BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 3 BAB II TINJAUAN PUSTAKA 2.1 Gelanggang, Lapangan, dan Ruang Vektor Suatu himpunan tak kosong R disebut gelanggang jika di dalam R didefinisikan dua operasi, masing-masing dinotasikan dengan + dan., sedemikian sehingga dipenuhi : 1. (R, +) suatu grup komutatif 2. (R,.) suatu semigrup 3. a.(b + c) = a.b + a.c dan (b + c).a = b.a + c.a untuk semua a, b, c di R Jika perkalian di R memenuhi a.b = b.a untuk setiap a, b di R, maka R dinamakan gelanggang komutatif. Selanjutnya pada gelanggang komutatif R jika untuk semua 0 a R terdapat b 0 R sedemikian sehingga berlaku ab = ba = 1 maka R disebut lapangan yang dinotasikan dengan k. Struktur lain yang ada kaitannya dengan lapangan adalah ruang vektor. Suatu himpunan tak kosong V disebut ruang vektor atas suatu lapangan k jika (V, +) suatu grup komutatif dan untuk setiap α k, v V didefinisikan suatu unsur, ditulis αv, di V sehingga dipenuhi : 1. α(v + w) = αv + αw 2. (α + β)v = αv + βv

2 4 3. α(βv) = (αβ)v 4. 1v = v, untuk semua α,β k dan v, w V Generalisasi dari ruang vektor atas lapangan adalah modul atas gelanggang. Himpunan tak hampa M disebut modul kiri atas gelanggang R (atau ditulis R-modul gelanggang ) jika M dilengkapi dengan dua operasi yaitu operasi penjumlahan (+) dan operasi perkalian dengan skalar yang dinyatakan dengan pemetaan f : R x M M dengan f(r, a) = ra M, r R dan a M sedemikian sehingga dipenuhi : (1) (M, +) grup komutatif (2) r, s R dan a, b M berlaku : a. r(a + b) = ra + rb b. (r + s)a = ra + sa c. r(sa) = (rs)a d. 1a = a Jika pada definisi di atas, operasi perkalian skalar didefinisikan oleh f : M x R M dengan f(a,r) = ar M maka M disebut modul kanan atas gelanggang R ( atau ditulis R-modul kanan) Hasilkali Tensor Pendefinisian aljabar atas lapangan yang akan dibahas di sini memerlukan sifat-sifat hasilkali tensor. Dalam tulisan ini penulis akan membahas hasilkali

3 5 tensor dari dua buah modul atas gelanggang dan menggunakannya untuk hasilkali tensor aljabar. DEFINISI 2.1 Misalkan A R dan R B berturut-turut menyatakan R-modul kanan dan kiri. Jika U menyatakan grup Abel aditif, maka φ : A x B U dikatakan pemetaan balance jika dipenuhi : 1. φ(a 1 + a 2, b) = φ (a 1, b) + φ (a 2, b) 2. φ(a, b 1 + b 2 ) = φ (a, b1) + φ (a, b2) 3. φ(ar, b) = φ (a, rb), untuk semua a, a 1, a 2 A, b, b 1, b 2 B dan r R. Kondisi (1) dan (2) mengatakan bahwa φ suatu pemetaan bilinier. Dapat ditunjukkan bahwa jika η : U U` suatu homomorfisma grup maka pemetaan komposisi ηϕ : A x B U` suatu pemetaan balance. Jika A R dan R B sebarang R-modul, definisikan S =S(A, B) menjadi grup komutatif bebas atas A x B. ( Grup komutatif bebas artinya jumlah langsung dari pembangun suatu grup siklik tak hingga dan A x B memuat semua pembangun dari S. Dalam hal ini S = <(a i, b i )> dengan i I ). Dengan kata lain, setiap unsur di S dapat ditulis secara tunggal sebagai suatu jumlah hingga z a,b (a, b) dengan z bilangan bulat.

4 6 Misalkan H subgrup dari S yang dibangun oleh unsur-unsur dengan bentuk sebagai berikut. 1. (a 1 +a 2, b) - (a 1, b) - (a 2, b) 2. (a, b 1 +b 2 ) - (a, b 1 ) - (a, b 2 ) 3. (ar, b) - (a, rb), untuk semua a, a 1, a 2 A, b, b 1, b 2 B dan r R. Sekarang definisikan A B menjadi suatu grup komutatif aditif S/H. Untuk (a, b) S, definisikan a b = (a, b) + H = 1(a, b) + H A B. Restriksi pada S S/H oleh A x B menghasilkan pemetaan φ :AxB A B. Berdasarkan pendefinisian H di atas dapat dilihat bahwa φ suatu pemetaan balance. Dari konstruksi di atas dapat diperoleh definisi hasilkali tensor sebagai berikut : DEFINISI 2.2 Untuk modul A R dan R B atas suatu ring R, suatu hasilkali tensor dari A dan B adalah pasangan (T, φ ) dimana T adalah grup komutatif dan φ : A x B T suatu pemetaan balance. Untuk sebarang pemetaan balance f : A x B C ke sebarang grup komutatif C, terdapat homomorfisma grup komutatif yang tunggal f` : T C sedemikian sehingga f = f`ϕ. Diagramnya dapat dilihat sebagai berikut : A x B ϕ T f! f ` C

5 7 PROPOSISI 2.1 Misalkan A R dan R B adalah R-modul. Maka (A R B, θ) suatu hasilkali tensor dari A dan B atas R. Lebih jauh, jika (X, θ`) sebarang hasilkali tensor lain, maka terdapat isomorfisma grup komutatif σ : A B X sedemikian sehingga θ` = σθ. Bukti : Sebelumnya telah dibuktikan bahwa A R B suatu grup komutatif dan θ : AxB A B suatu pemetaan balance. Sekarang, misalkan ϕ: AxB U sebarang pemetaan balance. Karena S modul bebas atas AxB, penugasan (a, b) a ϕ(a, b)menentukan suatu homomorfisma η`: S U. Karena ϕ pemetaan balance maka η` memetakan setiap generator dari H ke nol atau η`(h) = 0. Jadi, H ker(η`). Dari teorema isomorfisma grup terdapat η : S/H U sedemikian sehingga η[(a,b) + H ]= η`[(a, b)]= ϕ(a, b). Tetapi dari pendefinisian awal S/H = A B dan (a, b) + H =a b. Oleh karenanya, η : S/H = A B U suatu homomorfisma dengan η(a b) = ϕ(a, b). Berikut akan ditunjukkan bahwa η unik. Misalkan f : A B U suatu homomorfisma grup komutatif lain sehingga ϕ = fθ. Ambil ξ unsur di A B dan tuliskan ξ = a b, yaitu jumlah hingga. Sekarang perhatikan, f(ξ)= fθ(a, b) = ϕ(a, b) = η(ξ). Hal ini menunjukkan bahwa η = f.

6 8 Perhatikan diagram berikut : A x B θ θ` σ A B τ X Karena (X, θ`) suatu hasilkali tensor maka θ` : AxB X suatu pemetaan balance dan terdapat σ : A B X dengan θ` = σθ. Demikian juga karena (A B, θ) suatu hasilkali tensor maka θ : AxB A B suatu pemetaan balance dan terdapat τ : X A B dengan θ = τθ`. Jadi diperoleh θ` = στθ` dan juga θ = τσθ. Hal ini menunjukkan bahwa στ dan τσ suatu pemetaan identitas. Jadi, σ: A B X mendefinisikan suatu isomorfisma. Q.E.D Untuk mempermudah pemahaman hasilkali tensor berikut akan diberikan beberapa contoh dan perhitungan sederhana dari hasilkali tensor CONTOH I. Untuk 1 n, m Z dengan gcd(m, n) = d 1 pembangun dari ideal (n) + (m) = nz + mz = (d). Bentuk Z n = Z/(n), dan demikian juga untuk Z m dan Z d. Misalkan η : Z n x Z m Z d oleh pengaitan η(i + (n), j + (m) ) = ij + (d) untuk i, j Z, maka (Z d, η) mendefinisikan suatu hasilkali tensor dari Z n dan Z m.

7 9 BUKTI : Buat pengaitan η : Z n x Z m Z d oleh η(i + (n), j + (m) ) = ij + (d) untuk i, j Z. Pertama akan ditunjukkan bahwa η suatu pemetaan. Ambil (I + (n), j + (m)), dan (a + (n), b + (m)) Z n x Z m sebarang dengan I + (n ) = a+(n) dan j + (m) = b + (m). Kita peroleh bahwa I - a = n 1 dan j b = m 1 untuk suatu n 1 (n) dan m 1 (m). Tetapi ij = (a + n 1 )(b + m 1 ) = ab + am 1 + bn 1 +n 1 m 1, akibatnya ij ab (d) yang menunjukkan bahwa ij + (d) = ab + (d). Jadi, η terdefinisi dengan baik. Selanjutnya akan ditunjukkan bahwa η suatu pemetaan balance. Ambil i + (n), j + (i) Z n dan a + (m), b + (m) Z m dan r Z. Tetapi karena : η(i + j + (n), a + (m)) = (I + j)a +( d) = ia + (d) + ja + (d) = η(i + (n), a + (m)) + η(j+(n), a+(m)); η(i + (n), a + b + (m)) = i(a + b) + (d) = ia + (d) + ib + (d) = η(i + (n), a + (m)) + η(i+(n), b+(m)); η(ri + (n), a + (m)) = (ri)a + (d) = i(ra) + (d) = η(i + (n), ra + (m)) ; maka η suatu pemetaan balance Selanjutnya Misalkan ϕ: Z n x Z m C sebarang pemetaan balance ke suatu grup komutatif C, akan ditunjukkan bahwa terdapat homomorfisma grup komutatif ϕ` : Z d C sedemikian sehingga ϕ = ϕ`η. Oleh karena itu definisikan ϕ`(k + (d)) = ϕ(k+(n), 1+(m)) dengan k Z. Ambil k + (d), l + (d) Z d dengan k + (d) = l + (d), maka k l = in + jm atau k = in + jm + l.kita peroleh:

8 10 ϕ`(k + (d)) = ϕ(k + (n), 1 + (m)) = ϕ(in + jm + l + (d), 1+ (d)) = ϕ(l + (d), 1 + (d)) = ϕ`(l + (d)) yang menunjukkan bahwa ϕ` terdefinisi dengan baik. Sekarang akan ditunjukkan bahwa ϕ` suatu homomorfisma grup. Ambil k + (d), l + (d) Z d, karena ϕ balance maka Kita peroleh bahwa ϕ`(k + l + (d))= ϕ(k + l + (n), 1+ (m))= ϕ(k + (n), 1+ (m))+ ϕ(l + (n), 1 + (m)) = ϕ`(k + (d)) + ϕ`(l + (d)). Jadi, ϕ` Suatu homomorfisma. Sekarang perhatikan bahwa ϕ`η(i + (n), j + (m))= ϕ`(ij + (d))= ϕ(ij + (n), 1+ (m) = ϕ(i + (n), j + (m)). Kita peroleh bahwa ϕ = ϕ`η. Misalkan h : Z d C pemetaan lain yang memenuhi ϕ = hη. Maka h(k + (d)) = hη(k + (n), 1 + (m)) = ϕ(k + (n), 1 + (m))= ϕ`(k + (d)). Jadi, h=ϕ`. Dari pembuktiaan di atas terbukti bahwa (Z d, η) mendefinisikan suatu hasilkali tensor dari Z n dan Z m. Q.E.D CONTOH II Jika p q Z dengan gcd(p, q) = 1, maka Z/(p) Z Z/(q) = 0. Bukti : Karena gcd(p, q) = 1 maka ada s, t Z sehingga sp+tq=1. Perhatikan bahwa (1+(p)) (1+(q))=(sp+tq+(p)) (1+(q))=(tq+(p)) (1+(q)) = ((t+(p)q) (1+(q)) = 0. Jadi, Z/(p) Z Z/(q) = 0. Q.E.D

9 11 CONTOH III Untuk sebarang 2 n Z, untuk (n) = nz < Z dan Q himpunan semua bilangan rasional, maka Q Z Z/(n) = 0. Bukti : Ambil x Q sebarang. Tulis x = ny untuk suatu y Q. Jadi, x (1+(n))=ny (1+(n)) = y n(1+(n)) = y 0 = 0. Kita peroleh bahwa Q Z Z/(n) = 0. Q.E.D CONTOH IV : PERHITUNGAN HASILKALI TENSOR Diberikan Z 2 himpunan semua bilangan bulat modulo dua dan Z 4 himpunan semua bilangan bulat modulo 4. Di sini akan dihitung hasilkali tensor antara Z 2 dan Z 4 yaitu Z 2 Z 4 Untuk itu perhatikan tabel berikut : Z 4 Z Dari tabel tersebut kita peroleh: 0 0 = 0 1 = 0 2 = 0 3 = 1 0 = = 1 31 = 31 1 = 3 1 = 1 1

10 12 Yang terakhir diperoleh dengan menggunakan sifat hasilkali tensor yaitu na b = a nb = n(a b). Jadi, 0 1, 0 2, 0 3, 1 0, 1 2 dapat diwakili oleh 0 0 dan 1 3 dapat diwakili oleh 1 1. Sehingga kita peroleh Z 2 Z 4 = { 0 0, 1 1} yang isomorf dengan Z 2. Hal ini sesuai dengan apa yang telah dibahas pada contoh 1 sebelumnya. LEMA 2.1. Misalkan k suatu lapangan dan V suatu ruang vektor atas k.lapangan k sendiri dapat dipandang sebagai ruang vektor berdimensi satu atas k. Terdapat isomorfisma k V V V k. Bukti : Akan dibuktikan k V V. Pandang V suatu hasilkali tensor dari k dan V. Sementara k V sendiri adalah hasilkali tensor. Pandang diagram berikut : kxv θ ϕ f V g k V (i) Karena V mendefinisikan hasilkali tensor k dan V maka untuk setiap pemetaan balance ϕ : k x V k V terdapat secara tunggal homomorfisma f : V k V sehingga ϕ=fθ.

11 13 (ii). Dengan cara yang sama pandang bahwa k V suatu hasilkali tensor. Diperoleh bahwa untuk setiap pemetaan balance θ: k x V V terdapat dengan tunggal g : k V V sedemikian sehingga θ=gϕ (iii).dari (i) dan (ii) diperoleh ϕ = fθ=fgϕ dan di sisi lain 1 k V ϕ =ϕ. Jadi, fg=1 k V. Juga θ=gϕ=gfθ dan 1 V θ=θ yang berakibat gf =1 V. Oleh karenanya, g suatu isomorfisma. Jadi telah dibuktikan bahwa k V V V k. Q.E.D LEMA 2.2. Misalkan A, A` suatu R-modul kanan dan misalkan B, B`, suatu R-modul kiri. Jika α: A A` dan β: B B` adalah suatu R-homomorfisma, maka terdapat homomorfisma α β: A B A` B` dengan α β :a b αa βb untuk setiap a di A dan b di B. Bukti : Sebelumnya telah ditunjukkan bahwa A x B A` B` yang didefinisikan oleh (a, b) a αa βb suatu pemetaan balance dan berdasarkan definisi hasilkali tensor A B terdapat homomorfisma α β: A B A` B` dengan α β : a b αa βb. Q.E.D

Karakteristik Koproduk Grup Hingga

Karakteristik Koproduk Grup Hingga Jurnal Matematika Integratif ISSN 1412-6184 Vol. 9 No. 2, Oktober 2013 pp. 31-37 Karakteristik Koproduk Grup Hingga Edi Kurniadi, Stanley P.Dewanto, Alit Kartiwa Jurusan Matematika FMIPA Universitas Padjadjaran

Lebih terperinci

KARAKTERISTIK KOPRODUK GRUP HINGGA

KARAKTERISTIK KOPRODUK GRUP HINGGA KARAKTERISTIK KOPRODUK GRUP HINGGA Edi Kurniadi, Stanley P. Dewanto, Alit Kartiwa Jurusan Matematika FMIPA Universitas Padjadjaran Jalan Raya Bandung Sumedang Km 21 Jatinangor 45363 E-mail: edikrnd@gmail.com;

Lebih terperinci

HUBUNGAN DAERAH DEDEKIND DENGAN GELANGGANG HNP

HUBUNGAN DAERAH DEDEKIND DENGAN GELANGGANG HNP HUBUNGAN DAERAH DEDEKIND DENGAN GELANGGANG HNP TEDUH WULANDARI Departemen Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor Jl. Meranti, Kampus IPB Darmaga, Bogor 16680,

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN I MODUL ATAS RING Direncanakan

Lebih terperinci

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang

Lebih terperinci

Grup Permutasi dan Grup Siklis. Winita Sulandari

Grup Permutasi dan Grup Siklis. Winita Sulandari Grup Permutasi dan Grup Siklis Winita Sulandari Grup Permutasi Suatu Permutasi dari suatu himpunan berhingga S yang tidak kosong, dinyatakan sebagai suatu pemetaan bijektif dari himpunan S pada dirinya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bagian ini dipaparkan dasar-dasar yang akan digunakan pada bagian pembahasan dari skripsi ini. Tinjauan yang dilakukan dengan memaparkan definisi mengenai himpunan fuzzy, struktur

Lebih terperinci

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,

Lebih terperinci

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari.

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari. BAB III Standard Kompetensi 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring menggunakannya dalam kehidupan sehari-hari. Kompetensi Dasar: Mahasiswa diharapkan dapat 3.1 Menyebutkan definisi

Lebih terperinci

BAB III PEMBAHASAN. Dalam tesis ini akan dibahas definisi alajabar klasik dan definisi aljabar

BAB III PEMBAHASAN. Dalam tesis ini akan dibahas definisi alajabar klasik dan definisi aljabar 4 BAB III PEMBAHASAN 3. Aljabar atas Lapangan Dalam tesis ini akan dibahas definisi alajabar klasik dan definisi aljabar melalui karakterisasi hasilkali tensor. Berikutnya akan ditunjukkan bahwa setiap

Lebih terperinci

Bab 3 Gelanggang Polinom Miring

Bab 3 Gelanggang Polinom Miring Bab 3 Gelanggang Polinom Miring Dalam bab ini akan dibahas mengenai Gelanggang Poliom Miring mulai dengan bentuk yang sederhana (satu variabel) sampai ke bentuk yang lebih kompleks (banyak variabel) berikut

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi suatu Ring merupakan Sub Ring dan Ideal

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi suatu Ring merupakan Sub Ring dan Ideal BAB 7 SUBRING DAN IDEAL Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi suatu Ring merupakan Sub Ring dan Ideal Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika 1 BAB I PENDAHULUAN A. Latar Belakang Struktur aljabar merupakan salah satu bidang kajian dalam matematika yang dikembangkan untuk menunjang pemahaman mengenai struktur bilangan. Struktur atau sistem aljabar

Lebih terperinci

STRUKTUR ALJABAR 1. Kristiana Wijaya

STRUKTUR ALJABAR 1. Kristiana Wijaya STRUKTUR ALJABAR 1 Kristiana Wijaya i ii Daftar Isi Judul Daftar Isi i iii 1 Himpunan 1 2 Partisi dan Relasi Ekuivalen 3 3 Grup 6 4 Koset Dan Teorema Lagrange, Homomorphisma Grup Dan Grup Faktor 11 Indeks

Lebih terperinci

HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK

HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK HASIL KALI TENSO: KONSTUKSI, EKSISTENSI AN KAITANNYA ENGAN BAISAN EKSAK Samsul Arifin samsul_arifin@mail.ugm.ac.id Mahasiswa S Matematika FMIPA UGM alam tulisan ini akan dibahas mengenai konstruksi hasil

Lebih terperinci

PENGANTAR PADA TEORI GRUP DAN RING

PENGANTAR PADA TEORI GRUP DAN RING Handout MK Aljabar Abstract PENGANTAR PADA TEORI GRUP DAN RING Disusun oleh : Drs. Antonius Cahya Prihandoko, M.App.Sc, Ph.D e-mail: antoniuscp.ilkom@unej.ac.id Staf Pengajar Pada Program Studi Sistem

Lebih terperinci

STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif.

STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif. STRUKTUR ALJABAR SEMIGRUP Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif. Contoh 1 (Z, +) merupakan sebuah semigrup. Contoh 2 Misalkan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam penelitian. Pada bagian pertama akan dibahas mengenai teori grup. 2.1 Grup Dalam struktur aljabar, himpunan

Lebih terperinci

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS STRUKTUR ALJABAR 1 Winita Sulandari FMIPA UNS Pengantar Struktur Aljabar Sistem Matematika terdiri dari Satu atau beberapa himpunan Satu atau beberapa operasi yg bekerja pada himpunan di atas Operasi-operasi

Lebih terperinci

Aljabar Atas Suatu Lapangan dan Dualitasnya

Aljabar Atas Suatu Lapangan dan Dualitasnya Vol. 12, No. 2, 105-110, Januari 2016 Aljabar Atas Suatu Lapangan dan Dualitasnya Edi Kurniadi dan Irawati Abstrak Suatu aljabar (A,.,+;k) atas suatu lapangan k adalah suatu gelanggang (A,.,+) yang dilengkapi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Fungsi Definisi A.1 Diberikan A dan B adalah dua himpunan yang tidak kosong. Suatu cara atau aturan yang memasangkan atau mengaitkan setiap elemen dari himpunan A dengan tepat

Lebih terperinci

BAB I PENDAHULUAN. Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi

BAB I PENDAHULUAN. Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi 1 BAB I PENDAHULUAN 1.1. Latar Belakang Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi tersebut adalah modul. Untuk membahas pengertian tentang suatu modul harus dimengerti lebih

Lebih terperinci

HOMOMORFISMA. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

HOMOMORFISMA. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang HOMOMORFISMA Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com May 19, 2013 1 Daftar Isi 1 Tujuan 3 2 Homomorfisma 3 3 Sifat-sifat Homomorfisma

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

PENGERTIAN RING. A. Pendahuluan

PENGERTIAN RING. A. Pendahuluan Pertemuan 13 PENGERTIAN RING A. Pendahuluan Target yang diharapkan dalam pertemuan ke 13 ini (pertemuan pertama tentang teori ring) adalah mahasiswa dapat : a. membedakan suatu struktur aljabar merupakan

Lebih terperinci

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum Bab I. Sekilas Tentang Konsep Dasar Grup antonius cp 2 1. Tertutup, yakni jika diambil sebarang dua elemen dalam G maka hasil operasinya juga akan merupakan elemen G dan hasil tersebut adalah tunggal.

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan autokomutator yang akan digunakan dalam penelitian. Pada bagian pertama ini akan dibahas tentang teori

Lebih terperinci

ORDER UNSUR DARI GRUP S 4

ORDER UNSUR DARI GRUP S 4 Jurnal Matematika UNAND Vol. VI No. 1 Hal. 142 147 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ORDER UNSUR DARI GRUP S 4 FEBYOLA, YANITA, MONIKA RIANTI HELMI Program Studi Matematika, Fakultas Matematika

Lebih terperinci

Keberlakuan Teorema pada Beberapa Struktur Aljabar

Keberlakuan Teorema pada Beberapa Struktur Aljabar PRISMA 1 (2018) https://journal.unnes.ac.id/sju/index.php/prisma/ Keberlakuan Teorema pada Beberapa Struktur Aljabar Mashuri, Kristina Wijayanti, Rahayu Budhiati Veronica, Isnarto Jurusan Matenmatika FMIPA

Lebih terperinci

II. TINJAUAN PUSTAKA. modul yang akan digunakan dalam pembahasan hasil penelitian.

II. TINJAUAN PUSTAKA. modul yang akan digunakan dalam pembahasan hasil penelitian. II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang grup, ring, dan modul yang akan digunakan dalam pembahasan hasil penelitian. 2.1 Ring Sebelum didefinisikan pengertian

Lebih terperinci

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep GRUP Bab ini merupakan awal dari bagian pertama materi utama perkuliahan Struktur Aljabar I. Pada bab ini disajikan tentang pengertian grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Lebih terperinci

RING FAKTOR DAN HOMOMORFISMA

RING FAKTOR DAN HOMOMORFISMA BAB 8 RING FAKTOR DAN HOMOMORFISMA Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Faktor dan Homomorfisma Ring Tujuan Instruksional

Lebih terperinci

SOAL DAN PENYELESAIAN RING

SOAL DAN PENYELESAIAN RING SOAL DAN PENYELESAIAN RING 1. Misalkan P himpunan bilangan bulat kelipatan 3. Tunjukan bahwa dengan operasi penjumlahan dan perkalian pada himpunan bilangan bulat, P membentuk ring komutatif. Jawaban:

Lebih terperinci

LAPORAN PENELITIAN KOMPETITIF TAHUN ANGGARAN 2017 KARAKTERISASI MODUL TIDAK TERDEKOMPOSISI ATAS DAERAH DEDEKIND

LAPORAN PENELITIAN KOMPETITIF TAHUN ANGGARAN 2017 KARAKTERISASI MODUL TIDAK TERDEKOMPOSISI ATAS DAERAH DEDEKIND LAPORAN PENELITIAN KOMPETITIF TAHUN ANGGARAN 2017 KARAKTERISASI MODUL TIDAK TERDEKOMPOSISI ATAS DAERAH DEDEKIND Nomor DIPA : DIPA BLU: DIPA-025.04.2.423812/2016 Tanggal : 7 Desember 2017 Satker : (423812)

Lebih terperinci

TEORI HEMIRING ABSTRAK

TEORI HEMIRING ABSTRAK TEORI HEMIRING Mahasiswa S1 Program Studi Matematika, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Diponegoro Jl Prof H Soedarto, SH, Semarang Indonesia 50275 email :tri_matematika@yahoocom

Lebih terperinci

BAB 6 RING (GELANGGANG) BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 6 RING (GELANGGANG) BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 6 RING (GELANGGANG) Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat suatu Ring, Integral Domain dan Field Tujuan Instruksional

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN III MODUL BEBAS, PENGENOL, DAN

Lebih terperinci

BAB III REPRESENTASI GELFAND-NAIMARK-SEGAL

BAB III REPRESENTASI GELFAND-NAIMARK-SEGAL BAB III REPRESENTASI GELFAND-NAIMARK-SEGAL Pada bagian ini akan dibahas konsep yang terkait dengan representasi yaitu homomorfisma-*, representasi nondegenerate, representasi faithful, representasi siklik,

Lebih terperinci

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

BAB 2 KONSEP DASAR 2.1 HIMPUNAN DAN FUNGSI

BAB 2 KONSEP DASAR 2.1 HIMPUNAN DAN FUNGSI BAB 2 KONSEP DASAR Pada bab 2 ini, penulis akan memperkenalkan himpunan, fungsi dan sejumlah konsep awal yang terkait dengan semigrup, dimana sebagian besar akan sangat diperlukan hingga bagian akhir dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis sebagai landasan teori dalam penelitian ini yaitu teori bilangan, bilangan bulat modulo?, struktur aljabar dan masalah logaritma

Lebih terperinci

II. TINJAUAN PUSTAKA. Diberikan himpunan dan operasi biner disebut grup yang dinotasikan. (i), untuk setiap ( bersifat assosiatif);

II. TINJAUAN PUSTAKA. Diberikan himpunan dan operasi biner disebut grup yang dinotasikan. (i), untuk setiap ( bersifat assosiatif); II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi Grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup BAB 3 DASAR DASAR GRUP Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung proses penelitian. 2.1 Teori Grup Definisi 2.1.1 Operasi Biner Suatu operasi biner pada suatu himpunan adalah

Lebih terperinci

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 13 14 15 Materi Kuliah Transformasi Linier dari F n ke F m Perubahan Matriks Basis Matriks dari Transformasi Linier Perubahan Basis untuk Transformasi Linier Matriks-matriks Ekivalen

Lebih terperinci

1. GRUP. Definisi 1.1 (Operasi Biner) Diketahui G himpunan dan ab, G. Operasi biner pada G merupakan pengaitan

1. GRUP. Definisi 1.1 (Operasi Biner) Diketahui G himpunan dan ab, G. Operasi biner pada G merupakan pengaitan 1. GRUP Definisi 1.1 (Operasi Biner) Diketahui G himpunan dan ab, G. Operasi biner pada G merupakan pengaitan pasangan elemen ( ab, ) pada G, yang memenuhi dua kondisi berikut: 1. Setiap pasangan elemen

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

KLASIFIKASI NEAR-RING Classifications of Near Ring

KLASIFIKASI NEAR-RING Classifications of Near Ring Jurnal Barekeng Vol 8 No Hal 33 39 (14) KLASIFIKASI NEAR-RING Classifications of Near Ring ELVINUS RICHARD PERSULESSY Jurusan Matematika Fakultas MIPA Universitas Pattimura Jl Ir M Putuhena, Kampus Unpatti,

Lebih terperinci

Antonius C. Prihandoko

Antonius C. Prihandoko Antonius C. Prihandoko Didanai oleh Proyek DIA-BERMUTU 2009 PROGRAM STUDI PENDIDIKAN MATEMATIKA Jurusan Pendidikan MIPA Fakultas Keguruan Dan Ilmu Pendidikan Universitas Jember Prakata Puji syukur ke hadirat

Lebih terperinci

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODULES AND BASES OF FREE MODULES Dian Mardiani Pendidikan Matematika, STKIP Garut Garut, Indonesia Alfid51@yahoo.com Abstrak Penelitian ini membahas beberapa

Lebih terperinci

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 2) A. Pendahuluan Matriks dan Sistem Persamaan Linear

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 2) A. Pendahuluan Matriks dan Sistem Persamaan Linear Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 2) A. Pendahuluan Salah satu kajian matematika sekolah menengah yang memiliki banyak aplikasinya dalam menyelesaikan permasalahan yang ada dalam kehidupan

Lebih terperinci

BAB 3 RING ARMENDARIZ. bahwa jika ab = 0, maka ba = 0 (diketahui ab = 0, maka (ba) 2 = baba = b.0.a = 0

BAB 3 RING ARMENDARIZ. bahwa jika ab = 0, maka ba = 0 (diketahui ab = 0, maka (ba) 2 = baba = b.0.a = 0 BAB 3 RING ARMENDARIZ 3.1 Ring Terreduksi Suatu ring R disebut ring terreduksi jika tidak mempunyai elemen nilpoten tak nol. Secara ekuivalen, suatu ring dikatakan terreduksi jika tidak mempunyai elemen

Lebih terperinci

PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017

PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017 PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017 Indah Emilia Wijayanti Departemen Matematika FMIPA Universitas

Lebih terperinci

GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA

GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Grup Siklik, Grup Permutasi dan Homomorfisma

Lebih terperinci

II. LANDASAN TEORI. Pada bagian ini akan dikaji konsep operasi biner dan ring yang akan digunakan

II. LANDASAN TEORI. Pada bagian ini akan dikaji konsep operasi biner dan ring yang akan digunakan II. LANDASAN TEORI Pada bagian ini akan dikaji konsep operasi biner dan ring yang akan digunakan dalam pembahasan penelitian ini. Untuk lebih mudah memahami, akan diberikan beberapa contoh. Berikut ini

Lebih terperinci

BAB 1 PENDAHULUAN. Contoh sederhana dari ring adalah himpunan bilangan bulat Z.

BAB 1 PENDAHULUAN. Contoh sederhana dari ring adalah himpunan bilangan bulat Z. BAB 1 PENDAHULUAN 1.1 Latar Belakang Suatu struktur aljabar adalah himpunan takkosong yang dilengkapi satu atau lebih operasi biner pada himpunan tersebut. Salah satu contoh struktur aljabar adalah ring,

Lebih terperinci

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi + 5 BAB II KERANGKA TEORITIS 2.1 Struktur Aljabar Struktur aljabar adalah salah satu mata kuliah dalam jurusan matematika yang mempelajari tentang himpunan (sets), proposisi, kuantor, relasi, fungsi, bilangan,

Lebih terperinci

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com 2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut

Lebih terperinci

Analisis Real. Johan Matheus Tuwankotta 1. December 3,

Analisis Real. Johan Matheus Tuwankotta 1. December 3, Analisis Real Johan Matheus Tuwankotta December 3, 200 Departemen Matematika, FMIPA, Institut Teknologi Bandung, jl. Ganesha no. 0, Bandung, Indonesia. mailto:theo@dns.math.itb.ac.id 2 Daftar Isi Sistem

Lebih terperinci

NEUTROSOFIK MODUL DAN SIFAT-SIFATNYA. Jl. Prof. H. Soedarto, SH, Tembalang, Semarang 50275

NEUTROSOFIK MODUL DAN SIFAT-SIFATNYA. Jl. Prof. H. Soedarto, SH, Tembalang, Semarang 50275 NEUTROSOFIK MODUL DAN SIFAT-SIFATNYA Suryoto 1, Bambang Irawanto 2, Nikken Prima Puspita 3 1,2,3 Jurusan Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, SH, Tembalang, Semarang 5275 1 suryoto_math@undip.ac.id

Lebih terperinci

SUBGRUP NORMAL. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

SUBGRUP NORMAL. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang SUBGRUP NORMAL Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com May 4, 2013 1 Daftar Isi 1 Tujuan 3 2 Subgrup Normal 3 3 Sifat-sifat Subgrup

Lebih terperinci

PENGANTAR GRUP. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

PENGANTAR GRUP. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang PENGANTAR GRUP Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com March 18, 2013 1 Daftar Isi 1 Tujuan 3 2 Pengantar Grup 3 3 Sifat-sifat Grup

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3

Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3 MATRIKS a. Konsep Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegipanjang dan diletakkan di dalam kurung biasa ( ) atau

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No. 2 Desember 2010: IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING

Jurnal Matematika Murni dan Terapan Vol. 4 No. 2 Desember 2010: IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING Saman Abdurrahman Program Studi Matematika Universitas Lambung Mangkurat Jl. Jend. A. Yani km 35, 8 Banjarbaru ABSTRAK Penelitian ini membahas ideal near-ring yang

Lebih terperinci

IDEAL DAN SIFAT-SIFATNYA

IDEAL DAN SIFAT-SIFATNYA IDEAL DAN SIFAT-SIFATNYA Untuk Memenuhi Tugas Mata Kuliah Stuktur Aljabar II Oleh: Kelompok VI/kelas A 1 Diah Ajeng Titisari (08144100009) Frendy Try Andyasmoko (08144100041) Herna Purwanti (08144100083)

Lebih terperinci

STRUKTUR ALJABAR: RING

STRUKTUR ALJABAR: RING STRUKTUR ALJABAR: RING BAHAN AJAR Oleh: Rippi Maya Program Studi Magister Pendidikan Matematika Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) SILIWANGI - Bandung 2016 1 Pada grup telah dipelajari

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses penelitian untuk penyelesaian persamaan Diophantine dengan relasi kongruensi modulo m mengenai aljabar dan

Lebih terperinci

PERLUASAN DARI RING REGULAR

PERLUASAN DARI RING REGULAR PERLUASAN DARI RING REGULAR Devi Anastasia Shinta 1, YD. Sumanto 2, Djuwandi 3 1,2,3 Jurusan Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang fue_anastasia@yahoo.com

Lebih terperinci

K-ALJABAR. Iswati dan Suryoto Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275

K-ALJABAR. Iswati dan Suryoto Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275 K-ALJABAR Iswati Suryoto Jurusan Matematika FMIPA UNDIP Jl Prof H Soedarto, SH, Semarang 50275 ABSTRAK -aljabar adalah suatu struktur aljabar yang dibangun atas suatu grup sehingga sifat-sifat yang berlaku

Lebih terperinci

IDENTIFIKASI STRUKTUR DASAR SMARANDACHE NEAR-RING Identification of Basic Structure on Smarandache Near-Ring

IDENTIFIKASI STRUKTUR DASAR SMARANDACHE NEAR-RING Identification of Basic Structure on Smarandache Near-Ring Jurnal Barekeng Vol. 7 No. 2 Hal. 41 46 (2013) IDENTIFIKASI STRUKTUR DASAR SMARANDACHE NEAR-RING Identification of Basic Structure on Smarandache Near-Ring YOHANA YUNET BAKARBESSY 1, HENRY W. M. PATTY

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN Pada bab ini dibahas mengenai latar belakang masalah, rumusan masalah, maksud dan tujuan, tinjauan pustaka, metodologi penelitian serta diakhiri dengan sistematika penulisan. 1.1. Latar

Lebih terperinci

SIFAT ARMENDARIZ P A D A BEBERAPA RING GRUP

SIFAT ARMENDARIZ P A D A BEBERAPA RING GRUP SIFAT ARMENDARIZ P A D A BEBERAPA RING GRUP oleh : Mulvi Ludiana (1) Cece Kustiawan (2) Sumanang Muhtar Gozali (2) ABSTRAK Dari suatu ring dan grup, dapat dikonstruksi suatu ring baru yang disebut ring

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

DERET KOMPOSISI DARI SUATU MODUL

DERET KOMPOSISI DARI SUATU MODUL DERET KOMPOSISI DARI SUATU MODUL SKRIPSI Oleh : ANI NURHAYATI J2A 006 001 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2010

Lebih terperinci

0,1,2,3,4. (e) Perhatikan jawabmu pada (a) (d). Tuliskan kembali sifat-sifat yang kamu temukan dalam. 5. a b c d

0,1,2,3,4. (e) Perhatikan jawabmu pada (a) (d). Tuliskan kembali sifat-sifat yang kamu temukan dalam. 5. a b c d 1 Pada grup telah dipelajari himpunan dengan satu operasi. Sekarang akan dipelajari himpunan dengan dua operasi. Ilustrasi 1.1 Perhatikan himpunan 0,1,2,3,4. (a) Apakah grup terhadap operasi penjumlahan?

Lebih terperinci

KOSET. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

KOSET. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang KOSET Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com April 21, 2013 1 Daftar Isi 1 Tujuan 3 2 Koset 3 3 Sifat-sifat Koset 4 4 Latihan 5 2 1

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

Teorema Jacobson Density

Teorema Jacobson Density Teorema Jacobson Density Budi Santoso 1, Fitriani 2, Ahmad Faisol 3 Jurusan Matematika FMIPA, Unila, Bandar Lampung, Indonesia 1,2,3 E-mail: budi.klik@gmail.com Abstrak. Misalkan adalah ring (tidak harus

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis berupa definisi teorema sifat-sifat yang berhubungan dengan teori bilangan integer modulo aljabar abstrak masalah logaritma diskret

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

Volume 9 Nomor 1 Maret 2015

Volume 9 Nomor 1 Maret 2015 Volume 9 Nomor 1 Maret 015 Jurnal Ilmu Matematika dan Terapan Maret 015 Volume 9 Nomor 1 Hal. 1 10 KARAKTERISASI DAERAH DEDEKIND Elvinus R. Persulessy 1, Novita Dahoklory 1, Jurusan Matematika FMIPA Universitas

Lebih terperinci

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN 2301-9115 GRAF TOTAL SUATU MODUL BERDASARKAN SUBMODUL SINGULER Dian Ambarsari (S1 Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN

Lebih terperinci

IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL. Na imah Hijriati, Saman Abdurrahman, Thresye

IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL. Na imah Hijriati, Saman Abdurrahman, Thresye DEAL DFEENSAL DAN HOMOMOFSMA DFEENSAL Na imah Hijriati, Saman Abdurrahman, Thresye Program Studi Matematika Universitas Lambung Mangkurat l. end. A. Yani Km. 36 Kampus Unlam Banjarbaru Email : imah_math@yahoo.co.id

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN II HOMOMORPHISMA MODUL Direncanakan

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya

Skew- Semifield dan Beberapa Sifatnya Kode Makalah M-1 Skew- Semifield dan Beberapa Sifatnya K a r y a t i Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta E-mail: yatiuny@yahoo.com

Lebih terperinci

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Rio Yohanes 1, Nora Hariadi 2, Kiki Ariyanti Sugeng 3 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424, Indonesia rio.yohanes@sci.ui.ac.id,

Lebih terperinci

8 MATRIKS DAN DETERMINAN

8 MATRIKS DAN DETERMINAN 8 MATRIKS DAN DETERMINAN Matriks merupakan pengembangan lebih lanjut dari sistem persamaan linear. Oleh karenanya aljabar matriks sering juga disebut dengan aljabar linear. Matriks dapat digunakan untuk

Lebih terperinci

ABSTRAK. Kata kunci: derivasi, ideal semigrup, prime near-ring, ring komutatif

ABSTRAK. Kata kunci: derivasi, ideal semigrup, prime near-ring, ring komutatif Judul : Syarat Cukup Prime Near-Ring Merupakan Ring Komutatif Nama : Pradita Zuhriahida Triwulandari Pembimbing : 1. Kartika Sari, S.Si., M.Sc. 2. Luh Putu Ida Harini, S.Si., M.Sc. ABSTRAK Near-ring merupakan

Lebih terperinci

Tinjauan Ulang 23 Juni 2013

Tinjauan Ulang 23 Juni 2013 Tinjauan Ulang 23 Juni 2013 Daftar Isi 1 Logika Matematika, Himpunan, Relasi, dan Pemetaan 3 1.1 Logika Matematika................................ 3 1.2 Formalisme Himpunan..............................

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI. Latar Belakang Berawal dari definisi grup periodik yaitu misalkan grup, jika terdapat unsur (nonidentitas)

I PENDAHULUAN II LANDASAN TEORI. Latar Belakang Berawal dari definisi grup periodik yaitu misalkan grup, jika terdapat unsur (nonidentitas) I PENDAHULUAN Latar Belakang Berawal dari definisi grup periodik yaitu misalkan grup, jika terdapat unsur (nonidentitas) di sehingga., maka disebut grup periodik dan disebut periode dari. Serta fakta bahwa

Lebih terperinci

KONSTRUKSI SISTEM BILANGAN

KONSTRUKSI SISTEM BILANGAN KONSTRUKSI SISTEM BILANGAN KEVIN MANDIRA LIMANTA 1. Konstruksi Aljabar 1.1. Bilangan Natural. Himpunan bilangan paling primitif adalah bilangan natural N, yang dicacah dengan aturan sebagai berikut: (1)

Lebih terperinci

SEMINAR NASIONAL BASIC SCIENCE II

SEMINAR NASIONAL BASIC SCIENCE II ISBN : 978-602-97522-0-5 PROSEDING SEMINAR NASIONAL BASIC SCIENCE II Konstribusi Sains Untuk Pengembangan Pendidikan, Biodiversitas dan Metigasi Bencana Pada Daerah Kepulauan SCIENTIFIC COMMITTEE: Prof.

Lebih terperinci