BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +"

Transkripsi

1 5 BAB II KERANGKA TEORITIS 2.1 Struktur Aljabar Struktur aljabar adalah salah satu mata kuliah dalam jurusan matematika yang mempelajari tentang himpunan (sets), proposisi, kuantor, relasi, fungsi, bilangan, grupoid, grup hingga field. Secara khusus struktur aljabar adalah himpunan tak kosong dengan satu komposisi biner atau lebih dan bersifat tertutup. Contoh: A = {x / x bilangan asli} dengan operasi + (x + y) A, x,y A B = {x / x bilangan real} dengan operasi +, (x + y) B, x,y B (x y) A, x,y B 2.2 Operasi Biner Operasi biner yang biasa disebut komposisi biner adalah operasi yang berkenaan dengan dua elemen dan menghasilkan elemen yang masih merupakan anggota himpunan yang bersangkutan. Beberapa operasi biner yang dikenal

2 6 dalam matematika misalnya operasi penjumlahan dan perkalian pada himpunan bilangan bulat. Operasi gabungan, irisan, selisih dan selisih simetri dalam himpunan kuasa merupakan contoh lain operasi biner pada himpunan. Contoh: Penjumlahan dua buah bilangan bulat sembarang akan menghasilkan bilangan bulat lagi, sehingga penjumlahan adalah operasi biner pada himpunan bilang bulat. Perkalian dua buah bilangan bulat juga menghasilkan bilanga bulat lagi. Jadi operasi perkalian dalam hal ini juga merupakan operasi biner. 2.3 Operasi Komutatif Sebuah operasi biner * pada himpunan A dikatakan komutatif jika dan hanya jika untuk setiap a, b A berlaku: a * b = b * a 2.4 Operasi Asosiatif Sebuah operasi biner * pada himpunan A dikatakan asosiatif jika dan hanya jika untuk setiap a, b, c A berlakus: ( a * b ) * c = a * ( b * c )

3 7 2.5 Operasi Distributif Sebuah operasi biner dikatakan distributif terhadap operasi biner * jika dan hanya jika untuk setiap a, b, c A berlaku: 2.6 Unsur Kesatuan Ada dua unsur kesatuan, yaitu: Unsur kesatuan aditif a ( b * c ) = (a b) * ( a c ). Yang disebut unsur kesatauan aditif ialah elemen a + e = e + a = a, untuk setiap e A. e A yang bersifat Contoh: 0 merupakan unit kesatuan aditif dalam sistem bilangan bulat dengan operasi penjumlahan. Unsur kesatuan multiplikatif Yang disebut unsur kesatauan multiplikatif ialah elemen e A yang bersifat a e = e a = a, untuk setiap e A. Contoh: 1 merupakan unit kesatuan multiplikatif dalam sistem bilangan bulat dengan operasi perkalian. 2.7 Invers Misalkan a, a A, dimana elemen identitas dari operasi biner adalah e dan a a = a a = e, maka a disebut sebagai elemen invers dari a untuk operasi biner.

4 8 2.8 Grupoid Grupoid adalah suatu struktur aljabar dengan satu komposisi biner. Contoh: A = {x / x bilangan bulat} dengan operasi + (x + y) A, x,y A B = {x / x bilangan bulat} dengan operasi (x y) B, x,y B 2.9 Semi Grup Semi grup ( G, ) adalah suatu struktur aljabar dengan satu komposisi biner bila dan hanya bila memenuhi sifat-sifat berikut ini: 1. Sifat tertutup terhadap operasi * G berlaku a*b adalah juga merupakan elemen G. 2. Sifat asosiaif terhadap operasi *,c G berlaku ( a b) c = a (b c) Grup Grup asalah suatu sistem atau struktur aljabar yang sederhana. Jika suatu himpunan G dengan suatu operasi yang didefinisikan bagi elemen-elemen G bersifat tertutup, asosiatif, mempunyai elemen identitas dan setiap elemen G mempunyai invers terhadap operasi biner tersebut, maka himpunan G terhadap

5 9 operasi biner itu membentuk suatu grup. Selanjutnya keempat sifat tersebut dinamakan aksioma-aksioma suatu grup. Suatu himpunan G yang tidak kosong dan suatu operasi biner o yang didefinisikan pada G membentuk suatu grup bila dan hanya bila memenuhi sifat sifat berikut ini: 1. Tertutup, G berlaku (a b) G. 2. Operasi o pada G bersifat asosiatif, yaitu untuk setiap,c, G maka ( a o b) o c = a o (b o c). 3. G terhadap operasi biner o mempunyai elemen identitas, yaitu ada e G sedemikian sehingga a o e = e o a = a untk setiap a G. 4. Setiap elemen G mempunyai invers terhadap operasi biner o dalam G, yaitu untuk setiap a G ada a 1 G sedemikian hingga a o a 1 = a 1 o a = e adalah elemen identitas dari G. Jika himpunan G terhadap operasi biner o membentuk suatu grup, maka grup G ini dinyatakan dengan notasi ( G, o ). Tidak setiap grup memiliki sifat komutatif terhadap binernya. Operasi biner o pada G bersifat komutatif yaitu untuk setiap G maka a o b = b o a. Maka grup ( G, o ) disebut grup abelian atau grup komutatif.

6 Ring Ring adalah suatu struktur aljabar dengan dua operasi biner yaitu + dan *. Terhadap operasi +, struktur aljabar itu merupakan grup abelian, terhadap * struktur aljabar itu semi grup, dan operasi * bersifat distribusi kiri dan distribusi kanan terhadap +. Himpunan yang tidak kosong R terhadap dua operasi yang disajikan dengan tanda + dan * merupakan suatu ring bila dan hanya bila memenuhi sifat-sifat berikut ini. 1. Sifat tertutup terhadap operasi + R berlaku ( a + b) R. 2. Sifat asosiaif terhadap operasi +,c R berlaku ( a + b) + c = a + (b + c). 3. Ada elemen identitas terhadap operasi + Ada 0 R sedemikian hingga untuk setiap a R berlaku a + 0 = 0 + a = a. 4. Setiap elemen R mempunyai invers terhadap operasi + elemen a R dapat ditemukan ( a 1 ) R sedemikian a + a 1 = a 1 + a = Sifat komutatif terhadap operasi + R berlaku a + b = b + a. 6. Sifat tertutup terhadap operasi * R berlaku ( a * b) R.

7 11 7. Sifat asosiatif terhadap *,c R berlaku ( a * b) *c = a *(b *c). 8. Sifat distributif operasi * terhadap +,c R berlaku a (b + c) = a b + a c dan ( a b) c = a c + b c Field Field adalah suatu struktur aljabar dengan dua operasi biner yaitu + dan. Terhadap operasi + struktur aljabar itu merupakan grup abelian. Terhadap operasi struktur aljabar itu juga merupakan grup abelian tetapi dengan mengecualikan angka unkes aditif, dan terhadap operasi bersifat distributif kiri dan distributif kanan terhadap +. Himpunan yang tidak kosong R terhadap dua operasi yang disajikan dengan tanda + dan merupakan suatu ring bila dan hanya bila memenuhi sifat-sifat berikut ini. 1. Sifat tertutup terhadap operasi + R berlaku ( a + b) R. 2. Sifat asosiatif terhadap operasi +,c R berlaku ( a + b) + c = a + (b + c). 3. Ada elemen identitas terhadap operasi + Ada 0 R sedemikian hingga untuk setiap a R berlaku a + 0 = 0 + a = a.

8 12 4. Setiap elemen R mempunyai invers terhadap operasi + elemen a R dapat ditemukan ( a) R sedemikian ( a) = ( a) + a 0 a + =. 5. Sifat komutatif terhadap operasi + R berlaku a + b = b + a. 6. Sifat tertutup terhadap operasi (R {0}) berlaku ( a + b) (R {0}). 7. Sifat asosiatif terhadap,c (R {0}) berlaku ( a b) c = a (b c). 8. Ada elemen identitas terhadap operasi Ada 1 (R {0}) sedemikian hingga untuk setiap a (R {0}) berlaku a 1 = 1 a = a. 9. Setiap elemen R mempunyai invers terhadap operasi elemen a (R {0}) 1 1 sedemikian a a = a a = Sifat komutatif terhadap operasi (R {0}) berlaku a b = b a. 11. Sifat distributif terhadap +,b,c R ( b + c) = a b + a c a. dapat ditemukan ( a 1 ) (R {0}) a berlaku ( a b) c = a c + b c + dan

9 Daftar Cayley Daftar Cayley adalah daftar yang dibuat untuk memperlihatkan operasi antar dua elemen pada himpunan terbatas. Berikut ini adalah beberapa contoh daftar Cayley. Daftar Cayley operasi penjumlahan dengan modulo 6 Tabel 2.1 Tabel Cayley Penjumlahan Modulo Daftar Cayley operasi perkalian modulo 6 Tabel 2.2 Tabel Cayley Perkalian Modulo

10 14 Syarat-syarat ring dan field di dalam tabel Cayley dapat dilihat sebagai berikut. 1. Tertutup bila elemen-elemen dalam tabel tidak mengandung elemen-elemendi luar elemen-elemen himpunan. (lihat Tabel 2.1 dan Tabel 2.2) 2. Unit kesatuan kiri bila ada baris yang sama dengan baris teratas. Tabel 2.3 Tabel Cayley Penjumlahan Modulo 6 dengan syarat unit kesatuan kiri Unit kesatuan kanan bila ada kolom yang sama dengan kolom terkiri. Tabel 2.4 Tabel Cayley Penjumlahan Modulo 6 dengan syarat unit kesatuan kanan

11 15 4. Komutatif bila simetris terhadap diagonal utama. Tabel 2.5 Tabel Cayley Penjumlahan Modulo 6 dengan syarat komutatif Ada invers bila ada elemen pada baris dan kolom yang menghasilkan unit kesatuan. Tabel 2.6 Tabel Cayley Penjumlahan Modulo 6 dengan syarat invers

12 16 Tabel 2.7 Tabel Cayley Perkalian Modulo 6 dengan syarat invers

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

RANCANGAN PEMBUATAN PROGRAM PENGUJIAN STRUKTUR MATEMATIKA RING DAN FIELD

RANCANGAN PEMBUATAN PROGRAM PENGUJIAN STRUKTUR MATEMATIKA RING DAN FIELD RANCANGAN PEMBUATAN PROGRAM PENGUJIAN STRUKTUR MATEMATIKA RING DAN FIELD Don Tasman 1 ; Ngarap Im Manik 2 ABSTRACT Along with the growth of human being thought and technology everything also becomes quickly.

Lebih terperinci

BAB 6 RING (GELANGGANG) BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 6 RING (GELANGGANG) BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 6 RING (GELANGGANG) Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat suatu Ring, Integral Domain dan Field Tujuan Instruksional

Lebih terperinci

STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif.

STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif. STRUKTUR ALJABAR SEMIGRUP Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif. Contoh 1 (Z, +) merupakan sebuah semigrup. Contoh 2 Misalkan

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika 1 BAB I PENDAHULUAN A. Latar Belakang Struktur aljabar merupakan salah satu bidang kajian dalam matematika yang dikembangkan untuk menunjang pemahaman mengenai struktur bilangan. Struktur atau sistem aljabar

Lebih terperinci

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS

STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS STRUKTUR ALJABAR 1 Winita Sulandari FMIPA UNS Pengantar Struktur Aljabar Sistem Matematika terdiri dari Satu atau beberapa himpunan Satu atau beberapa operasi yg bekerja pada himpunan di atas Operasi-operasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 5 BAB 2 LANDASAN TEORI Struktur Aljabar Struktur aljabar adalah ilmu yang mempelajari suatu sistem aljabar dengan satu atau lebih operasi biner yang diberlakukan pada sistem aljabar tersebut. Struktur

Lebih terperinci

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep GRUP Bab ini merupakan awal dari bagian pertama materi utama perkuliahan Struktur Aljabar I. Pada bab ini disajikan tentang pengertian grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Bilangan Kompleks Bilangan merupakan suatu konsep dalam matematika yang digunakan untuk pencacahan dan pengukuran. Sistem bilangan yang dikenal saat ini merupakan hasil perkembangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya;

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya; BAB II TINJAUAN PUSTAKA A. Himpunan 1. Pengertian Himpunan Himpunan merupakan konsep mendasar yang terdapat dalam ilmu matematika. Himpunan adalah kumpulan obyek yang didefinisikan secara jelas. Ada tiga

Lebih terperinci

BAB 3 ALJABAR MAX-PLUS. beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut

BAB 3 ALJABAR MAX-PLUS. beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut BAB 3 ALJABAR MAX-PLUS Sebelum membahas Aljabar Max-Plus, akan diuraikan terlebih dahulu beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut dipenuhi oleh suatu Aljabar Max-Plus.

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup BAB 3 DASAR DASAR GRUP Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Fungsi Definisi A.1 Diberikan A dan B adalah dua himpunan yang tidak kosong. Suatu cara atau aturan yang memasangkan atau mengaitkan setiap elemen dari himpunan A dengan tepat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya

Skew- Semifield dan Beberapa Sifatnya Kode Makalah M-1 Skew- Semifield dan Beberapa Sifatnya K a r y a t i Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta E-mail: yatiuny@yahoo.com

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan memahami konsep dari Semigrup dan Monoid

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan memahami konsep dari Semigrup dan Monoid BAB 2 SEMIGRUP DAN MONOID Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan memahami konsep dari Semigrup dan Monoid Tujuan Instruksional Khusus : Setelah

Lebih terperinci

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan

Lebih terperinci

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang

Lebih terperinci

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit BAB I RUANG EKTOR UMUM Dalam bab ini akan dipelajari tentang konsep ruang vektor umum, sub ruang vektor dan sifat-sifatnya. Pada pembicaraan ini, para mahasiswa dianggap sudah mengenal konsep dan sifat

Lebih terperinci

PENGERTIAN RING. A. Pendahuluan

PENGERTIAN RING. A. Pendahuluan Pertemuan 13 PENGERTIAN RING A. Pendahuluan Target yang diharapkan dalam pertemuan ke 13 ini (pertemuan pertama tentang teori ring) adalah mahasiswa dapat : a. membedakan suatu struktur aljabar merupakan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, daerah integral, ring bilangan bulat

Lebih terperinci

II. KONSEP DASAR GRUP. abstrak (abstract algebra). Sistem aljabar (algebraic system) terdiri dari suatu

II. KONSEP DASAR GRUP. abstrak (abstract algebra). Sistem aljabar (algebraic system) terdiri dari suatu II KONSEP DASAR GRUP Suatu cabang matematika yang mempelajari struktur aljabar dinamakan aljabar abstrak abstract algebra Sistem aljabar algebraic system terdiri dari suatu himpunan obyek satu atau lebih

Lebih terperinci

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum Bab I. Sekilas Tentang Konsep Dasar Grup antonius cp 2 1. Tertutup, yakni jika diambil sebarang dua elemen dalam G maka hasil operasinya juga akan merupakan elemen G dan hasil tersebut adalah tunggal.

Lebih terperinci

TUGAS GEOMETRI TRANSFORMASI GRUP

TUGAS GEOMETRI TRANSFORMASI GRUP TUGAS GEOMETRI TRANSFORMASI GRUP KELOMPOK 8 1. I WAYAN AGUS PUTRAWAN (2008.V.1.0093) 2. I KADEK DWIJAYAPUTRA (2008.V.1.0094) 3. I KETUT DIARTA (2008.V.1.0123) 4. AGUS EKA SURYA KENCANA (2008.V.1.0043)

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Aljabar abstrak merupakan salah satu bidang kajian dalam matematika. Aljabar abstrak merupakan sistem matematika yang terdiri dari suatu himpunan yang dilengkapi oleh

Lebih terperinci

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat Bilangan Bulat merupakan bilangan yang terdiri dari bilangan cacah dan negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga negatif dari bilangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bagian ini dipaparkan dasar-dasar yang akan digunakan pada bagian pembahasan dari skripsi ini. Tinjauan yang dilakukan dengan memaparkan definisi mengenai himpunan fuzzy, struktur

Lebih terperinci

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com 2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut

Lebih terperinci

BAB 2 LANDASAN TEORI. aljabar merupakan suatu himpunan beserta dengan operasi-operasi pada himpunan

BAB 2 LANDASAN TEORI. aljabar merupakan suatu himpunan beserta dengan operasi-operasi pada himpunan BAB 2 LANDASAN TEORI 2.1 Sistem dan Struktur Aljabar Menurut Jong Jek Siang, 2002:436 (seperti dikutip Manik, 2011:2), sistem aljabar merupakan suatu himpunan beserta dengan operasi-operasi pada himpunan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

SISTEM BILANGAN BULAT

SISTEM BILANGAN BULAT SISTEM BILANGAN BULAT A. Bilangan bulat Pengertian Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Berlawanan dengan bilangan bulat adalah bilangan riil

Lebih terperinci

II. TINJAUAN PUSTAKA. Diberikan himpunan dan operasi biner disebut grup yang dinotasikan. (i), untuk setiap ( bersifat assosiatif);

II. TINJAUAN PUSTAKA. Diberikan himpunan dan operasi biner disebut grup yang dinotasikan. (i), untuk setiap ( bersifat assosiatif); II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi Grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

Sifat Lapangan pada Bilangan Kompleks

Sifat Lapangan pada Bilangan Kompleks Jurnal Analisa 3 (1) (2017) 70-75 p-issn: 2549-5135 http://journal.uinsgd.ac.id/index.php/analisa/index e-issn: 2549-5143 Sifat Lapangan pada Bilangan Kompleks Ida Nuraida 1,a) 1 Prodi Pendidikan Matematika

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL SISTEM BILANGAN REAL Materi : 1.1 Pendahuluan Sistem Bilangan Real adalah himpunan bilangan real yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma tertentu, ini merupakan

Lebih terperinci

KLASIFIKASI NEAR-RING Classifications of Near Ring

KLASIFIKASI NEAR-RING Classifications of Near Ring Jurnal Barekeng Vol 8 No Hal 33 39 (14) KLASIFIKASI NEAR-RING Classifications of Near Ring ELVINUS RICHARD PERSULESSY Jurusan Matematika Fakultas MIPA Universitas Pattimura Jl Ir M Putuhena, Kampus Unpatti,

Lebih terperinci

1. GRUP. Definisi 1.1 (Operasi Biner) Diketahui G himpunan dan ab, G. Operasi biner pada G merupakan pengaitan

1. GRUP. Definisi 1.1 (Operasi Biner) Diketahui G himpunan dan ab, G. Operasi biner pada G merupakan pengaitan 1. GRUP Definisi 1.1 (Operasi Biner) Diketahui G himpunan dan ab, G. Operasi biner pada G merupakan pengaitan pasangan elemen ( ab, ) pada G, yang memenuhi dua kondisi berikut: 1. Setiap pasangan elemen

Lebih terperinci

SOAL. Pada himpunan bilangan real, selidiki apakah merupakan grup terhadap operasi yang didefinisikan sebagai berikut: PEMBAHASAN

SOAL. Pada himpunan bilangan real, selidiki apakah merupakan grup terhadap operasi yang didefinisikan sebagai berikut: PEMBAHASAN Halo! Kali ini aku mau membahas soal ujian tengah semester (UTS) mata kuliah Pengantar Struktur Aljabar I di Prodi Matematika FMIPA UGM pada tahun akademik 2014/2015. Dosen pengampunya adalah Bu Sri Wahyuni.

Lebih terperinci

PENGANTAR PADA TEORI GRUP DAN RING

PENGANTAR PADA TEORI GRUP DAN RING Handout MK Aljabar Abstract PENGANTAR PADA TEORI GRUP DAN RING Disusun oleh : Drs. Antonius Cahya Prihandoko, M.App.Sc, Ph.D e-mail: antoniuscp.ilkom@unej.ac.id Staf Pengajar Pada Program Studi Sistem

Lebih terperinci

UNIVERSITAS BINA NUSANTARA. Program Studi Ganda TEKNIK INFORMATIKA - MATEMATIKA Skripsi Sarjana Program Ganda Semester Genap 2005/2006

UNIVERSITAS BINA NUSANTARA. Program Studi Ganda TEKNIK INFORMATIKA - MATEMATIKA Skripsi Sarjana Program Ganda Semester Genap 2005/2006 UNIVERSITAS BINA NUSANTARA Program Studi Ganda TEKNIK INFORMATIKA - MATEMATIKA Skripsi Sarjana Program Ganda Semester Genap 2005/2006 PERANCANGAN PROGRAM APLIKASI PENGUJIAN RING DAN FIELD Sri Martuti NIM:

Lebih terperinci

PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017

PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017 PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017 Indah Emilia Wijayanti Departemen Matematika FMIPA Universitas

Lebih terperinci

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N 1.1.Himpunan Himpunan (set) adalah kumpulan objek-objek yang terdefenisi dengan baik (well defined). Artinya bahwa untuk sebarang objek x yang diberikan, maka kita selalu akan dapat

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

SOAL DAN PENYELESAIAN RING

SOAL DAN PENYELESAIAN RING SOAL DAN PENYELESAIAN RING 1. Misalkan P himpunan bilangan bulat kelipatan 3. Tunjukan bahwa dengan operasi penjumlahan dan perkalian pada himpunan bilangan bulat, P membentuk ring komutatif. Jawaban:

Lebih terperinci

BAB II KAJIAN TEORI. definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang

BAB II KAJIAN TEORI. definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang BAB II KAJIAN TEORI Pada Bab II ini berisi kajian teori. Di bab ini akan dijelaskan beberapa definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang mendasari teori kode BCH. A. Grup

Lebih terperinci

STRUKTUR ALJABAR II. Materi : 1. Ring 2. Sub Ring, Ideal, Ring Faktor 3. Daerah Integral, dan Field.

STRUKTUR ALJABAR II. Materi : 1. Ring 2. Sub Ring, Ideal, Ring Faktor 3. Daerah Integral, dan Field. STRUKTUR ALJABAR II Materi : 1. Ring 2. Sub Ring, Ideal, Ring Faktor 3. Daerah Integral, dan Field RING (GELANGGANG) Ring adalah himpunan G yang tidak kosong dan berlaku dua oprasi biner (penjumlahan dan

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan autokomutator yang akan digunakan dalam penelitian. Pada bagian pertama ini akan dibahas tentang teori

Lebih terperinci

PENGANTAR GRUP. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang

PENGANTAR GRUP. Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang PENGANTAR GRUP Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com March 18, 2013 1 Daftar Isi 1 Tujuan 3 2 Pengantar Grup 3 3 Sifat-sifat Grup

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis berupa definisi teorema sifat-sifat yang berhubungan dengan teori bilangan integer modulo aljabar abstrak masalah logaritma diskret

Lebih terperinci

II. LANDASAN TEORI. Pada bagian ini akan dikaji konsep operasi biner dan ring yang akan digunakan

II. LANDASAN TEORI. Pada bagian ini akan dikaji konsep operasi biner dan ring yang akan digunakan II. LANDASAN TEORI Pada bagian ini akan dikaji konsep operasi biner dan ring yang akan digunakan dalam pembahasan penelitian ini. Untuk lebih mudah memahami, akan diberikan beberapa contoh. Berikut ini

Lebih terperinci

MATRIKS A = ; B = ; C = ; D = ( 5 )

MATRIKS A = ; B = ; C = ; D = ( 5 ) MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.

Lebih terperinci

GELANGGANG ARTIN. Kata Kunci: Artin ring, prim ideal, maximal ideal, nilradikal.

GELANGGANG ARTIN. Kata Kunci: Artin ring, prim ideal, maximal ideal, nilradikal. Jurnal Matematika UNAND Vol. 2 No. 2 Hal. 108 114 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND GELANGGANG ARTIN IMELDA FAUZIAH, NOVA NOLIZA BAKAR, ZULAKMAL Program Studi Matematika, Fakultas Matematika

Lebih terperinci

Diktat Kuliah. Oleh:

Diktat Kuliah. Oleh: Diktat Kuliah TEORI GRUP Oleh: Dr. Adi Setiawan UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2015 Kata Pengantar Aljabar abstrak atau struktur aljabar merupakan suatu mata kuliah yang menjadi kurikulum nasional

Lebih terperinci

MATRIKS. 3. Matriks Persegi Matriks persegi adalah matriks yang mempunyai baris dan kolom yang sama.

MATRIKS. 3. Matriks Persegi Matriks persegi adalah matriks yang mempunyai baris dan kolom yang sama. MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital (huruf besar)

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung proses penelitian. 2.1 Teori Grup Definisi 2.1.1 Operasi Biner Suatu operasi biner pada suatu himpunan adalah

Lebih terperinci

Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3

Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3 MATRIKS a. Konsep Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegipanjang dan diletakkan di dalam kurung biasa ( ) atau

Lebih terperinci

Matematika Logika Aljabar Boolean

Matematika Logika Aljabar Boolean Pertemuan ke-3 Matematika Logika Aljabar Boolean Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2011/2012 Definisi Aljabar Boolean merupakan aljabar yang terdiri atas : suatu

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses penelitian untuk penyelesaian persamaan Diophantine dengan relasi kongruensi modulo m mengenai aljabar dan

Lebih terperinci

GRUP DARI AUTOMORFISME GRAF BIPARTISI KOMPLIT

GRUP DARI AUTOMORFISME GRAF BIPARTISI KOMPLIT GRUP DARI AUTOMORFISME GRAF BIPARTISI KOMPLIT TRY AZISAH NURMAN Jurusan Matematik Fakultas Sains Teknologi, UINAM chicha_chirwan@yahoo.com Info: Jurnal MSA Vol. No. Edisi: Januari Juni 0 Artikel No.: Halaman:

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini dituliskan beberapa aspek teoritis sebagai landasan teori dalam penelitian ini yaitu teori bilangan, bilangan bulat modulo?, struktur aljabar dan masalah logaritma

Lebih terperinci

BAB II TEORI DASAR. untuk setiap e G. 4. G mengandung balikan. Untuk setiap a G, terdapat b G sehingga a b =

BAB II TEORI DASAR. untuk setiap e G. 4. G mengandung balikan. Untuk setiap a G, terdapat b G sehingga a b = BAB II TEORI DASAR 2.1. Group Misalkan operasi biner didefinisikan untuk elemen-elemen dari himpunan G. Maka G adalah grup dengan operasi * jika kondisi di bawah ini terpenuhi : 1. G tertutup terhadap.

Lebih terperinci

II. TINJAUAN PUSTAKA. modul yang akan digunakan dalam pembahasan hasil penelitian.

II. TINJAUAN PUSTAKA. modul yang akan digunakan dalam pembahasan hasil penelitian. II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang grup, ring, dan modul yang akan digunakan dalam pembahasan hasil penelitian. 2.1 Ring Sebelum didefinisikan pengertian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc

ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc ALJABAR ABSTRAK ( TEORI GRUP DAN TEORI RING ) Dr. Adi Setiawan, M. Sc PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2011 0 KATA PENGANTAR Aljabar abstrak

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini dibahas penelitian-penelitian tentang aljabar maks-plus yang telah dilakukan dan teori-teori yang menunjang penelitian masalah nilai eigen dan vektor eigen yang diperumum

Lebih terperinci

KONGRUENSI PADA SUBHIMPUNAN BILANGAN BULAT

KONGRUENSI PADA SUBHIMPUNAN BILANGAN BULAT KONGRUENSI PADA SUBHIMPUNAN BILANGAN BULAT Paridjo Pendidikan Matematika FKIP Universitas Pancasakti Tegal muhparidjo@gmail.com Abstrak Himpunan bilangan bulat dilambangkan dengan sistem bilangan Real

Lebih terperinci

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 =

MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 = NAMA : KELAS : 1 2 MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital

Lebih terperinci

KONSTRUKSI SISTEM BILANGAN

KONSTRUKSI SISTEM BILANGAN KONSTRUKSI SISTEM BILANGAN KEVIN MANDIRA LIMANTA 1. Konstruksi Aljabar 1.1. Bilangan Natural. Himpunan bilangan paling primitif adalah bilangan natural N, yang dicacah dengan aturan sebagai berikut: (1)

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

Relasi & Fungsi. Kuliah Matematika Diskrit 20 April Pusat Pengembangan Pendidikan - Universitas Gadjah Mada

Relasi & Fungsi. Kuliah Matematika Diskrit 20 April Pusat Pengembangan Pendidikan - Universitas Gadjah Mada Relasi & Fungsi Kuliah Matematika Diskrit 20 April 2006 Hasil Kali Kartesian Misalkan A dan B adalah himpunan-himpunan. Hasil kali Kartesian A dengan B (simbol: A x B) adalah himpunan semua pasangan berurutan

Lebih terperinci

LECTURE NOTES MATEMATIKA DISKRIT. Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA.

LECTURE NOTES MATEMATIKA DISKRIT. Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA. LECTURE NOTES MATEMATIKA DISKRIT Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA PONDOK CINA, MARET 2004 0 DAFTAR ISI DAFTAR ISI... 1 BAB I STRUKTUR ALJABAR...

Lebih terperinci

Teori Himpunan. Author-IKN. MUG2B3/ Logika Matematika 9/8/15

Teori Himpunan. Author-IKN. MUG2B3/ Logika Matematika 9/8/15 Teori Himpunan Author-IKN 1 Materi Jenis Himpunan Relasi Himpunan Operasi Himpunan Hukum-Hukum Operasi Himpunan Representasi Komputer untuk Himpunan 2 Teori Himpunan Himpunan Sekumpulan elemen unik, terpisah,

Lebih terperinci

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa 0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :

Lebih terperinci

IDENTIFIKASI STRUKTUR DASAR SMARANDACHE NEAR-RING Identification of Basic Structure on Smarandache Near-Ring

IDENTIFIKASI STRUKTUR DASAR SMARANDACHE NEAR-RING Identification of Basic Structure on Smarandache Near-Ring Jurnal Barekeng Vol. 7 No. 2 Hal. 41 46 (2013) IDENTIFIKASI STRUKTUR DASAR SMARANDACHE NEAR-RING Identification of Basic Structure on Smarandache Near-Ring YOHANA YUNET BAKARBESSY 1, HENRY W. M. PATTY

Lebih terperinci

RING FUZZY DAN SIFAT-SIFATNYA FUZZY RING AND ITS PROPERTIES

RING FUZZY DAN SIFAT-SIFATNYA FUZZY RING AND ITS PROPERTIES J. Sains Dasar 2016 5(1) 28-39 RING FUZZY DAN SIFAT-SIFATNYA FUZZY RING AND ITS PROPERTIES Rifki Chandra Utama * dan Karyati Jurusan Pendidikan Matematika, FMIPA, Universitas Negeri Yogyakarta *email:

Lebih terperinci

8 MATRIKS DAN DETERMINAN

8 MATRIKS DAN DETERMINAN 8 MATRIKS DAN DETERMINAN Matriks merupakan pengembangan lebih lanjut dari sistem persamaan linear. Oleh karenanya aljabar matriks sering juga disebut dengan aljabar linear. Matriks dapat digunakan untuk

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN I MODUL ATAS RING Direncanakan

Lebih terperinci

MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen.

MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen. MATEMATIKA BISNIS Modul ke: Himpunan Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Konsep Himpunan merupakan suatu konsep yang paling mendasar bagi

Lebih terperinci

HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma

HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma HIMPUNAN MATEMATIKA Program Studi Agroteknologi Universitas Gunadarma Ruang Lingkup Pengertian Himpunan Notasi Himpunan Cara menyatakan Himpunan Macam Himpunan Diagram Venn Operasi Himpunan dan Sifat-sifatnya

Lebih terperinci

Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar

Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Aljabar Boole Meliputi : 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Boole 3. Teorema Dasar Aljabar Boole 4. Orde dalam sebuah Aljabar Boole Definisi Aljabar Boole Misalkan B adalah himpunan

Lebih terperinci

Elvri Teresia br Sembiring adalah Guru Matematika SMA Negeri 1 Berastagi

Elvri Teresia br Sembiring adalah Guru Matematika SMA Negeri 1 Berastagi PENERAPAN SIFAT-SIFAT GRUP PENJUMLAHAN MODULO 12 DAN 24 PADA JAM Elvri Teresia br Sembiring Abstrak Makalah ini membahas mengenai penerapan sifat-sifat grup penjumlahan modulo 12 (Z 12 ) dan modulo 24

Lebih terperinci

BILANGAN BULAT. Operasi perkalian juga bersifat tertutup pada bilangan Asli dan bilangan Cacah.

BILANGAN BULAT. Operasi perkalian juga bersifat tertutup pada bilangan Asli dan bilangan Cacah. BILANGAN BULAT 1. Bilangan Asli (Natural Number) Bilangan Asli berkaitan dengan hasil membilang, urutan, ranking. Bilangan Cacah berkaitan dengan banyaknya anggota suatu himpunan. Definisi penjumlahan:

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM. pengujian struktur aljabar, yaitu implementasi sistem tersebut dan juga evaluasi dari

BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM. pengujian struktur aljabar, yaitu implementasi sistem tersebut dan juga evaluasi dari BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM Pada bab 4 ini akan dijelaskan mengenai hasil dari rancangan program aplikasi pengujian struktur aljabar, yaitu implementasi sistem tersebut dan juga evaluasi dari

Lebih terperinci

HIMPUNAN BILANGAN KOMPLEKS YANG MEMBENTUK GRUP

HIMPUNAN BILANGAN KOMPLEKS YANG MEMBENTUK GRUP HIMPUNAN BILANGAN KOMPLEKS YANG MEMBENTUK GRUP WAHIDA A. Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM Wahyuni Abidin Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM Wahdaniah Info: Jurnal

Lebih terperinci

DASAR-DASAR ALJABAR MODERN: TEORI GRUP & TEORI RING

DASAR-DASAR ALJABAR MODERN: TEORI GRUP & TEORI RING DASAR-DASAR ALJABAR MODERN: TEORI GRUP & TEORI RING Dr. Adi Setiawan, M.Sc G R A F I K A Penerbit Tisara Grafika SALATIGA 2014 Katalog Dalam Terbitan 512.24 ADI Adi Setiawan d Dasar-dasar aljabar modern:

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam penelitian. Pada bagian pertama akan dibahas mengenai teori grup. 2.1 Grup Dalam struktur aljabar, himpunan

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field.

BAB 2 LANDASAN TEORI. Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. BAB 2 LANDASAN TEORI Pada bab ini dibahas landasan teori yang akan digunakan untuk menentukan ciri-ciri dari polinomial permutasi atas finite field. Hal ini dimulai dengan memberikan pengertian dari group

Lebih terperinci

Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. - Himpunan empat bilangan

Lebih terperinci

Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Obyek-obyek diskret ada di sekitar kita. Matematika Diskret (TKE132107)

Lebih terperinci

Teorema Dasar Aljabar Mochamad Rofik ( )

Teorema Dasar Aljabar Mochamad Rofik ( ) Teorema Dasar Aljabar Mochamad Rofik (20110060311101) Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Muhammadiyah Malang Teorema Dasar Aljabar Mochamad Rofik Program

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. Processor Intel Pentium IV 2.41GHz RAM 512 MB DDR. Hard disk 40 GB. Monitor 15 Samsung SyncMaster 551v

BAB 4 IMPLEMENTASI DAN EVALUASI. Processor Intel Pentium IV 2.41GHz RAM 512 MB DDR. Hard disk 40 GB. Monitor 15 Samsung SyncMaster 551v 52 BAB 4 IMPLEMENTASI DAN EVALUASI 4.1 Spesifikasi Perangkat Keras Spesifikasi dari perangkat keras yang digunakan dalam perancangan program adalah sebagai berikut : Processor Intel Pentium IV 2.41GHz

Lebih terperinci

STRUKTUR ALJABAR: RING

STRUKTUR ALJABAR: RING STRUKTUR ALJABAR: RING BAHAN AJAR Oleh: Rippi Maya Program Studi Magister Pendidikan Matematika Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) SILIWANGI - Bandung 2016 1 Pada grup telah dipelajari

Lebih terperinci