PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA"

Transkripsi

1 PEAKSIR RASIO UTUK RATA-RATA POPULASI MEGGUAKA KOEFISIE VARIASI DA KOEFISIE KURTOSIS PADA SAMPLIG GADA Heru Agriato *, Arisma Ada, Firdaus Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiversitas Riau Kampus Biawida Pekabaru, 89, Idoesia * ABSTRAT This article discusses three tpe ratio estimators for populatio mea usig coefficiet of variatio ad coefficiet of kurtosis o double samplig which is a review from the article of Sigh et. al [Italia Joural of Pure ad Applied Mathematics-. 8(0): 5-4]. The three estimators are biased estimators, the the mea square error of each estimator is determied. Estimator with the smallest mea square error is the most efficiet estimator. Eample is give at the ed of discussio. Kewords: Ratio estimator, bias, mea square error MSE, double samplig, coefficiet of variatio ad coefficiet of kurtosis. ABSTRAK Peaksir ag dibahas dalam artikel ii merupaka tiga tipe peaksir rasio utuk ratarata populasi megguaka koefisie variasi da koefisie kurtosis pada samplig gada ag merupaka review dari artikel Sigh et. al [Italia Joural of Pure ad Applied Mathematics-. 8(0): 5-4]. Ketiga peaksir merupaka peaksir bias kemudia ditetuka mea square error MSE dari ketiga peaksir tersebut. Selajuta, MSE dari masig-masig peaksir dibadigka. Peaksir dega MSE terkecil merupaka peaksir ag efisie. otoh diberika pada akhir pembahasa. Kata kuci: Peaksir rasio, bias, mea square error MSE, samplig gada, koefisie variasi da koefisie kurtosis.. PEDAHULUA Metode samplig gada adalah suatu metode pegambila sampel secara dua tahap atau dua kali pegambila. Pada pegambila pertama atau tahap pertama diambil sampel berukura dari populasi berukura sebagai sampel tahap pertama. Selajuta pada pegambila kedua atau tahap kedua, sampel diambil berukura dari sampel JOM FMIPA Volume o. Februari 05 5

2 pertama berukura. Pegambila sampel pada samplig gada ii dilakuka secara acak sederhaa tapa pegembalia []. Misalka karakteristik ag dimiliki populasi adalah variabel, X da Z dega adalah variabel ag aka diteliti, serta X da Z adalah variabel tambaha ag telah diteliti sebeluma. Dega memafaatka hubuga variabel dega variabel tambaha X da Z ag berada dalam populasi ag sama maka dapat diguaka metode peaksir rasio. Diketahui bahwa, X da Z salig berkorelasi positif, sehigga pegguaa variabel tambaha dapat diguaka utuk meigkatka ketelitia peaksir. Peaksir rasio ii juga megguaka koefisie variasi da koefisie kurtosis B ( ). Koefisie variasi da koefisie kurtosis diguaka utuk meigkatka ketelitia. Pada samplig gada pegambila sampel dua kali dimaksudka adalah utuk memperkecil sampel ag dibutuhka da utuk lebih meghemat biaa da waktu. Peaksir ag baik dalam samplig gada adalah apabila rata-rata perkiraa sama dega parameter ag sebeara da diamaka peaksir tak bias. Peaksir ag memiliki variasi miimum merupaka peaksir ag baik utuk peaksir tak bias tetapi apabila rata-rata perkiraa tidak sama dega parameter sebeara diamaka peaksir bias, maka peaksir bias ag baik adalah peaksir bias ag memiliki Meas Square Error MSE miimum [].. PEAKSIR UTUK RATA-RATA POPULASI Dalam bagia ii dibahas beberapa peaksir pada samplig acak, atara lai peaksir utuk rata-rata populasi pada samplig acak sederhaa, peaksir utuk rata-rata populasi pada samplig gada da peaksir rasio utuk rata-rata populasi pada samplig gada. Serta memuat beberapa defiisi da teorema ag merupaka teori pedukug ag diguaka dalam meelesaika permbahasa. Misalka suatu populasi berukura dega ilai variabel i utuk masig-masig uit, i,,, maka rata-rata dari populasi defiisika dega i. Aka diambil sampel berukura uit dega ilai variabel i utuk masig-masig uit, i,,, maka rata-rata sampel didefiisika dega i []. (i) Samplig Acak Sederhaa Pearika sampel secara acak sederhaa adalah pegambila uit sampel dari uit populasi, dimaa setiap eleme populasi mempuai kesempata ag sama utuk terpilih mejadi aggota sampel. Pegambila sampel dapat dilakuka dega pegembalia atau tapa pegembalia. Ekspektasi dari aka sama dega, perataa ii dapat ditujukka sebagai berikut dega i E i Pi i P adalah probabilitas terpiliha i mejadi aggota sampel. Apabila probabilitas i terpilih mejadi aggota sampel adalah, maka E i i i i JOM FMIPA Volume o. Februari 05 5

3 dega demikia diperoleh E i E E i i E () Berdasarka persamaa () diataka bahwa adalah peaksir tak bias dari. Teorema [, h: 7] Apabila sampel berukura diambil dari populasi berukura ag berkarakter, dega samplig acak sederhaa tapa pegembalia maka variasi rata-rata sampel diotasika dega V aitu V S f S dega f adalah fraksi pearika sampel da S i adalah variasi i pada populasi berkarakter. Bukti: Bukti dari teorema ii dapat dilihat pada [, h: 7]. (ii) Samplig Gada Misalka terdapat suatu populasi berukura, diambil sampel berukura utuk diteliti, pegambila sampel berukura tersebut dilakuka dega samplig acak sederhaa tapa pegembalia. Ii merupaka pearika sampel tahap pertama ag disebut sebagai sampel pertama pada samplig gada. Selajuta diambil sampel ag aka diteliti berukura aitu sampel tahap kedua dari sampel berukura. Pegambila sampel tahap kedua juga megguaka samplig acak sederhaa tapa pegembalia. Teorema [, h: 87] Rata-rata sampel per uit sampel tahap kedua pada samplig gada adalah da rata-rata sampel per uit sampel tahap pertama adalah sas i sg j merupaka peaksir tak bias utuk rata-rata populasi, maka peaksir tak bias utuk rata-rata populasi. Bukti: Misalka rata-rata sampel per uit pada tahap kedua adalah diotasika j, dega kedua maka diperoleh, i sg j merupaka ij da merupaka peluag terambila sampel pada tahap P j E. j j i j i P ij j P ij E i i ij JOM FMIPA Volume o. Februari 05 54

4 E i P i i i i j. Teorema [, h: 87] Jika sampel pertama adalah acak da berukura, sampel kedua adalah sampel acak dari sampel pertama berukura. maka variasi pada samplig gada adalah V. ( j ) S i i dega S. Bukti: Bukti dari teorema ii dapat dilihat pada [, h: 87]. Peraksir Rasio utuk Rata-Rata Populasi pada Samplig Gada j Metode taksira utuk meaksir parameter populasi ag serig diguaka adalah metode rasio dega megguaka iformasi ag sudah ada ag merupaka variabel tambaha berkarakter X aitu dega memafaatka hubuga dega variable tambaha X ag berada dalam populasi ag sama. Pegguaa iformasi tambaha bertujua utuk meigkatka ketelitia peaksir. Sebeluma telah dibahas peaksir rasio da dual rasio utuk rata-rata populasi pada samplig gada masig-masig ag diajuka oleh Sukhatme [], aitu dega j j i i, j j,., Peaksir rasio adalah peaksir bias, kemudia ditetuka MSE. Bias da MSE peaksir rasio ag diajuka oleh Sukhatme [] utuk rata-rata populasi pada samplig gada sebagai berikut: Bias da MSE Peaksir Rasio aitu B f f f f MSE JOM FMIPA Volume o. Februari 05 55

5 . PEAKSIR RASIO UTUK RATA-RATA POPULASI PADA SAMPLIG GADA Dalam artikel ii dibahas tiga peaksir utuk rata-rata populasi pada samplig gada dega megguaka variabel tambaha X da Z dega megguaka koefisie variasi da koefisie kurtosis ag merupaka review dari artikel Sigh et. al [4], aitu dega da berkarakteristik X da Z, sg sg Z. () Z Z. (). (4) adalah rata-rata sampel tahap pertama dari populasi da populasi berkarakteristik da X, X adalah rata-rata populasi X. adalah rata-rata sampel tahap kedua dari Ketiga peaksir utuk rata-rata populasi tersebut merupaka peaksir bias, kemudia ditetuka MSE. Selajuta badigka MSE dari masig-masig peaksir utuk memperoleh peaksir ag efisie. Peaksir ag memiliki ilai MSE terkecil merupaka peaksir ag efisie. 4. BIAS DA MSE PEAKSIR RASIO UTUK RATA-RATA POPULASI Bias da MSE dari peaksir rasio pada persamaa (), (), da () utuk rata-rata populasi pada samplig gada dari masig-masig peaksir sebagai berikut Bias da MSE dari peaksir adalah B f f ( ) f f. f f f MSE. Bias da MSE dari peaksir adalah B f f ( f f. ) f f f MSE. Bias da MSE dari peaksir adalah B f f ( f f. ) f f f MSE, JOM FMIPA Volume o. Februari 05 56

6 dega f f f,,. 5. PEAKSIR RASIO AG EFISIE Utuk meetuka peaksir ag efisie dari peaksir ag bias, dapat ditetuka dega cara mecari selisih MSE dari ketiga peaksir.. Perbadiga atara peaksir rasio dega peaksir rasio MSE MSE jika. diperoleh. Perbadiga atara peaksir rasio dega peaksir rasio MSE MSE jika. diperoleh. Perbadiga atara peaksir rasio dega peaksir rasio diperoleh MSE MSE jika. 6. OTOH, produksi sawit X da luas Z pada masarakat perkebua kelapa sawit dikabupate kampar dalam Berikut merupaka data tetag pedapata bersih laha sawit bula []. JOM FMIPA Volume o. Februari 05 57

7 Tabel. Pedapata Bersih (Juta Rupiah), Produksi Sawit (To), da Luas Laha Sawit (Ha) pada Masarakat Perkebua Kelapa Sawit di Kabupate Kampar dalam Bula. o Pedapata Bersih (Juta Rupiah X Produksi Sawit (To) Z Luas Laha (Ha) JOM FMIPA Volume o. Februari 05 58

8 Sumber: [] Dega megguaka data pada Tabel aka ditetuka peaksir ag efisie utuk meaksir rata-rata Peghasila bersih (Juta Rupiah) dega megguaka sarat peaksir lebih efisie ag diperoleh sebeluma. Hal ii secara umum dapat ditujukka dega meghitug MSE dari masig-masig peaksir. Sebagai iformasi tambaha utuk meaksir rata-rata Peghasila bersih (Juta Rupiah), diguaka luas laha sawit (Ha) da produksi sawit (To) ag telah diteliti sebeluma. Iformasi ag diperoleh sebeluma diguaka utuk meetuka pedapata bersih dega megguaka Microsoft Ecel, aitu,45 0,067 0, , 9 X 5,798 0, 0,748 5 Z 5,866 0,0 0,976 0 Selajuta hitug MSE, diperoleh bahwa (i) MSE MSE (ii) MSE MSE (iii) MSE jika, 5. jika 0, 8 MSE jika 0, 848,90 JOM FMIPA Volume o. Februari 05 59

9 Selajuta ilai MSE dari masig-masig peaksir diberika pada Tabel. Tabel. ilai MSE ketiga peaksir o Peaksir MSE Rata-rata 0,04,49 0,07,496 0,00,46 Dari Tabel, dapat dilihat bahwa MSE MSE MSE Dega demikia adalah peaksir ag palig efisie. 7. KESIMPULA Dari pembahasa di atas, jika sarat efisiesi terpeuhi maka dapat disimpulka peaksir rasio merupaka peaksir ag relative efisie dibadig peaksir da peaksir. DAFTAR PUSTAKA [] ochra, W.G. 99. Tekik Pearika Sampel, Edisi Ketiga. Terj. Dari Samplig Techiques, oleh Rudiasah & E.R Osma. UI Press, Jakarta. [] Salomo Hubuga Luas Laha Sawit (Ha), Produksi Sawit (To) da pedapata dari Produksi Sawit (Juta Rupiah). Skripsi Fakultas Ekoomi Uiversitas Riau, Pekabaru. [] Sukhatme, P. V Samplig Theor of Surves with Applicatios. The Idia oucil of Agricultural Research, ew Delhi. [4] Sigh, R., P. hauha,. Sawa ad F. Smaradache. 0. Improvemet i Estimatig Populatio Mea Usig Two Auiliar Variables i Two-Phase Samplig. Italia Joural of Pure ad Applied Mathematics-. 8: 5-4. JOM FMIPA Volume o. Februari 05 60

PENAKSIR RANTAI RASIO DAN RANTAI PRODUK YANG EFISIEN UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA

PENAKSIR RANTAI RASIO DAN RANTAI PRODUK YANG EFISIEN UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA PENAKSIR RANTAI RASIO DAN RANTAI PRODUK YANG EFISIEN UNTUK MENAKSIR RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA V. M. Vidya *, Bustami, R. Efedi Mahasiswa Program S Matematika Dose Jurusa Matematika

Lebih terperinci

PENAKSIR RASIO DAN PRODUK YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SISTEMATIK

PENAKSIR RASIO DAN PRODUK YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SISTEMATIK PENAKI AIO DAN PODUK ANG EFIIEN UNTUK ATA-ATA POPULAI PADA AMPLING AAK ITEMATIK D. L. Pratiwi *, A. Ada,. ugiarto Mahasiswa Program Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA ADAPTIF CLUSTER

PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK BERSTRATA ADAPTIF CLUSTER PEAKI AIO UTUK ATA-ATA POPUAI PADA AMPIG ACAK BETATA ADAPTIF CUTE Dita Ardii uam Efedi Buami Maasisa Program Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetaua Alam Uiversitas iau Kampus

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT

Jurusan Matematika Universitas Riau, Riau 1 Kampus Binawidya Pekanbaru 28293, Indonesia Jurusan Matematika Universitas Riau, Riau 2 ABSTRACT Proidig emirata05 bidag MIPA BK-PT Barat Uiverita Tajugpura Potiaak PEAKIR RAIO DA PRODUK EKPOEIAL YAG EFIIE UTUK VARIAI POPULAI PADA AMPLIG ACAK EDERHAA EXPOETIAL RATIO AD PRODUCT ETIMATIO FOR POPULATIO

Lebih terperinci

PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI EKSPONENSIAL BERDASARKAN FUNGSI KERUGIAN KUADRATIK DAN FUNGSI KERUGIAN ENTROPI

PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI EKSPONENSIAL BERDASARKAN FUNGSI KERUGIAN KUADRATIK DAN FUNGSI KERUGIAN ENTROPI PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI EKSPONENSIAL BERDASARKAN FUNGSI KERUGIAN KUADRATIK DAN FUNGSI KERUGIAN ENTROPI Nadya Zulfa Negsih, Bustami Mahasiswa Program Studi S Matematika Dose Jurusa Matematika

Lebih terperinci

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA

PENAKSIR RASIO UNTUK VARIANSI POPULASI MENGGUNAKAN KUARTIL DARI KARAKTER TAMBAHAN PADA SAMPLING ACAK SEDERHANA PEAKIR RAIO UTUK VARIAI POPULAI MEGGUAKA KUARTIL DARI KARAKTER TAMBAHA PADA AMPLIG ACAK EDERHAA Ari Elvita *, Arima Ada, Hapoa irait Mahaiwa Program Matematika Doe Jurua Matematika Fakulta Matematika da

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

Aplikasi Interpolasi Bilinier pada Pengolahan Citra Digital

Aplikasi Interpolasi Bilinier pada Pengolahan Citra Digital Aplikasi Iterpolasi Biliier pada Pegolaha Citra Digital Veriskt Mega Jaa - 35408 Program Studi Iformatika Sekolah Tekik Elektro da Iformatika Istitut Tekologi Badug, Jl. Gaesha 0 Badug 403, Idoesia veriskmj@s.itb.ac.id

Lebih terperinci

PERTEMUAN 1-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 1-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 1-MPC PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK Utuk meigkatka presisi (meguragi varias samplig), desai samplig serig memafaatka auxiliarry variable yag mempuyai hubuga yag erat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata Probabilitas da Statistika da Adam Hedra Brata Dua Peubah Acak dua perubah acah X da Y dega rata-rata da diberika oleh rumus : E(XY) - - - Sifat Sifat Sifat kovariasi utuk X da Y diskrit : f(, ) f(, )

Lebih terperinci

PROSIDING ISBN:

PROSIDING ISBN: S-6 Perlukah Cross Validatio dilakuka? Perbadiga atara Mea Square Predictio Error da Mea Square Error sebagai Peaksir Harapa Kuadrat Kekelirua Model Yusep Suparma (yusep.suparma@ upad.ac.id) Uiversitas

Lebih terperinci

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN DALAM SUATU MODEL NON-LINIER Abstrak Nur ei 1 1, Jurusa Matematika FMIPA Uiversitas Tadulako Jl. Sukaro-Hatta Palu,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

Bab 3 Kerangka Pemecahan Masalah

Bab 3 Kerangka Pemecahan Masalah Bab 3 Keragka Pemecaha Masalah 3.1. Metode Pemecaha Masalah Peelitia ii disajika dalam lagkah-lagkah seperti ag terdapat pada gambar dibawah ii. Peajia secara sistematis dibuat agar masalah ag dikaji dalam

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

PERBANDINGAN PENAKSIR REGRESI LINIER SEDERHANA PADA SAMPLING BERPERINGKAT, SAMPLING EKSTRIM BERPERINGKAT DAN SAMPLING MEDIAN BERPERINGKAT

PERBANDINGAN PENAKSIR REGRESI LINIER SEDERHANA PADA SAMPLING BERPERINGKAT, SAMPLING EKSTRIM BERPERINGKAT DAN SAMPLING MEDIAN BERPERINGKAT PBANDINGAN PENAKSIR REGRESI LINI SEDHANA PADA SAMPLING BPINGKAT, SAMPLING EKSTRIM BPINGKAT DAN SAMPLING MEDIAN BPINGKAT E. W. Aitoag *, Haiso, R. Efedi Mahasiswi Pogam S Matematika Dose Juusa Matematika

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN METODE BAYES

PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN METODE BAYES Jural Matematika UNAND Vol. 3 No. 4 Hal. 52 59 ISSN : 233 29 c Jurusa Matematika FMIPA UNAND PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pegatar Statistika Matematika II Metode Evaluasi Atia Ahdika, S.Si., M.Si. Prodi Statistika FMIPA Uiversitas Islam Idoesia April 11, 2017 atiaahdika.com Pegguaa metode estimasi yag berbeda dapat meghasilka

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel.

II. LANDASAN TEORI. dihitung. Nilai setiap statistik sampel akan bervariasi antar sampel. II. LANDASAN TEORI Defiisi 2.1 Distribusi Samplig Distribusi samplig adalah distribusi probibilitas dari suatu statistik. Distribusi tergatug dari ukura populasi, ukura sampel da metode memilih sampel.

Lebih terperinci

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD)

Pengendalian Proses Menggunakan Diagram Kendali Median Absolute Deviation (MAD) Prosidig Statistika ISSN: 2460-6456 Pegedalia Proses Megguaka Diagram Kedali Media Absolute Deviatio () 1 Haida Lestari, 2 Suliadi, 3 Lisur Wachidah 1,2,3 Prodi Statistika, Fakultas Matematika da Ilmu

Lebih terperinci

Taksiran Interval bagi Rata-rata Parameter Distribusi Poisson Interval Estimate for The Average of Parameter Poisson Distribution

Taksiran Interval bagi Rata-rata Parameter Distribusi Poisson Interval Estimate for The Average of Parameter Poisson Distribution Prosidig Statistika ISSN: 460-6456 Taksira Iterval bagi Rata-rata Parameter Distribusi Poisso Iterval Estimate for The Average of Parameter Poisso Distributio 1 Putri Aggita Nuraei, Teti Sofia Yati, 3

Lebih terperinci

PERTEMUAN 9-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 9-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 9-MPC 2 PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK Two Stage Samplig (PPS WR-PPS WR) Misalka suatu survei dilakuka dega pearika sampel dua tahap (two stage samplig), dega tahapa

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

III. METODE PENELITIAN. Lokasi penelitian dilakukan di Provinsi Sumatera Barat yang terhitung

III. METODE PENELITIAN. Lokasi penelitian dilakukan di Provinsi Sumatera Barat yang terhitung 42 III. METODE PENELITIAN 3.. Lokasi da Waktu Peelitia Lokasi peelitia dilakuka di Provisi Sumatera Barat yag terhitug mulai miggu ketiga bula April 202 higga miggu pertama bula Mei 202. Provisi Sumatera

Lebih terperinci

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05.

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05. MA 8 STATISTIKA DASAR SEMESTER I /3 KK STATISTIKA, FMIPA ITB UJIAN AKHIR SEMESTER (UAS) Sei, Desember, 9.3.3 WIB ( MENIT) Kelas. Pegajar: Utriwei Mukhaiyar, Kelas. Pegajar: Sumato Wiotoharjo Jawablah pertayaa

Lebih terperinci

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA Jural Matematika UNAND Vol. 3 No. Hal. 7 34 ISSN : 33 9 c Jurusa Matematika FMIPA UNAND REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA EKA RAHMI KAHAR, DODI DEVIANTO Program

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Lokasi da objek peelitia Lokasi peelitia dalam skripsi ii adalah area Kecamata Pademaga, alasa dalam pemiliha lokasi ii karea peulis bertempat tiggal di lokasi tersebut sehigga

Lebih terperinci

BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA DAN FAKTOR DISKON

BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA DAN FAKTOR DISKON BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARA DAN FAKTOR DIKON 3.1 Ecoomic Order Quatity Ecoomic Order Quatity (EOQ) merupaka suatu metode yag diguaka utuk megedalika

Lebih terperinci

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling

Perbandingan Power of Test dari Uji Normalitas Metode Bayesian, Uji Shapiro-Wilk, Uji Cramer-von Mises, dan Uji Anderson-Darling Jural Gradie Vol No Juli 5 : -5 Perbadiga Power of Test dari Uji Normalitas Metode Bayesia, Uji Shapiro-Wilk, Uji Cramer-vo Mises, da Uji Aderso-Darlig Dyah Setyo Rii, Fachri Faisal Jurusa Matematika,

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

BAB III METODE PENELITIAN. pengumpulan data, validitas dan reabilitas alat ukur, metode analisis data.

BAB III METODE PENELITIAN. pengumpulan data, validitas dan reabilitas alat ukur, metode analisis data. 79 BAB III METODE PENELITIAN Dalam bab ii peeliti aka mejelaska tetag metode ag aka diguaka dalam peelitia meliputi; idetifikasi variabel peelitia, defeisi operasioal variabel peelitia, populasi da tekik

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

BAB IV APLIKASI METODE CALLBACK. Dalam bab sebelumnya telah dibahas mengenai cara mengatasi

BAB IV APLIKASI METODE CALLBACK. Dalam bab sebelumnya telah dibahas mengenai cara mengatasi BAB IV APLIKASI METODE CALLBACK Dalam bab sebelumya telah dibahas megeai ara megatasi orespo yaitu dega melakuka allbak pada respode yag tidak merespo. Callbak pada peelitia ii dibatasi haya sampai t =

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1 Beberapa Sifat Semigrup Matriks Atas Daerah Itegral Admittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIPA, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com Abstrak Diberika adalah daerah

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHuesa (Volume 3 No 3) 014 MINIMUM PENUTUP TITIK DAN MINIMUM PENUTUP SISI PADA GRAF KOMPLIT DAN GRAF BIPARTIT KOMPLIT Yessi Riskiada Kusumawardai Program Studi S1 Matematika, Fakultas Matematika da Ilmu

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2 Samplig Process ad Samplig Distributio Iferece : Poit ad Iterval Estimates Pertemua 1 CAKUPAN MATERI: Pemahama tetag Samplig Sampel Acak Sederhaa (Simple Radom Samplig SRS) Estimasi Titik (Poit Estimatio)

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1.Tempat da Waktu Peelitia ii dilakuka di ligkuga Kampus Aggrek da Kampus Syahda Uiversitas Bia Nusatara Program Strata Satu Reguler. Da peelitia dilaksaaka pada semester

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU Rahma Dodi 1, Musraii M 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

Bab III Metoda Taguchi

Bab III Metoda Taguchi Bab III Metoda Taguchi 3.1 Pedahulua [2][3] Metoda Taguchi meitikberatka pada pecapaia suatu target tertetu da meguragi variasi suatu produk atau proses. Pecapaia tersebut dilakuka dega megguaka ilmu statistika.

Lebih terperinci

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

PERBANDINGAN HASIL PENGUJIAN INTERCEPT

PERBANDINGAN HASIL PENGUJIAN INTERCEPT IdoMS Joural o Statistics Vol., No. (3), Page 35-47 PERBANDINGAN HASIL PENGUJIAN INTERCEPT PADA UJI SATU ARAH MAKSIMUM DAN MINIMUM PADA UJI-UJI TERKAIT NON-SAMPLE PRIOR INFORMATION PADA MODEL REGRESI SEDERHANA

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

OBJEK DAN METODE PENELITIAN. Objek ternak yang digunakan adalah itik Damiaking jantan dan betina

OBJEK DAN METODE PENELITIAN. Objek ternak yang digunakan adalah itik Damiaking jantan dan betina 1 III OBJEK DAN METODE PENELITIAN 3.1. Objek da Perlegkapa Peelitia 3.1.1. Objek Peelitia Objek terak yag diguaka adalah itik Damiakig jata da betia produktif dega umur lebih dari 7 bula di Kampug Teras

Lebih terperinci

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian

BAB II METODOLOGI PENELITIAN. kualitatif. Kerangka acuan dalam penelitian ini adalah metode penelitian BAB II METODOLOGI PEELITIA 2.1. Betuk Peelitia Betuk peelitia dapat megacu pada peelitia kuatitatif atau kualitatif. Keragka acua dalam peelitia ii adalah metode peelitia kuatitatif yag aka megguaka baik

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 6 BAB III METODE PENELITIAN 3.1 Desai Peelitia Meurut Kucoro (003:3): Peelitia ilmiah merupaka usaha utuk megugkapka feomea alami fisik secara sistematik, empirik da rasioal. Sistematik artiya proses yag

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 22 BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka di tiga kator PT Djarum, yaitu di Kator HQ (Head Quarter) PT Djarum yag bertempat di Jala KS Tubu 2C/57 Jakarta Barat,

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena 7 BAB III METODE PENELITIAN A. Jeis Peelitia Peelitia ii merupaka jeis peelitia deskriptif-kuatitatif, karea melalui peelitia ii dapat dideskripsika fakta-fakta yag berupa kemampua siswa kelas VIII SMP

Lebih terperinci

1200 (0,535) (0,465) (1200 1).0,05 + (0,535) (0,465)

1200 (0,535) (0,465) (1200 1).0,05 + (0,535) (0,465) = DATA DAN METODE PENELITIAN Data Peelitia Data yag diguaka dalam peelitia ii adalah data primer hasil yag diperoleh melalui peyebara kuisioer da metode wawacara sebagai data pelegkap. Pegumpula data dilaksaaka

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Tujua Peelitia Peelitia ii bertujua utuk megetahui apakah terdapat perbedaa hasil belajar atara pegguaa model pembelajara Jigsaw dega pegguaa model pembelajara Picture ad Picture

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES)

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES) rosidig Semirata2015 bidag MIA BKS-TN Barat Uiversitas Tajugpura otiaak BUKTI ALTERNATIF KONVERGENSI DERET ELL DAN ELL-LUCAS (ALTERNATIVE ROOF THE CONVERGENCE OF ELL AND ELL-LUCAS SERIES) Baki Swita 1

Lebih terperinci

BAB III METODE PENELITIAN. Lokasi penelitian ini dilakukan di Puskesmas Limba B terutama masyarakat

BAB III METODE PENELITIAN. Lokasi penelitian ini dilakukan di Puskesmas Limba B terutama masyarakat 38 3.1 Lokasi da Waktu Peelitia 3.1.1 Lokasi Peelitia BAB III METODE PENELITIAN Lokasi peelitia ii dilakuka di Puskesmas Limba B terutama masyarakat yag berada di keluraha limba B Kecamata Kota Selata

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

Contoh Produksi dua jenis sepatu A dan B memberikan fungsi keuntungan bulanan sebagai berikut :

Contoh Produksi dua jenis sepatu A dan B memberikan fungsi keuntungan bulanan sebagai berikut : I. OPTIMISASI FUNGSI TANPA KENDALA Utuk fugsi dua peubah ) f ag terdiferesial dua kali. Jika di titik ) P dipeuhi :. sarat stasioer)... > maka mecapai ekstrim di ) P. Jika : ekstrim maksimum mecapai maka

Lebih terperinci

APLIKASI REGRESI RIDGE LEAST ABSOLUTE DEVIATION PADA KASUS PELANGGARAN ASUMSI KENORMALAN DAN MULTIKOLINIERITAS

APLIKASI REGRESI RIDGE LEAST ABSOLUTE DEVIATION PADA KASUS PELANGGARAN ASUMSI KENORMALAN DAN MULTIKOLINIERITAS APLIKASI REGRESI RIDGE LEAST ABSOLUTE DEVIATION PADA KASUS PELANGGARAN ASUMSI KENORMALAN DAN MULTIKOLINIERITAS Idah Ayustia, Aa Islamiyati, Raupog Program Studi Statistika, FMIPA, Uiversitas Hasauddi ABSTRAK

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Metode Pegumpula Data Dalam melakuka sebuah peelitia dibutuhka data yag diguaka sebagai acua da sumber peelitia. Disii peulis megguaka metode yag diguaka utuk melakuka pegumpula

Lebih terperinci

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA OUTLINE LANJUTAN Peetua garis duga regresi dega Metode OLS kostata a da koefisie b Aalisis Varias komposisi variasi sekitar garis r da r Stadard

Lebih terperinci

METODE PENELITIAN. Penelitian tentang Potensi Ekowisata Hutan Mangrove ini dilakukan di Desa

METODE PENELITIAN. Penelitian tentang Potensi Ekowisata Hutan Mangrove ini dilakukan di Desa III. METODE PENELITIAN A. Lokasi da Waktu Peelitia Peelitia tetag Potesi Ekowisata Huta Magrove ii dilakuka di Desa Merak Belatug, Kecamata Kaliada, Kabupate Lampug Selata. Peelitia ii dilaksaaka atara

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 39-46, April 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 39-46, April 2002, ISSN : JURNAL MATEMATKA DAN KOMPUTER Vol 5 No, 39-46, April 22, SSN : 4-858 MENCAR SOLUS PENAKSR PARAMETER PADA ANALSS VARANS DENGAN PENDEKATAN GENERAL NVERS Sukestiaro Jurusa Matematika FMPA Uiversitas Negeri

Lebih terperinci

MENENTUKAN KOEFISIEN DETERMINASI ANTARA ESTIMASI M DENGAN TYPE WELSCH DENGAN LEAST TRIMMED SQUARE DALAM DATA YANG MEMPUNYAI PENCILAN

MENENTUKAN KOEFISIEN DETERMINASI ANTARA ESTIMASI M DENGAN TYPE WELSCH DENGAN LEAST TRIMMED SQUARE DALAM DATA YANG MEMPUNYAI PENCILAN Saitia Matematika ISSN: 337-9197 Vol. 0, No. 03 (014), pp. 5 35. MENENTUKAN KOEFISIEN DETERMINASI ANTARA ESTIMASI M DENGAN TYPE WELSCH DENGAN LEAST TRIMMED SQUARE DALAM DATA YANG MEMPUNYAI PENCILAN Sabam

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

PENAKSIR UNTUK RASIO POPULASI DENGAN VARIABEL BANTU YANG DITRANSFORMASI PADA METODE PASCA STRATIFIKASI ABSTRACT

PENAKSIR UNTUK RASIO POPULASI DENGAN VARIABEL BANTU YANG DITRANSFORMASI PADA METODE PASCA STRATIFIKASI ABSTRACT PEAKSIR UTUK RASIO POPULASI DEGA VARIABEL BATU YAG DITRASFORMASI PADA METODE PASCA STRATIFIKASI Marthel Lock, Arisman Adnan 2, Haposan Sirait 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika

Lebih terperinci