorisasi LU dalam penyelesaian persamaan linear.. Memahami penggunaan partisi matrik dalam penyelesaian persamaan
Ujian Tengah Semester
Ujian Tengah Semester Mata Kuliah : PAM 252 Metode Numerik Jurusan : Matematika FMIPA Unand Hari/Tanggal : Selasa/31 Maret 2015 Waktu : 10.00 11.40 (100 menit) Dosen : Dr. Susila Bahri (Kelas A dan C)
ISSN (Media Cetak) ISSN (Media Online) Implementasi Metode Eliminasi Gauss Pada Rangkaian Listrik Menggunakan Matlab
JITEKH, Vol, No, Tahun 27, -5 ISSN 28-577(Media Cetak) ISSN 2549-4 (Media Online) Implementasi Metode Eliminasi Gauss Pada Rangkaian Listrik Menggunakan Matlab Silmi, Rina Anugrahwaty 2 Staff Pengajar
Pendahuluan Metode Numerik Secara Umum
Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan
BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR
BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR METODE GRAFIK DAN TABULASI A. Tujuan a. Memahami Metode Grafik dan Tabulasi b. Mampu Menentukan nilai akar persamaan dengan Metode Grafik dan Tabulasi c. Mampu membuat
BAB 2 KAJIAN PUSTAKA
BAB 2 KAJIAN PUSTAKA 2.1 Program Linier Penyelesaian program linear dengan algoritma interior point dapat merupakan sebuah penyelesaian persoalan yang kompleks. Permasalahan dalam program linier mungkin
Pendahuluan Metode Numerik Secara Umum
Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro
SISTEM PERSAMAAN LINEAR
SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks
PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT
PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR Merintan Afrina S Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan
PERBANDINGAN METODE ITERASI JACOBI DAN ITERASI GAUSS-SEIDEL DALAM PENYELESAIAN SISTEM PERSAMAAN LINIER DENGAN MENGGUNAKAN SIMULASI KOMPUTASI
PERBANDINGAN METODE ITERASI JACOBI DAN ITERASI GAUSS-SEIDEL DALAM PENYELESAIAN SISTEM PERSAMAAN LINIER DENGAN MENGGUNAKAN SIMULASI KOMPUTASI Skripsi Oleh Shella Niyyaka JURUSAN MATEMATIKA FAKULTAS MATEMATIKA
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan
Penggunaan Metode Numerik dan MATLAB dalam Fisika
Tugas Akhir Mata Kuliah Metode Numerik Dr. Kebamoto Penggunaan Metode Numerik dan MATLAB dalam Fisika Oleh : A. Arif Sartono 6305220017 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS
uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
PENERAPAN METODE NUMERIK PADA RANGKAIAN LISTRIK
Techno.COM, Vol. 1, No. 4, November 211: 145-152 PENERAPAN METODE NUMERIK PADA RANGKAIAN LISTRIK Yuniarsi Rahayu Program Studi Teknik Informatika, Fakultas Ilmu Komputer Universitas Dian Nuswantoro Jl.
Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss
Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss Tri Hastuti Yuniati (23515009) 1 Program Studi Magister Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:
SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau
BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu
BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang
ELIMINASI GAUSS MAKALAH. Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom. Di Susun Oleh: Kelompok VII Matematika C/VII
ELIMINASI GAUSS MAKALAH Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom Di Susun Oleh: Kelompok VII Matematika C/VII Anggota : 1. Eko Kurniawan P. (59451064) 2. Siti Nurhairiyah
Modul 05 Persamaan Linear dan Persamaan Linear Simultan
Modul 05 Persamaan Linear dan Persamaan Linear Simultan 5.1. Persamaan Linear Persamaan adalah pernyataan kesamaan antara dua ekspresi aljabar yang cocok untuk bilangan nilai variable tertentu atau variable
MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI
214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar
Penyelesaian Sistem Persamaan Linear Fully Fuzzy Menggunakan Metode Iterasi Jacobi
Penyelesaian Sistem Persamaan Linear Fully Fuzzy Menggunakan Metode Iterasi Jacobi Corry Corazon Marzuki 1, Herawati 2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl.
Penyetaraan Persamaan Reaksi Kimia dengan Metode Eliminasi Gauss
Penyetaraan Persamaan Reaksi Kimia dengan Metode Eliminasi Gauss Jonathan Marcel T (13507072) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
PENERAPAN KONSEP SPL DAN MATRIKS DALAM MENENTUKAN TEGANGAN DAN ARUS LISTRIK PADA TIAP-TIAP RESISTOR
PENERAPAN KONSEP SPL DAN MATRIKS DALAM MENENTUKAN TEGANGAN DAN ARUS LISTRIK PADA TIAPTIAP RESISTOR Rangga Ajie Prayoga 1), Rizky Fauziah Setyawati 1), Siti Gita Permana 1), Hendra Kartika 2) 1) Program
Metode Simpleks (Simplex Method) Materi Bahasan
Metode Simpleks (Simplex Method) Kuliah 03 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Rumusan Pemrograman linier dalam bentuk baku 2 Pemecahan sistem persamaan linier 3 Prinsip-prinsip metode simpleks
Aplikasi Aljabar Lanjar pada Metode Numerik
Aplikasi Aljabar Lanjar pada Metode Numerik IF223 Aljabar Geometri Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF223 Aljabar Geometri Apa itu Metode Numerik? Numerik: berhubungan
Oleh : Anna Nur Nazilah Chamim
Oleh : Anna Nur Nazilah Chamim 1. Silabus 2. Referensi 3. Kriteria Penilaian 4. Tata Tertib Perkuliahan 5. Pembentukan Kelompok 6. Materi 1 : pengantar Analisa Numerik Setelah mengikuti mata kuliah metode
Prakata Hibah Penulisan Buku Teks
Prakata Syukur Alhamdulillah kami panjatkan ke hadhirat Allah SwT, atas hidayah dan kekuatan yang diberikannya kepada penulis sehingga penulis dapat menyelesaikan buku Pengantar Komputasi Numerik dengan
GARIS BESAR PROGRAM PENGAJARAN (GBPP)
GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata Kuliah : Analisis Numerik & Pemrograman Kode/Bobot : TSP-303/3 SKS Deskripsi Singkat : Mata Kuliah ini mempelajari tentang analisis numerik dan bahasa pemrograman
ALJABAR LINIER DAN MATRIKS
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya
BAB II ISI ( ) (sumber:
BAB II ISI A. Permasalahan yang Diberikan Soal saudara dalam UTS ini harus terus digunakan untuk mengerjakan tugas proyek ini, yaitu: prediksi sifat-sifat tekanan uap murni suatu fluida hidrokarbon sebagai
APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS
Jurnal UJMC, Volume, Nomor, Hal 36-40 pissn : 460-3333 eissn : 579-907X APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Novita Eka Chandra dan Wiwin Kusniati Universitas
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Sistem persamaan linear yang terdiri dari n persamaan dengan n variabel x 1, x 2,..., x n
METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR
METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR Penulis: Dr. Eng. Supriyanto, M.Sc, email: [email protected] Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Penulisan vektor-kolom Sebelum
MENYELESAIKAN SISTEM PERSAMAAN LINIER MENGGUNAKAN ANALISIS SVD SKRIPSI. Oleh : Irdam Haidir Ahmad J2A
MENYELESAIKAN SISTEM PERSAMAAN LINIER MENGGUNAKAN ANALISIS SVD SKRIPSI Oleh : Irdam Haidir Ahmad J2A 005 023 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS
Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:
Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri
RENCANA PEMBELAJARAN SEMESTER
RENCANA PEMBELAJARAN SEMESTER F-0653 Issue/Revisi : A0 Tanggal Berlaku : 1 Juli 2015 Untuk Tahun Akademik : 2015/2016 Masa Berlaku : 4 (empat) tahun Jml Halaman : 17 halaman Mata Kuliah : Analisis Numerik
Bab IV Simulasi dan Pembahasan
Bab IV Simulasi dan Pembahasan IV.1 Gambaran Umum Simulasi Untuk menganalisis program pemodelan network flow analysis yang telah dirancang maka perlu dilakukan simulasi program tersebut. Dalam penelitian
SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS
SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: [email protected] atau [email protected] 5 Februari 2005 Abstract
Penggunaan Metode Dekomposisi LU Untuk Penentuan Produksi Suatu Industri Dengan Model Ekonomi Leontief
Penggunaan Metode Dekomposisi LU Untuk Penentuan Produksi Suatu Industri Dengan Model Ekonomi Leontief Achmad Dimas Noorcahyo - 13508076 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika
oleh : Edhy Suta tanta
ALGORITMA TEKNIK PENYELESAIAN PERMASALAHAN UNTUK KOMPUTASI oleh : Edhy Sutanta i KATA PENGANTAR Puji syukur kami panjatkan ke hadirat Tuhan Yang Maha Esa atas limpahan rahmat dan karunia-nya sehingga buku
Materi Kuliah. Periode: Minggu ke-1 sampai dengan Minggu ke-3
Materi Kuliah ENCH800001 - PEMODELAN TEKNIK KIMIA LANJUT (S 2 ) Periode: Minggu ke-1 sampai dengan Minggu ke-3 DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS INDONESIA September 2015 Kuliah Minggu#01
BAB III ANALISIS DAN PERANCANGAN. Perancangan game mencocokkan gambar ini dibuat agar dapat berjalan
BAB III ANALISIS DAN PERANCANGAN III.1. Analisa Sistem Perancangan game mencocokkan gambar ini dibuat agar dapat berjalan pada sistem yang beroperasi pada perangkat komputer, game yang dikembangkan adalah
METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN ABSTRACT
METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN Juanita Adrika, Syamsudhuha 2, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Fakultas Matematika dan Ilmu Pengetahuan Alam
II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3
11 II. M A T R I K S Untuk mencari pemecahan sistem persamaan linier dapat digunakan beberapa cara. Salah satu yang paling mudah adalah dengan menggunakan matriks. Dalam matematika istilah matriks digunakan
