UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

Ukuran: px
Mulai penontonan dengan halaman:

Download "UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta"

Transkripsi

1 UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN II HOMOMORPHISMA MODUL Direncanakan Untuk Perkuliahan Minggu ke-5, 6, 7, dan 8 TEORI MODUL (Semester VI3 SKSMMM-3207) Oleh: 1. Dr.rer.nat. Indah Emilia Wijayanti, M.Si. 2. Prof. Dr. Sri Wahyuni, M.S. Didanai dengan dana DIPA-UGM (BOPTN) Tahun Anggaran 2013 November 2013

2 BAB 2 HOMOMORPHISMA MODUL 2.1. Homomorphisma Modul Sebagai Generalisasi Transformasi Linear Atas Lapangan Telah kita ketahui pada aljabar linear, jika diberikan ruang vektor V 1 dan V 2 atas lapangan F, maka fungsi f : V 1 V 2 disebut transformasi linear jika memenuhi aksioma sebagai berikut: a). f(u + v) = f(u) + f(v), untuk setiap u, v V 1. b). f(αv) = αf(v), untuk setiap α F dan v V 1. Karena modul merupakan generalisasi dari ruang vektor, selanjutnya muncul pertanyaan apakah suatu transformasi linear pada ruang vektor berlaku pada modul. Ternyata transformasi linear juga berlaku pada suatu modul yang selanjutnya disebut homomorphisma modul. Dengan demikian, modal pembentukan homomorphisma modul adalah: a). Dua modul M dan M atas ring yang sama, misalkan ring R. b). Fungsi f : M M. Suatu fungsi f : M M disebut homomorphisma modul atas R jika fungsi f mengawetkan opeerasi penjumlahan pada M ke operasi penjumlahan pada M serta mengawetkan operasi pergandaan skalar pada M ke operasi pergandaan skalar pada M. Untuk lebih jelasnya, berikut diberikan definisi homomorphisma modul. 20

3 21 Definisi Diberikan modul M dan M atas ring R serta fungsi f : M M. Fungsi f disebut homomorphisma R-modul jika untuk setiap m 1, m 2 M dan r R memenuhi: 1. f(m 1 + m 2 ) = f(m 1 ) + f(m 2 ). 2. f(r m 1 ) = r f(m 1 ). Berikut diberikan beberapa contoh homomorphisma R-modul. Contoh Diberikan modul M dan M atas ring R serta fungsi Nol θ : M M dengan definisi θ(m) = 0 M untuk setiap m M. Diambil sebarang m 1, m 2 M dan r R, diperoleh: θ(m 1 + m 2 ) = 0 M = 0 M + 0 M = θ(m 1 ) + θ(m 2 )

4 22 dan θ(r m 1 ) = 0 M = r 0 M = r θ(m 1 ). Jadi diperoleh bahwa fungsi Nol merupakan homomorphisma R-modul. Contoh Diberikan Z dan Z[X] keduanya merupakan modul atas Z. Fungsi θ : Z Z[X] dengan definisi θ(a) = ax 3 untuk setiap a Z, merupakan homomorphisma Z-modul karena memenuhi: a). θ(a + b) = (a + b)x 3 = ax 3 + bx 3 = θ(a) + θ(b) b). θ(ra) = (ra)x 3 = r(ax 3 ) = rθ(a) untuk setiap r, a, b Z. Seperti halnya pada transformasi linear, berikut diberikan sifat terkait homomorphisma R-modul. Lemma Jika f : M M merupakan homomorphisma R- modul, maka: 1. f mengawetkan elemen netral, yakni: f(0 M ) = 0 M. 2. f mengawetkan invers dari M, yakni f( m) = f(m) untuk setiap m M. 3. Jika H merupakan submodul di M, maka f(h) merupakan submodul di M. 4. Jika K merupakan submodul di M, maka f 1 (K) merupakan submodul di M. Diberikan homomorphisma R-modul f : M M. Kernel dari f adalah: Ker(f) = {m M f(m) = 0 M },

5 23 sedangkan bayangan dari f adalahl Im(f) = {m M ( m M)f(m) = m }. Dapat ditunjukkan bahwa kernel dan bayangan dari suatu homomorphisma R-modul merupakan submodul. Lemma Diberikan homomorphisma R-modul f : M M. 1. Im(f) merupakan submodul di M. 2. Ker(f) merupakan submodul di M. Contoh Berdasarkan Contoh 2.1.3, diperoleh Ker(θ) = {0} dan Im(θ) = {ax 3 a Z}. Karena Ker(f) membentuk submodul di M, maka dapat terbentuk modul faktor M Kernel(f). Kemudian, muncul pertanyaan adakah hubungan antara Im(f), Ker(f), dan modul faktor M Kernel(f)? Untuk menjawab pertanyaan tersebut diperlukan konsep terkait isomorphisma modul Jenis-Jenis Homomorphisma Modul: Monomorphisma, Epimorphisma, dan Isomorphisma Modul Berikut diberikan beberapa jenis homomorphisma R-modul. Definisi Diberikan f : M M merupakan homomorphisma R-modul. 1. Fungsi f disebut monomorphisma R-modul jika f injektif (1-1), yaitu: ( m 1, m 2 M)f(m 1 ) = f(m 2 ) m 1 = m 2.

6 24 2. Fungsi f disebut epimorphisma R-modul jika f surjektif (onto), yaitu Image(f) = M. 3. Fungsi f disebut isomorphisma R-modul jika f bijektif (injektif dan surjektif). Selanjutnya, R-modul M dan M dikatakan saling isomorfis jika terdapat suatu isomorphisma R-modul dari M ke M, yang selanjutnya dinotasikan dengan M = M. Contoh Diberikan modul Z sebagai Z-modul. Pemetaan f : Z Z dengan f(a) = a untuk setiap a Z merupakan isomorphisma modul. Diambil sebarang a, b, r Z, maka diperoleh: dan f(a + b) = (a + b) = a b = a + ( b) = f(a) + f(b) f(ra) = (ra) = r( a) = rf(a), sehingga terbukti f homomorphisma modul. Selanjutnya, jika diketahui f(a) = f(b) maka a = b, akibatnya diperoleh a = b. Dengan demikian, terbukti bahwa f bersifat injektif. Kemudian, untuk setiap a Z terdapat a Z sehingga a = ( a) = f( a). Akibatnya, diperoleh bahwa f bersifat surjektif. Dengan demikian, terbukti bahwa f merupakan isomorphisma. Misalkan f : M M merupakan homomorphisma R-modul. Hubungan antara Im(f), Ker(f), dan modul faktor M Kernel(f) dijelaskan dalam teorema berikut ini, yang selanjutnya dikenal dengan Teorema Utama Homomorphisma Modul (Teorema Fundamental Homomorphisma Modul). Teorema Diberikan modul M dan M atas ring R. Jika fungsi f : M M merupakan homomorphisma R-modul, maka berlaku M Ker(f) = Im(f).

7 25 Bukti. Misalkan K = Ker(f) dan dibentuk suatu pengaitan: g : M K Im(f) m + K g(m + K) = f(m) untuk setiap m + K M K. Akan ditunjukkan bahwa g merupakan suatu isomorphisma modul. a). Diambil sebarang a + K, b + K M K dengan a + K = b + K. Menurut kesamaan dua koset, diperoleh bahwa a b K. Karena K = Ker(f) maka diperoleh f(a b) = 0, sehingga f(a) = f(b) atau g(a + K) = g(b + K). Jadi terbukti bahwa g merupakan suatu pemetaan. b). Diambil sebarang a+k, b+k M K dan r R, maka diperoleh: g((a + K) + (b + K)) = f(a) + f(b) = g(a + K) + g(b + K) dan g(r(a + K)) = g((ra) + K) = f(ra) = rf(a) = rg(a + K). Jadi, diperoleh bahwa g merupakan homomorphisma R-modul. c). Diambil sebarang x + K Ker(g), maka diperoleh g(x + K) = f(x) = 0. Berarti diperoleh x K. Dengan demikian, diperoleh Ker(g) = K sehingga terbukti bahwa g bersifat injektif. d). Diambil sebarang y Im(f), maka terdapat a M sehingga y = f(a). Berarti ada a + K M K sehingga memnuhi y = g(a + K). Jadi, terbukti bahwa g bersifat surjektif. Dengan demikian, terbukti bahwa g merupakan suatu isomorphisma. Jadi, terbukti bahwa M Ker(f) = Im(f).

8 26 Jika fungsi f : M M dalam Teorema Utama Homomorphisma modul merupakan suatu epimorphisma modul, maka diperoleh M Ker(f) = M. Selanjutnya, terdapat banyak manfaat dari Teorema Utama Homomorphisma Modul. Diantaranya adalah untuk menunjukkan beberapa sifat berikut ini. Teorema Diberikan modul M atas ring R. Jika N dan P merupakan submodul di M, maka berlaku: (N + P ) P = N (N P ). Bukti. Dibentuk suatu pengaitan f : N + P N (N P ) dengan definisi f(n + p) = n + N P untuk setiap n + p N + P. Dapat ditunjukkan bahwa f merupakan epimorphisma modul. Selanjutnya, diperoleh bahwa himpunan: Kerf = {n + p N + P f(n + p) = N P } = {n + p N + P n + N P = N P } = {n + p N + P n N P } = {n + p N + P n P } = P. Berdasarkan Teorema Utama Homomorfisma Modul, diperoleh bahwa (N + P ) P = N (N P ). Teorema Diberikan modul M atas ring R. Jika N dan P merupakan submodul di M dengan P N, maka berlaku: M N = (MP ) (NP ). Bukti. Dibentuk suatu pengaitan f : M P M N dengan definisi f(m + P ) = m + N untuk setiap m + P M P. Dapat ditun-

9 27 jukkan bahwa f merupakan epimorphisma modul. Selanjutnya, diperoleh bahwa himpunan: { } Kerf = a + P M P f(a + P ) = N { } = a + P M P a + N = N { } = a + P M P a N = N P Berdasarkan Teorema Utama Homomorfisma Modul, diperoleh bahwa M N = (MP ) (NP ) Modul Hom R (M, M ) atas R Jika M, M merupakan modul atas ring R, maka dapat dibentuk himpunan semua homomorphisma dari M ke M yaitu: Hom R (M, M ) = {f : M M f homomorphisma modul}. Jelas bahwa Hom R (M, M ), karena minimal memuat fungsi nol θ : M M. Kemudian, muncul pertanyaan apakah Hom R (M, M ) membentuk suatu R-modul? Untuk menjawab pertanyaan tersebut, didefinisikan operasi penjumlahan dan pergandaan skalar sebagai berikut. Diambil sebarang f, g Hom R (M, M ), didefinisikan: untuk setiap m M. (f + g)(m) = f(m) + g(m),

10 28 Diambil sebarang r R dan f Hom R (M, M ), didefinisikan: untuk setiap m M. (rf)(m) = rf(m), Dapat ditunjukkan bahwa Hom R (M, M ) membentuk R-modul jika R merupakan ring komutatif. Namun, jika R bukan merupakan ring komutatif maka Hom R (M, M ) hanya membentuk grup aditif Abelian. Apabila modul M = M, maka Hom R (M, M ) = End R (M). Pada End R (M) dapat didefinisikan operasi komposisi fungsi sebagai berikut: (f g)(m) = f(g(m)) untuk setiap f, g End R (M) dan m M. Dapat ditunjukkan bahwa ( EndR (M), +, ) membentuk suatu ring dengan elemen satuan. Jika R merupakan ring komutatif, End R (M) dapat membentuk suatu modul atas ring R. Oleh karena End R (M) merupakan ring dengan elemen satuan, dapat ditunjukkan bahwa grup Abelian (Hom R (M, M ), +) membentuk modul atas End R (M) terhadap operasi komposisi fungsi Latihan Soal (1). Diberikan R merupakan ring dengan elemen satuan dan homomorphisma ring f : R R. Selidiki apakah f merupakan homomorphisma R-modul? (2). Diberikan M, N, dan P merupakan modul atas R, serta f : M N dan g : N P merupakan homomorphisma R-modul. Buktikan bahwa g f : M P juga merupakan homomorphisma R-modul dan tentukan Ker(g f)! (3). Buktikan Lemma 2.1.4!

11 29 (4). Buktikan Lemma 2.1.5! (5). Diberikan M, N, dan P merupakan modul atas R, serta f : M N dan g : N P merupakan epimorphisma R-modul. Buktikan bahwa g f : M P juga merupakan epimorphisma R-modul! (6). Diberikan M, N, dan P merupakan modul atas R, serta f : M N dan g : N P merupakan monomorphisma R-modul. Buktikan bahwa g f : M P juga merupakan monomorphisma R-modul! (7). Diberikan M dan N merupakan modul atas R. Buktikan jika f : M N merupakan isomorphisma R-modul maka f 1 : N M juga merupakan isomorphisma R-modul! (8). Diberikan Z-modul M dan x M. Didefinisikan pemetaan f : Z n M dengan f(ā) = xa untuk setiap ā Z n. Tunjukkan bahwa f merupakan homomorphisma R-modul jika dan hanya jika nx = 0! (9). Diberikan Z-modul M. Tunjukkan bahwa N = {x M nx = 0} merupakan submodul di M dan Hom Z (Z n, M) = N! (10). Diberikan R-modul M dan ideal I di R sehingga MI = 0. a). Buktikan bahwa M merupakan R I-modul terhadap operasi pergandaan skalar (a+i)x = ax untuk setiap x M dan a+i R I! b). Tunjukkan bahwa terdapat suatu korespondensi satu-satu antara submodul di M sebagai R-modul dengan submodul di M sebagai R I -modul!

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN I MODUL ATAS RING Direncanakan

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN III MODUL BEBAS, PENGENOL, DAN

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN

Lebih terperinci

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari.

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari. BAB III Standard Kompetensi 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring menggunakannya dalam kehidupan sehari-hari. Kompetensi Dasar: Mahasiswa diharapkan dapat 3.1 Menyebutkan definisi

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Fungsi Definisi A.1 Diberikan A dan B adalah dua himpunan yang tidak kosong. Suatu cara atau aturan yang memasangkan atau mengaitkan setiap elemen dari himpunan A dengan tepat

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

Teorema-Teorema Utama Isomorphisma pada Near-Ring

Teorema-Teorema Utama Isomorphisma pada Near-Ring urnal Gradien Vol 11 o 2 uli 2015 : 1112-1116 Teorema-Teorema Utama somorphisma pada ear-ring Zulfia Memi Mayasari, Yulian Fauzi, Ulfasari Rafflesia urusan Matematika, Fakultas Matematika dan lmu Pengetahuan

Lebih terperinci

STRUKTUR ALJABAR II. Materi : 1. Ring 2. Sub Ring, Ideal, Ring Faktor 3. Daerah Integral, dan Field.

STRUKTUR ALJABAR II. Materi : 1. Ring 2. Sub Ring, Ideal, Ring Faktor 3. Daerah Integral, dan Field. STRUKTUR ALJABAR II Materi : 1. Ring 2. Sub Ring, Ideal, Ring Faktor 3. Daerah Integral, dan Field RING (GELANGGANG) Ring adalah himpunan G yang tidak kosong dan berlaku dua oprasi biner (penjumlahan dan

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN

Lebih terperinci

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika 1 BAB I PENDAHULUAN A. Latar Belakang Struktur aljabar merupakan salah satu bidang kajian dalam matematika yang dikembangkan untuk menunjang pemahaman mengenai struktur bilangan. Struktur atau sistem aljabar

Lebih terperinci

BAB I PENDAHULUAN. Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi

BAB I PENDAHULUAN. Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi 1 BAB I PENDAHULUAN 1.1. Latar Belakang Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi tersebut adalah modul. Untuk membahas pengertian tentang suatu modul harus dimengerti lebih

Lebih terperinci

FUNGSI. Modul 3. A. Definisi Fungsi

FUNGSI. Modul 3. A. Definisi Fungsi Modul 3 FUNGSI A. Definisi Fungsi Definisi 1. Misalkan A dan B suatu himpunan. Suatu relasi f A x B, dimana setiap a A dipasangkan dengan tepat satu di b B, disebut dengan pemetaan (atau fungsi) dari A

Lebih terperinci

Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester)

Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) UNIVERSITAS GADJAH MADA FAKULTAS MIPA, JURUSAN MATEMATIKA, PS S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematiika, Yogyakarta - 55281 Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester)

Lebih terperinci

SYARAT PERLU DAN CUKUP SUBMODUL TERKOMPLEMEN. Sri Wahyuni Jurusan Matematika FMIPA UGM. Abstrak

SYARAT PERLU DAN CUKUP SUBMODUL TERKOMPLEMEN. Sri Wahyuni Jurusan Matematika FMIPA UGM. Abstrak JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 8-13, April 2002, IN : 1410-8518 YARAT PERLU DAN CUKUP UBMODUL TERKOMPLEMEN ri Wahyuni Jurusan Matematika FMIPA UGM Abstrak Dipresentasikan syarat perlu dan

Lebih terperinci

PROSIDING ISBN : Dzikrullah Akbar 1), Sri Wahyuni 2)

PROSIDING ISBN : Dzikrullah Akbar 1), Sri Wahyuni 2) Modul Strongly Supplemented A 6 Dzikrullah Akbar 1), Sri Wahyuni 2) 1) Mahasiswa S2 Matematika Jurusan Matematika FMIPA UGM Email : dzikoebar@yahoo.com 2) Dosen PS S2 Matematika Jurusan Matematika FMIPA

Lebih terperinci

II. TINJAUAN PUSTAKA. modul yang akan digunakan dalam pembahasan hasil penelitian.

II. TINJAUAN PUSTAKA. modul yang akan digunakan dalam pembahasan hasil penelitian. II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang grup, ring, dan modul yang akan digunakan dalam pembahasan hasil penelitian. 2.1 Ring Sebelum didefinisikan pengertian

Lebih terperinci

RING FAKTOR DAN HOMOMORFISMA

RING FAKTOR DAN HOMOMORFISMA BAB 8 RING FAKTOR DAN HOMOMORFISMA Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Faktor dan Homomorfisma Ring Tujuan Instruksional

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,

Lebih terperinci

SIFAT-SIFAT LANJUT NEUTROSOFIK MODUL. Jl. Prof. H. Soedarto, SH, Tembalang, Semarang 50275

SIFAT-SIFAT LANJUT NEUTROSOFIK MODUL. Jl. Prof. H. Soedarto, SH, Tembalang, Semarang 50275 SIFAT-SIFAT LANJUT NEUTROSOFIK MODUL 1 Suryoto, 2 Bambang Irawanto, 3 Nikken Prima Puspita 1, 2, 3 Departemen Matematika Fakultas Sains dan Matematika Universitas Diponegoro Jl. Prof. H. Soedarto, SH,

Lebih terperinci

FUNGSI MATEMATIKA SISTEM INFORMASI 1

FUNGSI MATEMATIKA SISTEM INFORMASI 1 FUNGSI MATEMATIKA SISTEM INFORMASI 1 PENGERTIAN FUNGSI A disebut daerah asal (domain) dari f dan B disebut daerah hasil (Kodomain) dari f. Nama lain untuk fungsi adalah pemetaan atau transformasi. A Fungsi

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar: DAERAH IDEAL UTAMA DAN DAERAH EUCLID

UNIVERSITAS GADJAH MADA. Bahan Ajar: DAERAH IDEAL UTAMA DAN DAERAH EUCLID UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN

Lebih terperinci

Jurusan Pendidikan Matematika

Jurusan Pendidikan Matematika DESKRIPSI MATA KULIAH : STRUKTUR ALJABAR I KODE MK : MT 400 Mata kuliah ini dimaksudkan agar mahasiswa memahami konsep-konsep struktur aljabar (aljabar modern). Materinya mencakup: aljabar himpunan, pemetaan

Lebih terperinci

Antonius C. Prihandoko

Antonius C. Prihandoko Antonius C. Prihandoko Didanai oleh Proyek DIA-BERMUTU 2009 PROGRAM STUDI PENDIDIKAN MATEMATIKA Jurusan Pendidikan MIPA Fakultas Keguruan Dan Ilmu Pendidikan Universitas Jember Prakata Puji syukur ke hadirat

Lebih terperinci

MATEMATIKA INFORMATIKA 2 FUNGSI

MATEMATIKA INFORMATIKA 2 FUNGSI MATEMATIKA INFORMATIKA 2 FUNGSI PENGERTIAN FUNGSI Definisi : Misalkan A dan B dua himpunan tak kosong. Fungsi dari A ke B adalah aturan yang mengaitkan setiap anggota A dengan tepat satu anggota B. ATURAN

Lebih terperinci

DESKRIPSI MATA KULIAH : STRUKTUR ALJABAR I

DESKRIPSI MATA KULIAH : STRUKTUR ALJABAR I DESKRIPSI MATA KULIAH : STRUKTUR ALJABAR I (MAA523/3 SKS) Mata kuliah ini dimaksudkan agar mahasiswa memahami konsep-konsep struktur aljabar (aljabar modern). Materinya mencakup: aljabar himpunan, pemetaan

Lebih terperinci

TEORI HEMIRING ABSTRAK

TEORI HEMIRING ABSTRAK TEORI HEMIRING Mahasiswa S1 Program Studi Matematika, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Diponegoro Jl Prof H Soedarto, SH, Semarang Indonesia 50275 email :tri_matematika@yahoocom

Lebih terperinci

Keberlakuan Teorema pada Beberapa Struktur Aljabar

Keberlakuan Teorema pada Beberapa Struktur Aljabar PRISMA 1 (2018) https://journal.unnes.ac.id/sju/index.php/prisma/ Keberlakuan Teorema pada Beberapa Struktur Aljabar Mashuri, Kristina Wijayanti, Rahayu Budhiati Veronica, Isnarto Jurusan Matenmatika FMIPA

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL

Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL Jurnal Matematika Murni dan Terapan Vol 5 No Juni 0: 43-5 TES FORMAL MOUL PROJEKTIF AN MOUL BEBAS ATAS RING OPERATOR IFERENSIAL Na imah Hijriati Program Studi Matematika Universitas Lambung Mangkurat Jl

Lebih terperinci

BAB I Ring dan Ring Bagian

BAB I Ring dan Ring Bagian BAB I Ring dan Ring Bagian Sistem bilangan yang telah dikenal seperti bilangan bulat, bilangan rasional dan bilangan kompleks mempunyai dua operasi yang didefinisikan padanya yaitu penjumlahan dan pergandaan.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah. Pada keseluruhan tulisan ini, ring yang digunakan merupakan ring komutatif dengan elemen satuan.

BAB I PENDAHULUAN Latar Belakang Masalah. Pada keseluruhan tulisan ini, ring yang digunakan merupakan ring komutatif dengan elemen satuan. BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada keseluruhan tulisan ini, ring yang digunakan merupakan ring komutatif dengan elemen satuan. Modul merupakan perumuman struktur ruang vektor dengan memperlemah

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan autokomutator yang akan digunakan dalam penelitian. Pada bagian pertama ini akan dibahas tentang teori

Lebih terperinci

FUNGSI. range. Dasar Dasar Matematika I 1

FUNGSI. range. Dasar Dasar Matematika I 1 FUNGSI Pada bagian sebelumnya telah dibahas tentang relasi yaitu aturan yang menghubungkan elemen dua himpunan. Pada bagian ini akan dibahas satu jenis relasi yang lebih khusus yang dinamakan fungsi Suatu

Lebih terperinci

Rencana Perkuliahan. Kelas : A, B, C, D. SKS/JS : 3/3 : Yus Mochamad Cholily

Rencana Perkuliahan. Kelas : A, B, C, D. SKS/JS : 3/3 : Yus Mochamad Cholily Rencana Perkuliahan Jurusan : Matematika Mata Kuliah : Struktur Aljabar Semester : IV (empat) Kelas : A, B, C, D. SKS/JS : 3/3 Pengajar : Yus Mochamad Cholily 1. Pendahuluan. Struktur Aljabar atau dikenal

Lebih terperinci

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Rio Yohanes 1, Nora Hariadi 2, Kiki Ariyanti Sugeng 3 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424, Indonesia rio.yohanes@sci.ui.ac.id,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ruang vektor adalah suatu grup abelian yang dilengkapi dengan operasi pergandaan skalar atas suatu lapangan. Suatu ruang vektor dapat dikawankan dengan ruang

Lebih terperinci

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN 2301-9115 GRAF TOTAL SUATU MODUL BERDASARKAN SUBMODUL SINGULER Dian Ambarsari (S1 Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

II. TINJAUAN PUSTAKA. Diberikan himpunan dan operasi biner disebut grup yang dinotasikan. (i), untuk setiap ( bersifat assosiatif);

II. TINJAUAN PUSTAKA. Diberikan himpunan dan operasi biner disebut grup yang dinotasikan. (i), untuk setiap ( bersifat assosiatif); II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi Grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam penelitian. Pada bagian pertama akan dibahas mengenai teori grup. 2.1 Grup Dalam struktur aljabar, himpunan

Lebih terperinci

Grup Permutasi dan Grup Siklis. Winita Sulandari

Grup Permutasi dan Grup Siklis. Winita Sulandari Grup Permutasi dan Grup Siklis Winita Sulandari Grup Permutasi Suatu Permutasi dari suatu himpunan berhingga S yang tidak kosong, dinyatakan sebagai suatu pemetaan bijektif dari himpunan S pada dirinya

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Representasi grup adalah perumuman dari homomorfisma Gl(V ) ke GL(n, F ) menjadi homomorfisma sebarang grup G ke Gl(n, F ). Telah diketahui bahwa macammacam

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No. 2 Desember 2010: IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING

Jurnal Matematika Murni dan Terapan Vol. 4 No. 2 Desember 2010: IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING Saman Abdurrahman Program Studi Matematika Universitas Lambung Mangkurat Jl. Jend. A. Yani km 35, 8 Banjarbaru ABSTRAK Penelitian ini membahas ideal near-ring yang

Lebih terperinci

Beberapa Sifat Modul Tersuplemen lemah (Weakly Supplemented Module)

Beberapa Sifat Modul Tersuplemen lemah (Weakly Supplemented Module) Beberapa Sifat Modul Tersuplemen lemah (Weakly Supplemented Module) A 4 Didi Febrian 1, Sri Wahyuni 2 1 Mahasiswa S2 Jurusan Matematika Fakultas MIPA UGM, Dosen Univ. Dian Nusantara Medan email : febrian.didi@mail.ugm.ac.id

Lebih terperinci

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1 Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler Karyati Jurusan Pendidikan Matematika Universitas Negeri Yogyakarta E-mail: yatiuny@yahoocom Abstrak Pada kajian

Lebih terperinci

Matematika

Matematika dan D3 Analis Kimia FMIPA Universitas Islam Indonesia Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu himpunan, yang disebut domain, dengan sebuah

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

Teorema Jacobson Density

Teorema Jacobson Density Teorema Jacobson Density Budi Santoso 1, Fitriani 2, Ahmad Faisol 3 Jurusan Matematika FMIPA, Unila, Bandar Lampung, Indonesia 1,2,3 E-mail: budi.klik@gmail.com Abstrak. Misalkan adalah ring (tidak harus

Lebih terperinci

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah,

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, 3 II. LANDASAN TEORI Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, definisi-definisi dan teorema-teorema yang berhubungan dengan penelitian ini. 2.1 Geometri Insidensi

Lebih terperinci

FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN

FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN Agus Suryanto, Nikken Prima Puspita, Robertus Heri S. U. Jurusan Matematika Fakultas Sains dan Matematika Universitas Diponegoro Jalan Prof. H. Soedarto, SH. Tembalang

Lebih terperinci

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu

Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu BAB IV RELASI DAN FUNGSI Tujuan Instruksional Umum Mahasiswa memahami pengertian relasi, relasi ekuivalen, hasil ganda suatu relasi, relasi invers, relasi identitas, pengertian fungsi, bayangan invers

Lebih terperinci

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit BAB I RUANG EKTOR UMUM Dalam bab ini akan dipelajari tentang konsep ruang vektor umum, sub ruang vektor dan sifat-sifatnya. Pada pembicaraan ini, para mahasiswa dianggap sudah mengenal konsep dan sifat

Lebih terperinci

Materi Kuliah Matematika Komputasi FUNGSI

Materi Kuliah Matematika Komputasi FUNGSI Materi Kuliah Matematika Komputasi FUNGSI Misalkan A dan B himpunan. FUNGSI Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam

Lebih terperinci

DERET KOMPOSISI DARI SUATU MODUL

DERET KOMPOSISI DARI SUATU MODUL DERET KOMPOSISI DARI SUATU MODUL SKRIPSI Oleh : ANI NURHAYATI J2A 006 001 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2010

Lebih terperinci

PENGANTAR PADA TEORI GRUP DAN RING

PENGANTAR PADA TEORI GRUP DAN RING Handout MK Aljabar Abstract PENGANTAR PADA TEORI GRUP DAN RING Disusun oleh : Drs. Antonius Cahya Prihandoko, M.App.Sc, Ph.D e-mail: antoniuscp.ilkom@unej.ac.id Staf Pengajar Pada Program Studi Sistem

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Modul adalah generalisasi dari ruang vektor yaitu dengan memperluas struktur lapangan pada ruang vektor menjadi ring yang strukturnya lebih umum. Dengan kata

Lebih terperinci

MODUL FAKTOR DARI MODUL ENDOMORFISMA PADA HIMPUNAN BILANGAN BULAT ATAS GAUSSIAN INTEGER

MODUL FAKTOR DARI MODUL ENDOMORFISMA PADA HIMPUNAN BILANGAN BULAT ATAS GAUSSIAN INTEGER Prosiding eminar Nasional Matematika dan Terapannya 2016 p-in : 2550-0384; e-in : 2550-0392 MODUL FAKTO DAI MODUL ENDOMOFIMA PADA HIMPUNAN BILANGAN BULAT ATA GAUIAN INTEGE Linda Octavia oelistyoningsih

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN...

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN... 1 A. LATAR BELAKANG MASALAH... 1 B. PEMBATASAN MASALAH... 2 C.

Lebih terperinci

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com 1 NAMA : KELAS : 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK

HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK HASIL KALI TENSO: KONSTUKSI, EKSISTENSI AN KAITANNYA ENGAN BAISAN EKSAK Samsul Arifin samsul_arifin@mail.ugm.ac.id Mahasiswa S Matematika FMIPA UGM alam tulisan ini akan dibahas mengenai konstruksi hasil

Lebih terperinci

II. LANDASAN TEORI. Pada bagian ini akan dikaji konsep operasi biner dan ring yang akan digunakan

II. LANDASAN TEORI. Pada bagian ini akan dikaji konsep operasi biner dan ring yang akan digunakan II. LANDASAN TEORI Pada bagian ini akan dikaji konsep operasi biner dan ring yang akan digunakan dalam pembahasan penelitian ini. Untuk lebih mudah memahami, akan diberikan beberapa contoh. Berikut ini

Lebih terperinci

IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL. Na imah Hijriati, Saman Abdurrahman, Thresye

IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL. Na imah Hijriati, Saman Abdurrahman, Thresye DEAL DFEENSAL DAN HOMOMOFSMA DFEENSAL Na imah Hijriati, Saman Abdurrahman, Thresye Program Studi Matematika Universitas Lambung Mangkurat l. end. A. Yani Km. 36 Kampus Unlam Banjarbaru Email : imah_math@yahoo.co.id

Lebih terperinci

PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017

PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017 PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017 Indah Emilia Wijayanti Departemen Matematika FMIPA Universitas

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 6 (1) 2017 UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm STRUKTUR DAN SIFAT-SIFAT K-ALJABAR Deni Nugroho, Rahayu Budhiati Veronica, dan Mashuri Jurusan Matematika, FMIPA,

Lebih terperinci

HUBUNGAN MODUL TERBANGKIT MODUL-R DAN TERBANGKIT MODUL-R [ S

HUBUNGAN MODUL TERBANGKIT MODUL-R DAN TERBANGKIT MODUL-R [ S Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 HUBUNGAN MODUL TERBANGKIT MODUL-R DAN TERBANGKIT MODUL-R [ S Budi Surodjo

Lebih terperinci

LAPORAN PENELITIAN KOMPETITIF TAHUN ANGGARAN 2017 KARAKTERISASI MODUL TIDAK TERDEKOMPOSISI ATAS DAERAH DEDEKIND

LAPORAN PENELITIAN KOMPETITIF TAHUN ANGGARAN 2017 KARAKTERISASI MODUL TIDAK TERDEKOMPOSISI ATAS DAERAH DEDEKIND LAPORAN PENELITIAN KOMPETITIF TAHUN ANGGARAN 2017 KARAKTERISASI MODUL TIDAK TERDEKOMPOSISI ATAS DAERAH DEDEKIND Nomor DIPA : DIPA BLU: DIPA-025.04.2.423812/2016 Tanggal : 7 Desember 2017 Satker : (423812)

Lebih terperinci

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI FUNGSI 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi Definisi Fungsi Suatu fungsi f atau pemetaan f dari himpunan A ke himpunan B adalah suatu

Lebih terperinci

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi.

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi. BAB PENDAHULUAN Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi Himpunan Real Ada beberapa notasi himpunan yang sering digunakan dalam Analisis () merupakan

Lebih terperinci

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan

Lebih terperinci

Fungsi. Hidayati Rais, S.Pd.,M.Si. October 26, Program Studi Pendidikan Matematika STKIP YPM Bangko. Rollback Malaria :)

Fungsi. Hidayati Rais, S.Pd.,M.Si. October 26, Program Studi Pendidikan Matematika STKIP YPM Bangko. Rollback Malaria :) Program Studi Pendidikan Matematika STKIP YPM Bangko October 26, 2014 Definisi Misalkan A dan B adalah himpunan. Suatu fungsi dari A ke B adalah suatu himpunan f yang elemen-elemennya adalah pasangan terurut

Lebih terperinci

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,

Lebih terperinci

MATERI : RELASI DAN FUNGSI KELAS : X. 1. Ada hal penting yang bisa dipetik dari contoh di atas. Misalkan X menyatakan

MATERI : RELASI DAN FUNGSI KELAS : X. 1. Ada hal penting yang bisa dipetik dari contoh di atas. Misalkan X menyatakan MTERI : RELSI DN FUNGSI KELS : X Pemahaman Fungsi Dalam berbagai aplikasi, korespondensi/hubungan antara dua himpunan sering terjadi 4 3 Sebagai contoh, volume bola dengan jari-jari r diberikan oleh relasi

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya

Skew- Semifield dan Beberapa Sifatnya Kode Makalah M-1 Skew- Semifield dan Beberapa Sifatnya K a r y a t i Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta E-mail: yatiuny@yahoo.com

Lebih terperinci

RUANG FAKTOR. Oleh : Muhammad Kukuh

RUANG FAKTOR. Oleh : Muhammad Kukuh Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang

Lebih terperinci

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari BAB II TEORI DASAR Pada skripsi ini, akan dipelajari perbedaan sifat grup fundamental yang dimiliki beberapa ruang topologi, yaitu 2 S, torus, 2 P dan figure eight. Ruang topologi adalah suatu himpunan

Lebih terperinci

NEUTROSOFIK MODUL DAN SIFAT-SIFATNYA. Jl. Prof. H. Soedarto, SH, Tembalang, Semarang 50275

NEUTROSOFIK MODUL DAN SIFAT-SIFATNYA. Jl. Prof. H. Soedarto, SH, Tembalang, Semarang 50275 NEUTROSOFIK MODUL DAN SIFAT-SIFATNYA Suryoto 1, Bambang Irawanto 2, Nikken Prima Puspita 3 1,2,3 Jurusan Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, SH, Tembalang, Semarang 5275 1 suryoto_math@undip.ac.id

Lebih terperinci

RING STABIL BERHINGGA

RING STABIL BERHINGGA RING STABIL BERHINGGA Samsul Arifin Program Studi Pendidikan Matematika, STKIP Surya, Tangerang Email: samsul.arifin@stkipsurya.ac.id ABSTRACT Dalam tulisan ini akan dibahas mengenai karakteristik ring

Lebih terperinci

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal. 183-190 DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN Fidiah Kinanti, Nilamsari Kusumastuti, Evi Noviani

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

FUNGTOR KOVARIAN PADA KATEGORI. Soleh Munawir dan Y.D. Sumanto

FUNGTOR KOVARIAN PADA KATEGORI. Soleh Munawir dan Y.D. Sumanto FUNGTOR KOVARIAN PADA KATEGORI Soleh Munawir YD Sumanto Program Studi Matematika Jurusan Matematika Fakultas Sains Matematika Universitas Diponegoro Jalan Prof H Soedarto, SH Tembalang Semarang 50275 e-mail

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Relasi dan Fungsi Jurusan Informatika FMIPA Unsyiah March 10, 2014 Suatu fungsi f : A B disebut pada (onto) atau surjektif (surjective) jika f(a) = B, yaitu jika untuk semua b B ada sekurang-kurangnya

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

Syarat Perlu Suatu Modul Merupakan Modul Distributif Lemah dan Ring Endomorfisma dari Modul Distributif Lemah

Syarat Perlu Suatu Modul Merupakan Modul Distributif Lemah dan Ring Endomorfisma dari Modul Distributif Lemah Syarat Perlu Suatu Modul Merupakan Modul Distributif Lemah Ring Endomorfisma dari Modul Distributif Lemah Fitriani Jurusan Matematika FMIPA Universitas Lampung Email: fitriani_mathunila@yahoocoid AbstrakMisalkan

Lebih terperinci

HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA

HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA HAND OUT ANALISIS REAL 1 (MT403) KOSIM RUKMANA JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 2008 1 Identitas Mata Kuliah 1. Nama Mata Kuliah : Analisis

Lebih terperinci

BAB III REPRESENTASI GELFAND-NAIMARK-SEGAL

BAB III REPRESENTASI GELFAND-NAIMARK-SEGAL BAB III REPRESENTASI GELFAND-NAIMARK-SEGAL Pada bagian ini akan dibahas konsep yang terkait dengan representasi yaitu homomorfisma-*, representasi nondegenerate, representasi faithful, representasi siklik,

Lebih terperinci

SOAL DAN PENYELESAIAN RING

SOAL DAN PENYELESAIAN RING SOAL DAN PENYELESAIAN RING 1. Misalkan P himpunan bilangan bulat kelipatan 3. Tunjukan bahwa dengan operasi penjumlahan dan perkalian pada himpunan bilangan bulat, P membentuk ring komutatif. Jawaban:

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

Mengkarakterisasi Homomorfisma Lapangan dengan Persamaan Fungsional

Mengkarakterisasi Homomorfisma Lapangan dengan Persamaan Fungsional Jurnal Penelitian Sains Edisi Khusus Desember 009 (A) 09:-03 Mengkarakterisasi Homomorfisma Lapangan dengan Persamaan Fungsional Ning Eliyati, Novi Rustiana Dewi, dan Roni Simanjuntak Jurusan Matematika

Lebih terperinci

KOMPOSISI FUNGSI DAN FUNGSI INVERS

KOMPOSISI FUNGSI DAN FUNGSI INVERS 1 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Volume 9 Nomor 1 Maret 2015

Volume 9 Nomor 1 Maret 2015 Volume 9 Nomor 1 Maret 015 Jurnal Ilmu Matematika dan Terapan Maret 015 Volume 9 Nomor 1 Hal. 1 10 KARAKTERISASI DAERAH DEDEKIND Elvinus R. Persulessy 1, Novita Dahoklory 1, Jurusan Matematika FMIPA Universitas

Lebih terperinci

GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA

GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Grup Siklik, Grup Permutasi dan Homomorfisma

Lebih terperinci

SYARAT PERLU MENGKONSTRUKSIKAN RELASI EKIVALENSI PADA RING TIDAK KOMUTATIP ELVINA HERAWATY

SYARAT PERLU MENGKONSTRUKSIKAN RELASI EKIVALENSI PADA RING TIDAK KOMUTATIP ELVINA HERAWATY SYARAT PERLU MENGKONSTRUKSIKAN RELASI EKIVALENSI PADA RING TIDAK KOMUTATIP ELVINA HERAWATY Jurusan Matematika Fakultas Matematika Dan Ilmu Pengetahuan Alam Abstrak Diketengahkan metode memperluas himpunan

Lebih terperinci

STRUKTUR ALJABAR: RING

STRUKTUR ALJABAR: RING STRUKTUR ALJABAR: RING BAHAN AJAR Oleh: Rippi Maya Program Studi Magister Pendidikan Matematika Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) SILIWANGI - Bandung 2016 1 Pada grup telah dipelajari

Lebih terperinci

3. FUNGSI DAN GRAFIKNYA

3. FUNGSI DAN GRAFIKNYA 3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,

Lebih terperinci

Karakterisasi Modul Torsi dan Modul Bebas Torsi Menggunakan Preradikal

Karakterisasi Modul Torsi dan Modul Bebas Torsi Menggunakan Preradikal Karakterisasi Modul Torsi dan Modul Bebas Torsi Menggunakan Preradikal Indah Emilia Wijayanti Primastuti Indah Suryani Dwi Ertiningsih Jurusan Matematika FMIPA UGM Sekip Utara Yogyakarta 55281 Abstrak

Lebih terperinci