Volume 1, Nomor 2, Desember 2007

Ukuran: px
Mulai penontonan dengan halaman:

Download "Volume 1, Nomor 2, Desember 2007"

Transkripsi

1 Volume Nomor 2 Desemer 27

2 Barekeng Desemer 27 hal3-35 Vol No 2 TITIK-ANTARA DI DALAM RUANG METRIK DAN RUANG INTERVAL METRIK (Between-Points In Metric Space And Metric Interval Space MOZART W TALAKUA Jurusan Matematik FMIPAUNPATTI Jl Ir M Putuhenam Kampus Unpatti Poka-Amon E~Mail: ocat_8@yahoocom A point p in metric space ( d d ( d( p + d( p ABSTRACT is called a etween-point of if = This concept was formulated y Menger in 928 If all the etween-points of a and is collected in a set then a and are that set automaticlly In the metric space ( d and if there are operator in hence this interval operator is called metric interval operator The couple of ( called metric interval space is Keywords: Between-points Metric Space Metric Interval Space PENDAHULUAN Pada tahun 96 Maurice Frechet yang adalah seorang ahli matematika erkeangasaan Perancis memperkenalkan konsep jarak pada himpunan yang tidak kosong Jarak ini selanjutnya diseut metrik pada himpunan tadi Himpunan yang tidak kosong d dilengkapi metrik d ditulis ( diseut ruang metrik sedangkan anggota-anggota himpunan diseut titik-titik pada ruang metrik yang termuat dalam ilangan riil d( x y ( d adalah jarak titik x dan y didalam Di dalam lingkup analisis memicarakan tentang ruang metrik merupakan suatu hal yang sangat penting sea ruang metrik anyak digunakan di dalam memicarakan kekonvergenan suatu arisan atau kekontinuan suatu fungsi kekonvergenan suatu arisan atau kekontinuan suatu fungsi merupakan salah satu ahasan utama dalam analisis Perhatikan kemali pengertian titik-antara di dalam sistem ilangan riil Bilangan riil p erada diantara dua ilangan riil a dan jika a p dan p yang selanjutnya ditulis a p Dengan menggunakan interval p yang erada diantara a dan dapat ditulis p a [ ] Leih lanjut konsep titik diantara dua titik pada suatu sistem ilangan riil R ukanlah suatu hal yang aneh dalam analisis Akan tetapi titik-antara dua uah titik pada d ruang metrik ( merupakan suatu hal yang menarik untuk diicarakan dan diteliti Menurut definisiny jika a dan dua uah titik di dalam ruang metrik ( d maka tidak ada titik yang terletak diantaranya Berawal dari kondisi inilah munculnya permasalahan yang akan diahas dalam karya tulis ini Pemicaraan titik-antara di dalam ruang metrik menjadi leih menarik setelah pada tahun 928 Menger pertama kali memperkenalkan definisi titik-antara dua uah titik di dalam ruang metrik ( d Definisi dimaksud adalah : Titik p di dalam ruang metrik ( d erada diantara titik a dan didalam jika d( = d ( p + d ( p Dalam definisi terseut terdapat dua kelompok titikantar yaitu titik-antara sejati dan titik-antara tidak sejati Hal terseut diedakan erdasarkan apakah p sama atau tidak dengan a dan Dengan demikian yang dimaksud dengan titik-antara sejati dalam ruang metrik ( d didefinisikan seagai erikut : Titik p di dalam ruang metrik ( jika p p dan d( = d ( p + d ( p d erada diantara titik a dan di dalam Berdasarkan definisi itu maka munculah eerapa pertanyaan sehuungan dengan titik-antara p terseut diantaranya : Bagaimanakah huungan antara p dengan a dan? Sifat-sifat apakah yang mencirikan keeradaan titik p Jika merupakan interval metrik yang memuat semua titik p sifat-sifat apakah yang erlaku di dalam interval terseut? Hal-hal itulah yang merupakan permasalahan yang akan diahas dalam karya tulis ini Sistem pemahasannya akan diutamakan dalam mencari teorema-teorema (sifat-sifat yang merupakan sifat-sifat titik-antara di dalam ruang metrik ( d TINJAUAN PUSTAKA Sistem ilangan riil pada dasarnya mempunyai dua sifat yaitu : pertam sifat aljaar Sifat ini secara singkat dikatakan ahwa himpunan ilangan riil R ersama-sama dengan operasi iner penjumlahan dan perkalian mementuk suatu lapangan (field Kedu sifat yang memahas tentang jarak antara dua uah titik dan

3 32 TALAKUA TITIK-ANTARA pemahasan tentang konsep limit Sifat ini diseut sifat metrik atau topologis Sifat metrik yang awalnya diperkenalkan oleh Maurice Frechet sekitar tahun 96 dalam tesisnya yang erjudul sur quelques points du calcul functionnel memicarakan tentang fungsi-fungsi pada kalkulus Disini Frechet erusaha memperkenalkan konsep dari suatu d Kemudian oleh Menger pada tahun ruang metrik ( 928 dengan erpatokan pada pengertian ruang metrik d serta sifat-sifat yang erkaitan denganny maka ( diperkenalkan pengertian titik-antara didalam ruang metrik dan ruang interval metrik Selanjutnya didukung oleh eerapa literatur lain maka penulis mencoa menyusun seuah penulisan tentang titik-antara didalam ruang metrik dan ruang interval metrik melalui definisi contoh serta eerapa teorema yang erkaitan Definisi Suatu himpunan yang tidak kosong didefinisikan seagai erikut : (i Fungsi d : R yang memenuhi empat sifat yaitu: d x y untuk setiap x y a ( d( x y = jika dan hanya jika c d( x y d ( y x x = y = untuk setiap x y d d( x y d ( x z + d( z y untuk setiap x y z diseut metrik (metri atau jarak (distance pada (ii Himpunan yang dilengkapi dengan suatu metrik d dituliskan dengan ( d diseut ruang metrik (metric space Selanjutny jika metriknya telah diketahui (tertentu maka ruang metrik cukup ditulis saja (iii Anggota ruang metrik ( d diseut titik (point dan untuk setiap x y ilangan nonnegatif d( x y diseut jarak (distance titik x dengan titik y Teorema (i M atas atas terkecil (suprimum himpunan A jika dan hanya jika a M atas atas A untuk setiap a A erakiat a M dan (ii Untuk setiap ilangan ε > terdapat sehingga M ε < a' M m atas awah teresar ( infimum A jika dan hanya jika a' A himpunan a m atas awah A untuk setiap a A erakiat m dan Untuk setiap ilangan ε > terdapat sehingga m a'' < m + ε a '' A Teorema 2 Jika AB R dan teratas maka : (i sup( A + B sup( A + sup( B sup( A + B inf ( A + inf ( B Definisi 2 (Titik-antara Sistem Bilangan Riil Suatu ilangan riil p erada diantara dua ilangan riil a dan jika a p dan p yang selanjutnya ditulis a p Dengan menggunakan interval p yang erada diantara a dan dapat ditulis p [ a ] Definisi 3 (Operator fungsi Fungsi f : A B jika himpunan A = B maka f : A iseut operator atau tranformasi pada A HASIL DAN PEMBAHASAN Titik-antara di Dalam Ruang Metrik Pada agian ini akan disajikan pengertian titik-antara di dalam ruang metrik serta sifat-sifat yang erkaitan dengannya Definisi titik-antara didalam ruang metrik ( d pertama kali diperkenalkan oleh Menger pada tahun 928 Definisi yang dimaksud adalah seagai erikut : Definisi 2 Diketahui ( d ruang metrik p diseut titikantara dua titik a jika erlaku ( ( ( d a = d a p + d p Definisi diatas mengandung dua pengertian titik-antara yaitu titik-antara sejati dan titik-antara tidak sejati Titik p adalah titik-antara dua titik a dan di dalam dengan p a dan p dengan ( ( ( d a p + d p = d maka titik p diseut titik-antara sejati Sedangkan jika p = a dan p = atau salah satunya ered misalnya p = a dan p dan sealiknya maka p diseut titik-antara tidak sejati Contoh Titik p adalah titik-antara dalam ruang metrik d x y = x y ( Rd dengan ( x y R maka : p = αx+ α y dengan α ( ( ( + ( = ( α + ( α + ( α + ( α = x ( αx + ( α y + ( αx + ( α y y d x p d p y d x x y d x y y ( α x ( α y + ( αx + y y y = α = α x y + α x y

4 Barekeng Vol 27 TITIK ANTARA 33 ( α + x y = α = x y ( = d x y Contoh 2 h α f α g Titik = + ( dengan α ( adalah titik-antara dalam ruang metrik (C[ ] d dengan C[ ] adalah koleksi semua fungsi kontinu pada [ a ] dan d( f g = sup { f ( x g ( x ; x [ ] sea : { f ( x α f ( x ( α g ( x x [ a ] = sup ; { α f ( x ( α g ( x g ( x x [ a ] + sup + ; { f ( x g ( x x [ a ] = sup ; ( f g = d Contoh 3 Titik h = α f + α g dengan α adalah titik-antara { x x i ( ( = dan { y y i = dalam ruang metrik ( C[ ] d dan d ( f g = f ( x g ( x C [] adalah koleksi semua fungsi kontinu pada [ ] sea : dx ( α ( ( α ( α ( ( α ( ( ( α ( ( ( α( ( ( ( ( α ( ( = α f x g x dx + f x g x dx ( α α f ( x ( = α+ α f x g x dx dengan = f x f x g x dx + f x + g x g x dx = f x g x dx + f x g x dx = + g x dx ( ( ( ( d( f g = f x g x dx = Jika p merupakan titik-antara a dan dalam ruang metrik ( d Apakah keantaraan titik p dipertahankan oleh suatu metrik invarian atau suatu fungsi kontraktif? Sifat-sifat erikut ini merupakan sifat titik-antara dalam ruang metrik invarian fungsi kontraktif Definisi 2 (Ruang Metrik Invarian diseut ruang metrik invarian untuk setiap az jika erlaku : d( a+ z + z = d ( Ruang metrik ( d Teorema 3 Jika ( d ruang metrik invarian dan p titik-antara dengan a maka p+ z titik-antara a+ z + z untuk setiap z ( d ruang metrik invarian erarti untuk setiap az erlaku : ( + + = ( d a z z d a Titik p merupakan titik-antara a maka ( ( ( d a = d a p + d p dan karena d metrik invarian padanya maka diperoleh : ( = ( + + = ( ( + + = ( + ( d a d a z z d a z p z d p z z d a p d p Jadi p+ z titik-antara a+ z + z Definisi 3 (Fungsi Kontraktif Fungsi f : dengan ( d ruang metrik dikatakan kontraktif jika ada ilangan α dengan α sehingga erlaku d f x f y = αd x y untuk setiap x y ( ( ( ( Perhatikan kemali fungsi kontraktif f : dengan d ruang metrik ( Jika titik p merupakan titik-antara a dan f fungsi kontraktif pada ruang metrik ( d Apakah ( ( ( f p adalah titik-antara f a dan f? Teorema erikut akan menunjukan ahwa titik-antara dalam ruang metrik juga erlaku pada fungsi kontraktif Teorema 4 Diketahui ( d ruang metrik dan f : adalah fungsi kontraktif Jika p titikantara a maka ( ( ( f p titik-antara f a dan f Amil searang

5 34 TALAKUA TITIK-ANTARA a Titik p adalah titik-antara a maka : Karena ( = ( + ( d a d a p d p ( ( f : dan maka f a f Selanjutnya karena f kontraktif maka terdapat ilangan riil α dengan α dan erlaku : d f a f = αd ( ( ( ( diperoleh : d( f ( f ( = α d ( p + d ( p ( αd ( p = αd a p + = d( f ( f ( p + d ( f ( p f ( Jadi f ( p adalah titik-antara f ( dan f ( Teorema 5 d Diketahui ruang metrik ( f : dan g : adalah fungsi-fungsi kontraktif Jika p titik-antara a maka ( f ο g( p titik-antara ( f ο g ( dan ( f ο g ( Diketahui g: kontraktif erarti ada ilangan α dengan α ( α ( sehingga ( ( Akiatnya : d g a = d ( ( ο ( ο ( = ( ( ( ( = β d ( g ( a g ( d f g a f g d f g a f g = β { α d ( = β { α ( d( p + d ( p = β αd ( p + α d ( p { { d ( g( a g ( p d ( g ( p g ( = β + = = d ( f ( g( f ( g( p + d( f ( g( p f ( g( d ( fο g( fοg( p + d( fοg( p fοg( Jadi ( f ο g( p titik-antara ( f g( ( f ο g ( ο dan Ruang Interval Metrik Operator A: 2 2 dengan diseut operator interval jika A ( = { a a A( dan A( = A( untuk setiap Oleh karena itu jika A merupakan operator interval pada maka koleksi semua A dengan ( ( A { 2345 diseut ruang interval dan dituliskan dengan = Seagai contoh diketahui Didefinisikan A( = { x: x dan a x atau x untuk setiap Dapat ditunjukan a ahwa A operator interval pada Jadi ( adalah ruang interval Pada agian ini akan diahas tentang ruang interval metrik (metric interval space Operator interval yang akan diahas dikhususkan pada d Definisi erikut menyatakan ahwa ruang metrik ( didalam ruang metrik ( d A terdapat suatu operator Operator interval ini akan diicarakan leih lanjut Definisi 4 (Ruang Interval Metrik Jika ada operator Diketahui ruang metrik ( d pada maka operator interval ini diseut operator interval metrik (metric interval operator Selanjutnya pasangan ( diseut ruang interval metrik (metric interval space Definisi 5 (Mixing Operator Operator M : 3 2 yang didefinisikan M ( = A( A( A( untuk setiap c diseut mixing operator atau operator-m yang diangkitkan oleh operator interval A pada Teorema 6 Jika M adalah mixing-operator pada ruang interval A maka : ( ( M ( = M ( = { a (2 Jika σ adalah permutasi c maka ( σ ( = M ( M M a a = M a = Karena ( ( { a M ( A( A( ( A( a maka ( a A( = A( { a A A = M ( a = M ( = { a Jadi = Terukti ( Untuk memuktikan (2 diamil searang c Pertam perlihatkan ahwa M ( = M ( = M ( Dengan menggunakan definisi mixing operator M dan sifat irisan himpunan diperoleh : M ( = A( A( = A( = {a

6 Barekeng Vol 27 TITIK ANTARA 35 M ( = A( A( A( = A( = { a M ( = A( A( = A( = {a Jadi M ( = M ( = M ( Dengan cara yang sama dapat diperlihatkan M ( = M ( = M ( M a = M = M ( ( ( ( = M ( = M ( ( = M ( = M ( c ( = M ( = M ( c M M dan M Kedu diperlihatkan M c = M = M = M a = M a ( ( ( ( ( M ( = Dengan menggunakan definisi mixing-operator M dan sifat irisan himpunan diperoleh M ( = A( A( A( = A c A A = M ( ( ( ( = A( A( A( = A( A( A( = M ( = A( A( A( = A( A( A( = M ( = A( A( A( = A( A( A( = M ( = A( A( A( = A( A( A( = M ( maka M ( ( = M ( permutasi c σ dengan σ adalah definisi titik-antara di dalam ruang metrik titik p di dalam ruang metrik erada di antara a dan di dalam jika jika d ( = d( p + d( p Apaila semua titik-antara dua titik a dan di dalam dikumpulkan maka akan terentuk suatu himpunan dengan a dan menjadi anggotanya Himpunan ini diseut interval dengan ujung-ujung a dan yang selanjutnya dinotasikan ( Interval ini diseut interval metrik DAFTAR PUSTAKA Bartle R G & Shertert D R (994 Introduction to Real Analysis Second Edition John Wiley & Sons In New York Conway JB (99 A Course in Functional Analysis Springer-Verlag New York Kreyszig E (978 Intrduction Functional Analysis with Applications John Wiley and Sons New York Soeparn D (26 Pengantar Analisis Real Jurusan Matematika FMIPA Universitas Gadjah Mad Yogyakarta Soeparn D (27 Pengantar Analisis Astrak Jurusan Matematika FMIPA Universitas Gadjah Mad Yogyakarta KESIMPULAN Berdasarkan pemahasan maka kesimpulan dalam penelitian ini adalah: Di dalam ruang metrik ( d jika p merupakan titik-antara maka erlaku sifat-sifat : a Jika d metrik invarian maka p + z titik-antara a + z dan + z untuk setiap z Jika f fungsi kontraktif dari ke maka f ( p titik-antara f ( dan f ( c Jika f dan g fungsi-fungsi kontraktif dari ke fο g a dan maka ( fο g(p titik-antara ( ( ( f ο g( ( 2 Interval merupakan himpunan semua titikantara dua titik a dan di dalam ruang metrik ( d maka ( = { p d( p + d( p = d ( diseut interval metrik Karena interval metrik merupakan operator interval metrik maka ( diseut ruang interval metrik Selanjutnya sesuai

Gelanggang Evalusi dan Sifat-sifatnya

Gelanggang Evalusi dan Sifat-sifatnya Vol. 5, No.1, 52-57, Juli 2008 Gelanggang Evalusi dan Sifat-sifatnya Amir Kamal Amir Astrak Sifat-sifat gelanggang evaluasi eserta pemuktiannya sudah ada dieerapa literatur seperti misalnya pada McConnel

Lebih terperinci

METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS

METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS JURNAL MATEMATIKA DAN KOMPUTER Vol 6 No 3, 167-178, Desemer 2003, ISSN : 1410-8518 METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS Sunarsih dan Ahmad Khairul Ramdani Jurusan Matematika FMIPA UNDIP ABSTRAK

Lebih terperinci

METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS

METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS JURNAL MATEMATIKA DAN KOMPUTER Vol 6 No 3, 118-177, Desemer 2003, ISSN : 1410-8518 METODE SIMPLEKS PRIMAL MENGGUNAKAN WORKING BASIS Sunarsih dan Ahmad Khairul Ramdani Jurusan Matematika FMIPA UNDIP ABSTRAK

Lebih terperinci

Matriks & Operasi Matriks (2) Pertemuan 5 Aljabar Linear & Matriks

Matriks & Operasi Matriks (2) Pertemuan 5 Aljabar Linear & Matriks Matriks & Operasi Matriks () Pertemuan 5 Aljaar Linear & Matriks Sifat-sifat Operasi Matriks Perkalian antara dua matriks tidak mengikuti hukum komutatif, artinya AB tidak sama dengan BA (dengan asumsi

Lebih terperinci

COURSE NOTE : Sistem Persamaan Liniear

COURSE NOTE : Sistem Persamaan Liniear COURSE NOTE : Sistem Persamaan Liniear PERSAMAAN LINIEAR Secara umum kita mendefinisikan persamaan liniear dalam n variale x 1 x x n seagai erikut : dengan a1 a... an adalah konstanta real. a1x 1 ax ax...

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN DAN PERTIDAKSAMAAN Sumer: Art & Gallery 44 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi persamaan dan pertidaksamaan linier dan kuadrat terdiri atas tiga kompetensi dasar.

Lebih terperinci

PERSAMAAN FUNGSI KUADRAT-1

PERSAMAAN FUNGSI KUADRAT-1 PERSAMAAN FUNGSI KUADRAT- Mata Pelajaran K e l a s Nomor Modul : Matematika : X (Sepuluh) : MAT.X.0 Penulis Pengkaji Materi Pengkaji Media : Drs. Suyanto : Dra.Wardani Rahayu, M.Si. : Drs. Soekiman DAFTAR

Lebih terperinci

Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach

Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach Badrulfalah 1,Khafsah Joebaedi 2 1 Departemen Matematika FMIPA Universitas Padjadjaran badrulfalah@gmail.com 2 Departemen Matematika

Lebih terperinci

TRIGONOMETRI. Bab. Di unduh dari : Bukupaket.com. Aturan sinus Aturan kosinus Luas segitiga A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

TRIGONOMETRI. Bab. Di unduh dari : Bukupaket.com. Aturan sinus Aturan kosinus Luas segitiga A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR a 6 TRIGONOMETRI A. KOMPETENSI DASAR DAN PENGALAMAN ELAJAR Kompetensi Dasar 1. Menghayati pola hidup disiplin, kritis, ertanggungjawa, konsisten dan jujur serta menerapkannya dalam kehidupan sehari hari..

Lebih terperinci

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B.

1). Definisi Relasi Relasi dari dua himpunan A dan B adalah pemasangan anggota-anggota A dengan anggota B. Bayangkan suatu fungsi seagai seuah mesin, misalnya mesin hitung. Ia mengamil suatu ilangan (masukan), maka fungsi memproses ilangan yang masuk dan hasil produksinya diseut keluaran. x Masukan Fungsi f

Lebih terperinci

6. 2 Menerapkan konsep fungsi linier Menggambarkan fungsi kuadrat Menerapkan konsep fungsi kuadrat

6. 2 Menerapkan konsep fungsi linier Menggambarkan fungsi kuadrat Menerapkan konsep fungsi kuadrat Sumer: Art and Gallery Standar Kompetensi 6. Memecahkan masalah yang erkaitan dengan fungsi, persamaan fungsi linier dan fungsi kuadrat Kompetensi Dasar 6. Mendeskripsikan peredaan konsep relasi dan fungsi

Lebih terperinci

Konvergensi Barisan dan Teorema Titik Tetap

Konvergensi Barisan dan Teorema Titik Tetap JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Print) A-59 Konvergensi Barisan dan Teorema Titik Tetap pada Ruang b-metrik Cahyaningrum Rahmasari, Sunarsini, dan Sadjidon Jurusan Matematika,

Lebih terperinci

SIFAT-SIFAT HIMPUNAN PROXIMINAL

SIFAT-SIFAT HIMPUNAN PROXIMINAL Prima: Jurnal Pendidikan Matematika Vol. 2, No. 1, Januari 2018, hal. 49-56 P-ISSN: 2579-9827, E-ISSN: 2580-2216 SIFAT-SIFAT HIMPUNAN PROXIMINAL Arta Ekayanti Universitas Muhammadiyah Ponorogo, Jl. Budi

Lebih terperinci

PEMETAAN MÖBIUS. Gani Gunawan. Jurusan Matematika, UNISBA, Jalan Tamansari No 1, Bandung,40116, Indonesia

PEMETAAN MÖBIUS. Gani Gunawan. Jurusan Matematika, UNISBA, Jalan Tamansari No 1, Bandung,40116, Indonesia Jurnal Matematika Vol6 No Novemer 006 [ : 7 ] PEMETAAN MÖBIUS Jurusan Matematika, UNISBA, Jalan Tamansari No, Banung,406, Inonesia ggan06@yahoocom Astrak Transformasi ilinear apat ikomposisikan ari transformasi

Lebih terperinci

PROSES PERCABANGAN PADA DISTRIBUSI GEOMETRIK

PROSES PERCABANGAN PADA DISTRIBUSI GEOMETRIK PROSES PERCABANGAN PADA DISTRIBUSI GEOMETRIK Arantika Desmawati, Respatiwulan, dan Dewi Retno Sari S Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Seelas Maret Astrak.

Lebih terperinci

KURIKULUM TINGKAT SATUAN PENDIDIKAN ( KTSP ) ANALISIS MATERI KOMPETENSI SISWA SMP ( SILABUS ) KEGIATAN PEMBELAJARAN TEKNIK.

KURIKULUM TINGKAT SATUAN PENDIDIKAN ( KTSP ) ANALISIS MATERI KOMPETENSI SISWA SMP ( SILABUS ) KEGIATAN PEMBELAJARAN TEKNIK. SEKOLAH : SMP NEGERI 9 CIMAHI KELAS : IX MATA PELAJARAN : MATEMATIKA SEMESTER : ( DUA ) KURIKULUM TINGKAT SATUAN PENDIDIKAN ( KTSP ) ANALISIS MATERI KOMPETENSI SISWA SMP ( SILABUS ) BILANGAN Standar Kompetensi

Lebih terperinci

Volume 9 Nomor 2 Desember 2015

Volume 9 Nomor 2 Desember 2015 Volume 9 Nomor 2 Desember 2015 Jurnal Ilmu Matematika dan Terapan Desember 2015 Volume 9 Nomor 2 Hal. 85 88 KARAKTERISTIK RUANG HAUSDORFF KOMPAK M. Tomasoa 1, H. Batkunde 2, M. W. Talakua 3, L. J. Sinay

Lebih terperinci

GEOMETRI PROYEKTIF PG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG SIMETRIS. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang

GEOMETRI PROYEKTIF PG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG SIMETRIS. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang urnal atematika Vol, No3, Desemer 8: -5, ISSN: 4-858 GEOERI PROYEKIF PG(, p n ) UNUK EBENUK RANCANGAN BOK IDAK ENGKAP SEIBANG SIERIS Yuni Hidayati dan Bamang Irawanto, urusan atematika FIPA Uniersitas

Lebih terperinci

ADLN Perpustakaan Universitas Airlangga SIFAT JARAK PADA RUANG METRIK SKRIPSI SITI MAISYAROH

ADLN Perpustakaan Universitas Airlangga SIFAT JARAK PADA RUANG METRIK SKRIPSI SITI MAISYAROH SIFAT JARAK PADA RUANG METRIK SKRIPSI SITI MAISYAROH PROGRAM STUDI S-1 MATEMATIKA DEPARTEMEN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS AIRLANGGA 2012 SIFAT JARAK PADA RUANG METRIK SKRIPSI Sebagai

Lebih terperinci

KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE

KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 42 51 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KEKONVERGENAN BARISAN DI RUANG HILBERT PADA PEMETAAN TIPE-NONSPREADING DAN NONEXPANSIVE DEBI OKTIA HARYENI

Lebih terperinci

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Hendy Fergus A. Hura 1, Nora Hariadi 2, Suarsih Utama 3 1 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424,

Lebih terperinci

BAB II FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT

BAB II FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT BAB II FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT Standar kompetensi:. Memecahkan masalah yang erkaitan dengan fungsi, persamaan dan pertidaksamaan kuadrat Kompetensi Dasar:. Memahami konsep fungsi.

Lebih terperinci

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ

RUANG LIPSCHITZ. Departemen Pendidikan Matematika FPMIPA UPI. *Surel: : (, ) Ϝ RUANG LIPSCHITZ Muhammad Rifqi Agustian 1), Rizky Rosjanuardi 2), Endang Cahya 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: Muhammadrifqyagustian@yahoo.co.id ABSTRAK. Diberikan ruang

Lebih terperinci

FOURIER Oktober 2014, Vol. 3 No. 2, KONSEP DASAR RUANG METRIK CONE. Yogyakarta

FOURIER Oktober 2014, Vol. 3 No. 2, KONSEP DASAR RUANG METRIK CONE. Yogyakarta FOURIER Oktober 014, Vol. 3 No., 146 166 KONSEP DASAR RUANG METRIK CONE A. Rifqi Bahtiar 1, Muchammad Abrori, Malahayati 3 1,, 3 Program Studi Matematika, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga

Lebih terperinci

TRANSFORMASI LINIER PADA RUANG BANACH

TRANSFORMASI LINIER PADA RUANG BANACH TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni, S.Si., M.Pd Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmail.com ABSTRAK Info: Jurnal MSA Vol. 2 No. 1 Edisi: Januari Juni

Lebih terperinci

Metode Simpleks Diperbaiki (Revised Simplex Method) Materi Bahasan

Metode Simpleks Diperbaiki (Revised Simplex Method) Materi Bahasan /7/ Metode Simpleks Diperaiki (Revised Simple Method) Kuliah TI Penelitian Operasional I Materi ahasan Dasar-dasar aljaar dari metode simpleks Metode simpleks yang diperaiki TI Penelitian Operasional I

Lebih terperinci

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1 FOURIER Oktober 2014, Vol. 3, No. 2, 117 132 KONSEP FUNGSI SEMIKONTINU Malahayati 1 1 Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Jl. Marsda Adisucipto No. 1 Yogyakarta 55281

Lebih terperinci

TES AKHIR. Kartu-kartu diatas dapat disusun dengan aturan susunan kartu adalah jumlah bilangan kebawah sama dengan jumlah bilangan kesamping

TES AKHIR. Kartu-kartu diatas dapat disusun dengan aturan susunan kartu adalah jumlah bilangan kebawah sama dengan jumlah bilangan kesamping TES AKHIR NAMA KELAS TANGGAL :... : : 1. Perhatikan angka pada kartu ilangan erikut : 1 2 4 5 a. Angka mana saja yang merupakan ilangan ganjil?.. Angka mana saja yang merupakan ilangan genap?.. Kartu-kartu

Lebih terperinci

KARAKTERISASI SEBARAN CAUCHY

KARAKTERISASI SEBARAN CAUCHY Jurnal Matematika UNAND Vol. No. 3 Hal. 3 ISSN : 33 9 c Jurusan Matematika FMIPA UNAND KARAKTERISASI SEBARAN CAUCHY SUSTI RAHMAH YULITA S Program Studi Magister Matematika, Fakultas Matematika dan Ilmu

Lebih terperinci

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111 Abstract. In this paper was discussed about Nadlr fixed

Lebih terperinci

Message Authentication Code (MAC) Pembangkit Bilangan Acak Semu

Message Authentication Code (MAC) Pembangkit Bilangan Acak Semu Bahan Kuliah ke-21 IF5054 Kriptografi Message Authentication Code (MAC) Pemangkit Bilangan Acak Semu Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang B. Definisi C. Tujuan 1. Tujuan Umum 2. Tujuan Khusus

BAB I PENDAHULUAN A. Latar Belakang B. Definisi C. Tujuan 1. Tujuan Umum 2. Tujuan Khusus BAB I PENDAHULUAN A. Latar Belakang Pernahkah anda menjadi seorang pasien yang datang ke dokter dan menolak dirawat? Biasanya penolakan muncul jika sang dokter menyarankan untuk dilakukan tindakan seperti

Lebih terperinci

BAB 1 PENDAHULUAN. Masalah kependudukan di Indonesia merupakan masalah penting yang perlu

BAB 1 PENDAHULUAN. Masalah kependudukan di Indonesia merupakan masalah penting yang perlu BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah kependudukan di Indonesia merupakan masalah penting yang perlu mendapat perhatian dan pemahasan serius dari pemerintah dan ahli kependudukan. Bila para ahli

Lebih terperinci

Pertemuan XI, XII, XIII VI. Konstruksi Rangka Batang

Pertemuan XI, XII, XIII VI. Konstruksi Rangka Batang ahan jar Statika Mulyati, ST., MT ertemuan XI, XII, XIII VI. Konstruksi Rangka atang VI. endahuluan Salah satu sistem konstruksi ringan yang mempunyai kemampuan esar, yaitu erupa suatu Rangka atang. Rangka

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

BAB III METODE PENELITIAN. Populasi yang digunakan dalam penelitian ini meliputi seluruh perusahaan yang

BAB III METODE PENELITIAN. Populasi yang digunakan dalam penelitian ini meliputi seluruh perusahaan yang 35 BAB III METODE PENELITIAN 3.1. Populasi dan sampel Populasi yang digunakan dalam penelitian ini meliputi seluruh perusahaan yang go pulic di Bursa Efek Indonesia. Sampel yang diamil diatasi pada perusahaanperusahaan

Lebih terperinci

Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real. Lina Nurhayati, Universitas Sanggabuana

Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real. Lina Nurhayati, Universitas Sanggabuana Keterbatasan Lokal Suatu Operator Superposisi Pada Ruang Barisan Real Lina urhayati, Universitas Sanggabuana nurhayati_lina@yahoo.co.id Abstrak Misalkan P suatu operator superposisi terbatas dan T adalah

Lebih terperinci

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada BAB II DASAR TEORI Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada pembahasan BAB III, mulai dari definisi sampai sifat-sifat yang merupakan konsep dasar untuk mempelajari Fungsi

Lebih terperinci

4. Mononom dan Polinom

4. Mononom dan Polinom Darpulic www.darpulic.com 4. Mononom dan Polinom Sudaratno Sudirham Mononom adalah pernataan tunggal ang erentuk k n, dengan k adalah tetapan dan n adalah ilangan ulat termasuk nol. Fungsi polinom merupakan

Lebih terperinci

STUDI KEANDALAN (RELIABILITY) PEMBANGKIT LISTRIK TENAGA UAP (PLTU) LABUHAN ANGIN SIBOLGA

STUDI KEANDALAN (RELIABILITY) PEMBANGKIT LISTRIK TENAGA UAP (PLTU) LABUHAN ANGIN SIBOLGA STUDI KEANDALAN (RELIABILITY) PEMBANGKIT LISTRIK TENAGA UAP (PLTU) LABUHAN ANGIN SIBOLGA Oloni Togu Simanjuntak, Ir. Syamsul Amien, MS Konsentrasi Teknik Energi Listrik, Departemen Teknik Elektro Fakultas

Lebih terperinci

Analisis Kestabilan Titik Keseimbangan Model Perilaku Jumlah Pelaku Narkoba dengan Faktor Rehabilitasi

Analisis Kestabilan Titik Keseimbangan Model Perilaku Jumlah Pelaku Narkoba dengan Faktor Rehabilitasi Vol. 7 No. 6-7 Januari Analisis Kestailan Titik Keseimangan Model Perilaku Jumlah Pelaku Narkoa dengan Faktor ehailitasi Syamsuddin Toaha Astrak Tulisan ini memahas suatu model laju eruahan jumlah elaku

Lebih terperinci

5. Sifat Kelengkapan Bilangan Real

5. Sifat Kelengkapan Bilangan Real 5. Sifat Kelengkapan Bilangan Real Sifat aljabar dan sifat urutan bilangan real telah dibahas sebelumnya. Selanjutnya, akan dijelaskan sifat kelengkapan bilangan real. Bilangan rasional ℚ juga memenuhi

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. IDENTITAS Satuan Pendidikan : Sekolah Menengah Atas Kelas / Semester : XII / 6 (enam) Mata Pelajaran : Matematika Program : Waji Pokok Bahasan : Integral 2 Alokasi

Lebih terperinci

PENGANTAR ANALISIS FUNGSIONAL

PENGANTAR ANALISIS FUNGSIONAL PENGANTAR ANALISIS FUNGSIONAL SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat

Lebih terperinci

KEKONVERGENAN LEMAH PADA RUANG HILBERT

KEKONVERGENAN LEMAH PADA RUANG HILBERT KEKONVERGENAN LEMAH PADA RUANG HILBERT Moch. Ramadhan Mubarak 1), Encum Sumiaty 2), Cece Kustiawan 3) 1), 2), 3) Departemen Pendidikan Matematika FPMIPA UPI *Surel: ramadhan.101110176@gmail.com ABSTRAK.

Lebih terperinci

TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI-

TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI- JURNAL SAINS DAN SENI POMITS Vol. 1, No. 1, (2013) 1-6 1 TEOREMA TITIK TETAP PADA RUANG BERNORMA CONE BERNILAI- Hajar Grestika Murti, Erna Apriliani, Sunarsini Jurusan Matematika, Fakultas Matematika dan

Lebih terperinci

REGULARISASI SISTEM SINGULAR DENGAN OUTPUT UMPAN BALIK u = Fy + v (Regularization of a Singular System by Feedback Output u = Fy + v )

REGULARISASI SISTEM SINGULAR DENGAN OUTPUT UMPAN BALIK u = Fy + v (Regularization of a Singular System by Feedback Output u = Fy + v ) arekeng Juni 7 hal3-37 Vol No RGULARISASI SISM SINGULAR DNGAN OUPU UMPAN ALIK u Fy + v Regularization of a Singular System y Feedack Output u Fy + v LVINUS RIHARD PRSULSSY Jurusan Matematika FMIPA Universitas

Lebih terperinci

HIMPUNAN KUBIK ASIKLIK DAN KUBUS DASAR

HIMPUNAN KUBIK ASIKLIK DAN KUBUS DASAR Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 43 49 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HIMPUNAN KUBIK ASIKLIK DAN KUBUS DASAR WIWI ULMAYANI Program Studi Matematika, Fakultas Matematika dan

Lebih terperinci

Bab III Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Konstan

Bab III Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Konstan Ba III Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Konstan Pada a ini, akan diahas penyearan oksigen di pemuluh kapiler dan jaringan, dimana sel-sel di jaringan diasumsikan mengkonsumsi oksigen

Lebih terperinci

b. Titik potong grafik dengan sumbu y, dengan mengambil x = 0

b. Titik potong grafik dengan sumbu y, dengan mengambil x = 0 B.3 Fungsi Kuadrat a. Tujuan Setelah mempelajari uraian kompetensi dasar ini, anda dapat: Menentukan titik potong grafik fungsi dengan sumu koordinat, sumu simetri dan nilai ekstrim suatu fungsi Menggamar

Lebih terperinci

7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z)

7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z) BAB 7 RESIDU DAN PENGGUNAAN 7 idu dan kutu Pada agian seelumnya telah kita pelajari ahwa suatu titik diseut titik singular dari f () ila f () gagal analitik di tetapi analitik pada suatu titik dari setiap

Lebih terperinci

PENENTUAN BESARNYA PENGARUH FAKTOR GENETIK TERHADAP SIFAT FENOTIP DENGAN METODE PASANGAN KEMBAR

PENENTUAN BESARNYA PENGARUH FAKTOR GENETIK TERHADAP SIFAT FENOTIP DENGAN METODE PASANGAN KEMBAR PNNTUN BSRNY PNGRUH FKTOR GNTIK TRHDP SIFT FNOTIP DNGN MTOD PSNGN KMBR. Setiawan Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Salatiga Indonesia stract. Twins

Lebih terperinci

INTERVAL KEKONTRAKTIFAN PEMETAAN PADA RUANG BANACH. Badrulfalah 1, Khafsah Joebaedi. 2.

INTERVAL KEKONTRAKTIFAN PEMETAAN PADA RUANG BANACH. Badrulfalah 1, Khafsah Joebaedi. 2. Eksakta Vol.18 No.2 Oktober 2017 http://eksakta.ppj.unp.ac.id E-ISSN : 2549-7464 P-ISSN : 1411-3724 INTERVAL KEKONTRAKTIFAN PEMETAAN PADA RUANG BANACH Badrulfalah 1, Khafsah Joebaedi. 2 1) Departemen Matematika,

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

LAJU PERTUMBUHAN BAKTERI S. Aerous MELALUI PENDEKATAN PERSAMAAN DIFERENSIAL

LAJU PERTUMBUHAN BAKTERI S. Aerous MELALUI PENDEKATAN PERSAMAAN DIFERENSIAL LAJU PERTUMBUHAN BAKTERI S. Aerous MELALUI PENDEKATAN PERSAMAAN DIFERENSIAL Nurdeni 1, Witri Lestari 2, dan Seruni 3 1 Program Studi Pendidikan Matematika, FTMIPA, Universitas Indraprasta PGRI [Email:

Lebih terperinci

UM UNPAD 2007 Matematika Dasar

UM UNPAD 2007 Matematika Dasar UM UNPAD 007 Matematika Dasar Kode Soal Doc. Name: UMUNPAD007MATDAS999 Version : 0- halaman 0. Jika A e adalah komplemen dari A, maka daerah yang diarsir pada diagram Venn di awah ini dapat dinyatakan

Lebih terperinci

ANALISA STABILITAS LERENG TANAH BERBUTIR HALUS UNTUK KASUS TEGANGAN TOTAL DENGAN MENGGUNAKAN MICROSOFT EXEL ABSTRACT

ANALISA STABILITAS LERENG TANAH BERBUTIR HALUS UNTUK KASUS TEGANGAN TOTAL DENGAN MENGGUNAKAN MICROSOFT EXEL ABSTRACT ANALISA STABILITAS LERENG TANAH BERBUTIR HALUS UNTUK KASUS TEGANGAN TOTAL DENGAN MENGGUNAKAN MICROSOFT EXEL Handali, S 1), Gea, O 2) 1) Jurusan Teknik Sipil Universitas Kristen Immanuel Yogyakarta e-mail

Lebih terperinci

BAB XIV V E K T O R Pengertian Vektor adalah besaran yang mempunyai arah. Tafsiran geometri sebuah vektor dilukiskan sebagai panah.

BAB XIV V E K T O R Pengertian Vektor adalah besaran yang mempunyai arah. Tafsiran geometri sebuah vektor dilukiskan sebagai panah. XIV V E K T O R 4. engertian adalah esaran yang mempunyai arah. Tafsiran geometri seuah vektor dilukiskan seagai panah. dengan titik pangkal (a x, a y, a z ) dan titik ujung ( x, y, z ) dinotasikan dengan.

Lebih terperinci

Bil. Asli Bil. Bulat Bil. Cacah

Bil. Asli Bil. Bulat Bil. Cacah Bil. Asli Bil. Bulat Bil. Cacah I. Materi Ajar: Pertemuan : A. Macam-macam ilangan real. Bilangan Asli (A) Bilangan asli adalah suatu ilangan yang mula-mula dipakai untuk memilang. Bilangan asli dimulai

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Lingkungan mikro di dalam rumah tanaman khususnya di daerah tropika asah perlu mendapat perhatian khusus, mengingat iri iklim tropika asah dengan suhu udara yang relatif panas,

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3.3 Himpunan Kompak Himpunan tak terhingga lebih sulit ditangani daripada himpunan terhingga. Namun ada himpunan tak terhingga yang

Lebih terperinci

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR F. RANCANGAN KEGIATAN BELAJAR MENGAJAR No. (TIU) : 1. Pendahuluan Mahasiswa dapat memahami pengertian dan konsep himpunan, fungsi dan induksi matematik, mampu menerapkannya dalam penyelesaian soal dan

Lebih terperinci

7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z)

7.1. Residu dan kutub Pada bagian sebelumnya telah kita pelajari bahwa suatu titik z 0 disebut titik singular dari f (z) Ba 7 Residu dan Penggunaannya BAB 7 RESIDU DAN PENGGUNAAN 7 Residu dan kutu Pada agian seelumnya telah kita pelajari ahwa suatu titik diseut titik singular dari f () ila f () gagal analitik di tetapi analitik

Lebih terperinci

ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS

ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta salam

Lebih terperinci

BAB II. PROTEKSI TRAFO 60 MVA 150/20 kv. DAN PENYULANG 20 kv

BAB II. PROTEKSI TRAFO 60 MVA 150/20 kv. DAN PENYULANG 20 kv BAB II PROTEKSI TRAFO 60 MVA 150/20 kv DAN PENYULANG 20 kv 2.1. Transformator Daya Transformator adalah suatu alat listrik statis yang erfungsi meruah tegangan guna penyaluran daya listrik dari suatu rangkaian

Lebih terperinci

BAB VI DEFLEKSI BALOK

BAB VI DEFLEKSI BALOK VI DEFEKSI OK.. Pendahuluan Semua alok akan terdefleksi (atau melentur) dari kedudukannya apaila tereani. Dalam struktur angunan, seperti : alok dan plat lantai tidak oleh melentur terlalu erleihan untuk

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 18, 2011 Kita telah mencatat sebelumnya bahwa supremum dan infimum suatu himpunan tidak harus merupakan anggota himpunan

Lebih terperinci

PENENTUAN JUMLAH BUS YANG OPTIMAL DENGAN MENGGUNAKAN METODE GOAL PROGRAMMING (Studi Kasus Di Trayek B 35 Jurusan Terboyo - Cangkiran Semarang)

PENENTUAN JUMLAH BUS YANG OPTIMAL DENGAN MENGGUNAKAN METODE GOAL PROGRAMMING (Studi Kasus Di Trayek B 35 Jurusan Terboyo - Cangkiran Semarang) PENENTUAN JUMLAH BUS YANG OPTIMAL DENGAN MENGGUNAKAN METODE GOAL PROGRAMMING (Studi Kasus Di Trayek B 35 Jurusan Teroyo Cangkiran Semarang) Arfan Bakhtiar, Diana Puspita Sari, Hendy Tantono Industrial

Lebih terperinci

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1 An-2 1. PENDAHULUAN Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS Abstrak Tujuan dari tulisan ini adalah membahas tentang integral Lebesgue

Lebih terperinci

ANALISIS KONSENTRASI TEGANGAN PADA GELAGAR BERLUBANG MENGGUNAKAN PEMODELAN DAN EKSPERIMEN

ANALISIS KONSENTRASI TEGANGAN PADA GELAGAR BERLUBANG MENGGUNAKAN PEMODELAN DAN EKSPERIMEN NLISIS KONSENTRSI TEGNGN PD GELGR BERLUBNG MENGGUNKN PEMODELN DN EKSPERIMEN khmad aizin, Dipl.Ing.HTL, M.T. Jurusan Teknik Mesin, Politeknik Negeri Malang E-mail: faizin_poltek@yahoo.com strak Belum diketahuinya

Lebih terperinci

ANALISIS TEGANGAN BAUT PENGUNCI GIRTH-GEAR KILN

ANALISIS TEGANGAN BAUT PENGUNCI GIRTH-GEAR KILN No.33 Vol.1 Thn.XVII April 010 ISSN : 0854-8471 ANALISIS TEGANGAN BAUT PENGUNCI GIRTH-GEAR KILN Devi Chandra 1, Gunawarman 1, M. Fadli 1 Staf Pengajar Jurusan Teknik Mesin Fakultas Teknik Universitas Andalas

Lebih terperinci

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari

Lebih terperinci

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2009 2 DAFTAR ISI DAFTAR ISI 2 1 Sistem Bilangan Kompleks (C) 1 1 Pendahuluan...............................

Lebih terperinci

Ruang Norm-n Berdimensi Hingga

Ruang Norm-n Berdimensi Hingga Jurnal Matematika Integratif. Vol. 3, No. 2 (207), pp. 95 04. p-issn:42-684, e-issn:2549-903 doi:0.2498/jmi.v3.n2.986.95-04 Ruang Norm-n Berdimensi Hingga Moh. Januar Ismail Burhan Jurusan Matematika dan

Lebih terperinci

SUATU KAJIAN TITIK TETAP PEMETAAN k-pseudononspreading SEJATI DI RUANG HILBERT

SUATU KAJIAN TITIK TETAP PEMETAAN k-pseudononspreading SEJATI DI RUANG HILBERT Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 52 60 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SUATU KAJIAN TITIK TETAP PEMETAAN k-pseudononspreading SEJATI DI RUANG HILBERT DESI RAHMADANI Program Studi

Lebih terperinci

ANALISIS TITIK TETAP SET- VALUED FUNCTION MENGGUNAKAN METRIK HAUSDORFF TESIS

ANALISIS TITIK TETAP SET- VALUED FUNCTION MENGGUNAKAN METRIK HAUSDORFF TESIS UNIVERSITAS INDONESIA ANALISIS TITIK TETAP SET- VALUED FUNCTION MENGGUNAKAN METRIK HAUSDORFF TESIS SAGITA CHAROLINA SIHOMBING 1006786266 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI MAGISTER

Lebih terperinci

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak.

BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF. Kata kunci : pemetaan nonexpansive, pemetaan condensing, pemetaan kompak. BEBERAPA TEOREMA TITIK TETAP UNTUK PEMETAAN NONSELF Oleh: Rindang Kasih Program Studi Pendidikan Matematika FKIP UNIVET Sukoharjo Jl. Letjend Sujono Humardani No.1 Kampus Jombor Sukoharjo, e-mail: Rindang_k@yahoo.com

Lebih terperinci

matematika K-13 PEMBAGIAN HORNER DAN TEOREMA SISA K e l a s

matematika K-13 PEMBAGIAN HORNER DAN TEOREMA SISA K e l a s i K- ateatika K e l a s XI PEMBAGIAN HORNER DAN TEOREMA SISA Tujuan Peelajaran Setelah epelajari ateri ini, kau diharapkan eiliki keapuan erikut.. Menguasai konsep peagian suku anyak dengan etode Horner..

Lebih terperinci

PATH KUAT TERKUAT DAN JARAK KUAT TERKUAT DALAM GRAF FUZZY. Lusia Dini Ekawati 1, Lucia Ratnasari 2. Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang

PATH KUAT TERKUAT DAN JARAK KUAT TERKUAT DALAM GRAF FUZZY. Lusia Dini Ekawati 1, Lucia Ratnasari 2. Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang PATH KUAT TERKUAT DAN JARAK KUAT TERKUAT DALAM GRAF FUZZY Lusia Dini Ekawati, Lucia Ratnasari, Jurusan Matematika FMIPA UNDIP Jl Prof H Soedarto, S H, Tembalang, Semarang Abstract Fuzzy graph is a graph

Lebih terperinci

Implementasi Penggunaan Bilangan Fuzzy Trapezoidal untuk Mencari Jalur Kritis pada Jaringan Proyek Fuzzy

Implementasi Penggunaan Bilangan Fuzzy Trapezoidal untuk Mencari Jalur Kritis pada Jaringan Proyek Fuzzy JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) 1 Implementasi Penggunaan Bilangan Fuzzy Trapezoidal untuk Mencari Jalur Kritis pada Jaringan Proyek Fuzzy Farah Nurul Ilma,

Lebih terperinci

TOPOLOGI METRIK PARSIAL

TOPOLOGI METRIK PARSIAL Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 71 78 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND TOPOLOGI METRIK PARSIAL DESY WAHYUNI Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB I PENDAHULUAN. Februari 2005, tergerus hingga posisi Rp.29 Triliun. Memang kondisi pada saat itu

BAB I PENDAHULUAN. Februari 2005, tergerus hingga posisi Rp.29 Triliun. Memang kondisi pada saat itu BAB I PENDAHULUAN 1.1.Latar elakang Instrumen-instrumen investasi akan semakin menarik dimana salah satunya adalah reksadana yang dapat menjadi satu pilihan portofolio investasi terutama yang diteritkan

Lebih terperinci

FUNGSI COMPUTABLE. Abstrak

FUNGSI COMPUTABLE.  Abstrak FUNGSI COMPUTABLE Ahmad Maimun 1, Suarsih Utama. 1, Sri Mardiyati 1 1 Departemen Matematika, FMIPA UI, Kampus UI Depok 16424 ahmad.maimun90@gmail.com, suarsih.utama@sci.ui.ac.id, sri_math@sci.ui.ac.id

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

Teorema Titik Tetap di Ruang Norm-2 Standar

Teorema Titik Tetap di Ruang Norm-2 Standar Teorema Titik Tetap di Ruang Norm- Standar Muh. Nur Universitas Hasanuddin Abstract Pada tulisan ini, akan dipelajari ruang norm- standar, yakni ruang hasil kali dalam yang dilengkapi dengan norm- standar.

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

BAB 2. RANDOMISASI DALAM PENELITIAN

BAB 2. RANDOMISASI DALAM PENELITIAN 16 BAB 2. RANDOMISASI DALAM PENELITIAN Randomisasi merupakan langkah peting dalam penelitian yang tidak dilakukan secara sensus. Dengan randomisasi yang aik maka akan dapat diperoleh sampel yang representatif

Lebih terperinci

Kajian Fungsi Metrik Preserving

Kajian Fungsi Metrik Preserving Kajian Fungsi Metrik Preserving A 2 Binti Mualifatul Rosydah Politeknik Perkapalan Negeri Surabaya Institut Teknologi Sepuluh Nopember Surabaya Jalan Teknik Kimia Kampus ITS Sukolilo Surabaya 6 Abstrak

Lebih terperinci

KAJIAN KONSEP RUANG NORMA-2 DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA

KAJIAN KONSEP RUANG NORMA-2 DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA Jurnal Matematika Murni dan Teraan εsilon Vol. 07, No.01, 013), Hal. 13 0 KAJIAN KONSEP RUANG NORMA- DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA Wahidah 1 dan Moch. Idris 1, Program Studi Matematika

Lebih terperinci

TOPOLOGI RUANG LINEAR

TOPOLOGI RUANG LINEAR TOPOLOGI RUANG LINEAR Nila Kurniasih Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo Jalan KHA. Dahlan 3 Purworejo e-mail: kurniasih.nila@yahoo.co.id Abstrak Tulisan ini bertujuan

Lebih terperinci

Volume 9 Nomor 1 Maret 2015

Volume 9 Nomor 1 Maret 2015 Volume 9 Nomor 1 Maret 015 Jurnal Ilmu Matematika dan Terapan Maret 015 Volume 9 Nomor 1 Hal. 1 10 KARAKTERISASI DAERAH DEDEKIND Elvinus R. Persulessy 1, Novita Dahoklory 1, Jurusan Matematika FMIPA Universitas

Lebih terperinci

I. Kombinasi momen lentur dengan gaya aksial tarik

I. Kombinasi momen lentur dengan gaya aksial tarik VII. BALOK KOLOM Komponen struktur seringkali menderita kominasi eerapa macam gaya secara ersama-sama, salah satu contohnya adalah komponen struktur alok-kolom. Pada alok-kolom, dua macam gaya ekerja secara

Lebih terperinci

III PEMBAHASAN. dengan kendala. Solusi dari permasalahan di atas diberikan oleh Teorema 1 berikut. Teorema 1 R = R (X) didefinisikan oleh

III PEMBAHASAN. dengan kendala. Solusi dari permasalahan di atas diberikan oleh Teorema 1 berikut. Teorema 1 R = R (X) didefinisikan oleh 4 III PEMBAHASAN 3.1. Meminimumkan Peluang Keangkrutan (Ruin Proaility) Keijakan suatu perusahaan asuransi dalam memilih kontrak reasuransi sangatlah penting, salah satu pendekatan rasional untuk memilih

Lebih terperinci

RANCANGAN ACAK KELOMPOK TAK LENGKAP SEIMBANG PARSIAL (RAKTLSP) ABSTRACT

RANCANGAN ACAK KELOMPOK TAK LENGKAP SEIMBANG PARSIAL (RAKTLSP) ABSTRACT ISSN: 339-54 JURNAL GAUSSIAN, Volume 4, Nomor, Tahun 05, Halaman 77-86 Online di: http://ejournal-s.undip.ac.id/index.php/gaussian RANCANGAN ACAK KELOMPOK TAK LENGKAP SEIMBANG PARSIAL (RAKTLSP) Gustriza

Lebih terperinci

Disusun Oleh : Dewi Ratna Nawangsari NRP Dosen Pembimbing : Tri Tiyasmihadi, ST. MT

Disusun Oleh : Dewi Ratna Nawangsari NRP Dosen Pembimbing : Tri Tiyasmihadi, ST. MT STUDI PENGARUH BENTANGAN(SPAN) PADA SINGLE GIRDER OVERHEAD CRANE DENGAN KAPASITAS 5 TON TYPE EKKE DAN ELKE DAN KAPASITAS 10 TON TYPE EKKE TERHADAP BERAT KONSTRUKSI GIRDERNYA Disusun Oleh : Dewi Ratna Nawangsari

Lebih terperinci

Perancangan Alat Pembuat Tusuk Sate Dengan Kaidah Ergonomis

Perancangan Alat Pembuat Tusuk Sate Dengan Kaidah Ergonomis TEKNOLOGI DI INDUSTRI (SENIATI) 206 ISSN : 2085-428 Perancangan Alat Pemuat Tusuk Sate Dengan Kaidah Ergonomis Mujiono,*, Erni Junita Dosen Teknik Industri, Institut Teknologi Nasional Malang *E-mail :

Lebih terperinci

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM.

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. HUKUM ITERASI LOGARITMA TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. 00290 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

PERATURAN MENTERI TENAGA KERJA REPUBLIK INDONESIA NOMOR PER-04/MEN/1993 TAHUN 1993 TENTANG JAMINAN KECELAKAAN KERJA

PERATURAN MENTERI TENAGA KERJA REPUBLIK INDONESIA NOMOR PER-04/MEN/1993 TAHUN 1993 TENTANG JAMINAN KECELAKAAN KERJA PERATURAN MENTERI TENAGA KERJA REPUBLIK INDONESIA NOMOR PER-04/MEN/1993 TAHUN 1993 TENTANG JAMINAN KECELAKAAN KERJA MENTERI TENAGA KERJA REPUBLIK INDONESIA, Menimang: a ahwa seagai pelaksanaan Pasal 19

Lebih terperinci

ANALISA KETUNGGALAN TITIK TETAP PADA PEMETAAN KONTRAKTIF DI RUANG METRIK LENGKAP DENGAN MEMANFAATKAN JARAK-W

ANALISA KETUNGGALAN TITIK TETAP PADA PEMETAAN KONTRAKTIF DI RUANG METRIK LENGKAP DENGAN MEMANFAATKAN JARAK-W ANALISA KETUNGGALAN TITIK TETAP PADA PEMETAAN KONTRAKTIF DI RUANG METRIK LENGKAP DENGAN MEMANFAATKAN JARAK-W Malahayati Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Lebih terperinci