Solusi Ujian 2 EL2005 Elektronika Sabtu, 3 Mei

Ukuran: px
Mulai penontonan dengan halaman:

Download "Solusi Ujian 2 EL2005 Elektronika Sabtu, 3 Mei"

Transkripsi

1 Solus Ujan 2 EL2005 Elektronka Sabtu, 3 Me Transstor MOSFET Penguat berkut memlk penguatan -25V/V. Anggap nla kapastor tak berhngga. V DD = 5V, V t =0,7V, k n =1mA/V 2. Resstans nput R n sebesar 0,5M. Htunglah a) V OV b) I D c) d) R G e) Ampltudo maksmum snyal nput. +V DD =5V R G C 2 C 1 R n Petunjuk: Anggap arus AC yang melewat R G =0 untuk perhtungan penguatan snyal kecl. Anggap ada arus AC yang melalu R G dalam perhtungan R n. a) Arus DC pada R G nol sehngga dperoleh MOSFET selalu dalam keadaan saturas apabla, tegangan DC dran-source dan juga sehngga Arus pada MOSFET Dengan demkan dperoleh (pers 1) Transkonduktas snyal kecl MOSFET 1

2 Dengan menganggap arus AC yang melewat R G =0 untuk perhtungan penguatan snyal kecl, maka dperoleh Substtus persamaan terakhr ke persamaan 1 (tdak memenuh) b) Arus dran c) Resstans dran d) Dar resstans nput e) Ampltuda nput maksmum saat MOSFEt memasuk batas saturas Mengngat maka 2. Respons Frekuens Rendah Penguat Penguat berkut memlk C C1 =C E =C C2 =1 F, R B =100k, R sg =5k, g m =40mA/V, r =2,5k, R C =8k, dan =5k. Anggap tdak ada nteraks antar ketga kapastor. a) Htunglah f p1, f p2, dan f p3. b) Htung pula f L. 2

3 +V CC R C C c2 R sg C C1 V sg R B I C E -V EE a) Pole rangkaan b) Pole merupakan pole domnan sehngga frekuens cut-off rendah = 2213Hz 3. Respons Penguat Frekuens Tngg Pada rangkaan penguat MOSFET CS d bawah n, nla R sg =120k R G1 =300k R G2 =200k C gs =5pF, C gd =1pF, g m =3,33mA/V, =5k, R S =2k, =10k, C L =5pF, dengan efek panjang kanal dabakan ( =0), nla C C1 =C C2 =C S =. +V DD R G1 C C2 R sg C C1 C L V sg R G2 R S C S -V SS 3

4 a) Gambar rangkaan penggant snyal kecl pada daerah frekuens tengah (mdband) dan htung penguatan tegangan pada daerah frekuens n A M =V o /V sg. b) Gambarkan rangkaan penggant pada daerah frekuens tngg. Ubah rangkaan penggant n dengan menggunakan Teorema Mller, lalu turunkan fungs transfer A v (s)=v o (s)/v sg (s). Dar fungs transfer n, htunglah nla f H (upper 3-dB frekuency) dengan memperhtungkan semua pole yang ada. c) Untuk rangkaan yang sama sepert pada soal (b), gunakan Metode OCTC (Open Crcut Tme-Constant) untuk menghtung f H. d) Jka menurut perhtungan cara eksak nla f H =43,2MHz, htung prosentase kesalahan harga hasl masng-masng perhtungan pada soal (b) dan (c). a) Rangkaan penggant snyal kecl frekuens tengah R sg 0 v sg R n 1/g m b) Rangkaan penggant frekuens tngg R sg C gd 0 v sg R n C gs 1/g m Rangkaan penggant dengan Teorema Mller 4

5 R sg 0 C out v sg R n C n 1/g m Fungs transfer Frekuens cut-off dapat dhtung dar pole domnan c) Frekuens cut-off dengan OCTC d) Prosentas kesalahan cara perhtungan frekuens pole Prosentas kesalahan cara perhtungan konstanta waktu 5

6 4. Tahap Output Penguat Daya Untuk merancang tahap output sebuah penguat daya akan dgunakan transstor dengan casng yang memlk resstans termal 2,5 o C/W dan heatsnk dengan resstans termal 5,1 o C/W. Temperatur ambent penguat drancang untuk 30 o C dan temperatur juncton maksmum transstor dtentukan 125 o C. Tegangan saturas kolektor-emtor dan tegangan cut-n base-emtor dapat dabakan. a) Transstor dengan daya dspas maksmum P Dmax berapakah yang dapat dgunakan dengan pendngnan d atas yang mash aman dgunakan? b) Berapakah daya output maksmum pada beban bla tahap output menggunakan kelas A dengan arus pada sumber arus dplh agar tegangan swng output maksmum? c) Berapakah daya output maksmum pada beban bla tahap output menggunakan kelas B? a) Nla resstans termal total adalah 2,5+5,1=7,6 o C/W Selsh temperatur juncton ke amben =95 o C Daya dspas maksmum yang dalrkan transstor 95/7,6=12,5W. Jad transstor yang dgunakan harus mempunya P Dmax sekurangnya 12,5W b) Pada kelas A daya dspas maksmum terbesar saat tegangan output nol. Besar daya dspas n sama dengan daya dar catu daya. Daya output maksmum sebesar 25% daya dar catu daya atau sebesar 12,5*25%=3,125W. Dengan demkan dengan tahap penguat kelas A daya output terbesar dperoleh 3,125W. c) Pada kelas B daya dspas maksmum saat Daya output maksmum sebesar sehngga daya ouput penguat Dengan demkan dengan tahap penguat kelas B daya output terbesar dperoleh 30,84W. 5. Rangkaan Logka CMOS Fungs logka d bawah n akan dsusun dengan teknolog CMOS dengan L=0,1 m dan perbandngan geometr transstor n=1 dan p=3. Rancanglah rangkaan untuk fungs tersebut dan tentukan ukuran geometr tap transstornya. Snyal nput terseda dalam bentuk actve-hgh dan actve-low. Fungs logka akhr 6

7 Dalam bentuk ouutput actve-low Rangkaan dan ukuran geometr 7

EL2005 Elektronika PR#01

EL2005 Elektronika PR#01 EL2005 Elektronka PR#0 SOAL B C E G a. Buktkan bahwa n = ( ). b. Turunkan peramaan untuk A v = /. c. Htung nla n dan A v = / jka dberkan = 00 kω, = 00 Ω, = kω, dan = 00. d. Ulang oal (c) jka dberkan =

Lebih terperinci

PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel

PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel PRAKTIKUM 6 Penyelesaan Persamaan Non Lner Metode Newton Raphson Dengan Modfkas Tabel Tujuan : Mempelajar metode Newton Raphson dengan modfkas tabel untuk penyelesaan persamaan non lner Dasar Teor : Permasalahan

Lebih terperinci

ELEKTRONIKA ANALOG. Bab 2 BIAS DC FET Pertemuan 5 Pertemuan 7. Oleh : ALFITH, S.Pd, M.Pd

ELEKTRONIKA ANALOG. Bab 2 BIAS DC FET Pertemuan 5 Pertemuan 7. Oleh : ALFITH, S.Pd, M.Pd ELEKTONKA ANALOG Bab 2 BAS D FET Pertemuan 5 Pertemuan 7 Oleh : ALFTH, S.Pd, M.Pd 1 Pemran bas pada rangkaan BJT Masalah pemran bas rkatan dengan: penentuan arus dc pada collector yang harus dapat dhtung,

Lebih terperinci

Modulator dan Demodulator

Modulator dan Demodulator Modulator dan Demodulator Modulas adalah suatu proses dmana parameter gelombang pembawa (carrer sgnal) frekuens tngg dubah sesua dengan salah satu parameter snyal nformas/pesan. Dalam hal n snyal pesan

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

BAB V TEOREMA RANGKAIAN

BAB V TEOREMA RANGKAIAN 9 angkaan strk TEOEM NGKIN Pada bab n akan dbahas penyelesaan persoalan yang muncul pada angkaan strk dengan menggunakan suatu teorema tertentu. Dengan pengertan bahwa suatu persoalan angkaan strk bukan

Lebih terperinci

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

Pertemuan Ke-6 DC Biasing Pada BJT. ALFITH, S.Pd,M.Pd

Pertemuan Ke-6 DC Biasing Pada BJT. ALFITH, S.Pd,M.Pd Pertemuan Ke-6 D asng Pada J ALFH, S.Pd,M.Pd Pemran bas pada rangkaan J Masalah pemran bas rkatan dengan: penentuan arus dc pada collector yang harus dapat dhtung, dpredks dan tdak senstf terhadap perubahan

Lebih terperinci

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi.

Contoh 5.1 Tentukan besar arus i pada rangkaian berikut menggunakan teorema superposisi. BAB V TEOEMA-TEOEMA AGKAIA 5. Teorema Superposs Teorema superposs bagus dgunakan untuk menyelesakan permasalahan-permasalahan rangkaan yang mempunya lebh dar satu sumber tegangan atau sumber arus. Konsepnya

Lebih terperinci

Q POWER ELECTRONIC LABORATORY EVERYTHING UNDER SWITCHED

Q POWER ELECTRONIC LABORATORY EVERYTHING UNDER SWITCHED Q POWE ELECTONIC LABOATOY EEYTHING UNDE SWITCHED PAKTIKUM ELEKTONIKA ANALOG 01 P-04 Dasar Opamp Smt. Genap 2015/2016 A. Tujuan Menngkatkan pemahaman dan keteramplan mahasswa tentang: 1. Unjuk kerja dan

Lebih terperinci

berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat

berasal dari pembawa muatan hasil generasi termal, sehingga secara kuat 10 KARAKTRISTIK TRANSISTOR 10.1 Dasar Pengoperasan JT Pada bab sebelumnya telah dbahas dasar pengoperasan JT, utamannya untuk kasus saat sambungan kolektor-bass berpanjar mundur dan sambungan emtor-bass

Lebih terperinci

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman

P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman OTIMISASI enjadualan Optmal embangkt Oleh : Zurman Anthony, ST. MT Optmas pengrman daya lstrk Dmaksudkan untuk memperkecl jumlah keseluruhan baya operas dengan memperhtungkan rug-rug daya nyata pada saluran

Lebih terperinci

TEORI KESALAHAN (GALAT)

TEORI KESALAHAN (GALAT) TEORI KESALAHAN GALAT Penyelesaan numerk dar suatu persamaan matematk hanya memberkan nla perkraan yang mendekat nla eksak yang benar dar penyelesaan analts. Berart dalam penyelesaan numerk tersebut terdapat

Lebih terperinci

BAB III HIPOTESIS DAN METODOLOGI PENELITIAN

BAB III HIPOTESIS DAN METODOLOGI PENELITIAN BAB III HIPOTESIS DAN METODOLOGI PENELITIAN III.1 Hpotess Berdasarkan kerangka pemkran sebelumnya, maka dapat drumuskan hpotess sebaga berkut : H1 : ada beda sgnfkan antara sebelum dan setelah penerbtan

Lebih terperinci

ANALISIS REGRESI. Catatan Freddy

ANALISIS REGRESI. Catatan Freddy ANALISIS REGRESI Regres Lner Sederhana : Contoh Perhtungan Regres Lner Sederhana Menghtung harga a dan b Menyusun Persamaan Regres Korelas Pearson (Product Moment) Koefsen Determnas (KD) Regres Ganda :

Lebih terperinci

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN. Latar Belakang Matematka sebaga bahasa smbol yang bersfat unversal memegang peranan pentng dalam perkembangan suatu teknolog. Matematka sangat erat hubungannya dengan kehdupan nyata.

Lebih terperinci

SEARAH (DC) Rangkaian Arus Searah (DC) 7

SEARAH (DC) Rangkaian Arus Searah (DC) 7 ANGKAAN AUS SEAAH (DC). Arus Searah (DC) Pada rangkaan DC hanya melbatkan arus dan tegangan searah, yatu arus dan tegangan yang tdak berubah terhadap waktu. Elemen pada rangkaan DC melput: ) batera ) hambatan

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Al-Azhar 3 Bandar Lampung yang terletak di

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Al-Azhar 3 Bandar Lampung yang terletak di III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SMP Al-Azhar 3 Bandar Lampung yang terletak d Jl. Gn. Tanggamus Raya Way Halm, kota Bandar Lampung. Populas dalam peneltan n adalah

Lebih terperinci

RANGKAIAN SERI. 1. Pendahuluan

RANGKAIAN SERI. 1. Pendahuluan . Pendahuluan ANGKAIAN SEI Dua elemen dkatakan terhubung ser jka : a. Kedua elemen hanya mempunya satu termnal bersama. b. Ttk bersama antara elemen tdak terhubung ke elemen yang lan. Pada Gambar resstor

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 8 Bandar Lampung. Populasi dalam

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMPN 8 Bandar Lampung. Populasi dalam 1 III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SMPN 8 Bandar Lampung. Populas dalam peneltan n adalah seluruh sswa kelas VII SMPN 8 Bandar Lampung Tahun Pelajaran 01/013 yang terdr

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH BAB V ANALISA PEMECAHAN MASALAH 5.1 Analsa Pemlhan Model Tme Seres Forecastng Pemlhan model forecastng terbak dlakukan secara statstk, dmana alat statstk yang dgunakan adalah MAD, MAPE dan TS. Perbandngan

Lebih terperinci

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012

Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012 Pertemuan ke-4 Analsa Terapan: Metode Numerk 4 Oktober Persamaan Non Non--Lner: Metode NewtonNewton-Raphson Dr.Eng. Agus S. Muntohar Metode Newton Newton--Raphson f( f( f( + [, f(] + = α + + f( f ( Gambar

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4. PENGUJIAN PENGUKURAN KECEPATAN PUTAR BERBASIS REAL TIME LINUX Dalam membuktkan kelayakan dan kehandalan pengukuran kecepatan putar berbass RTLnux n, dlakukan pengujan dalam

Lebih terperinci

[email protected] Economc load dspatch problem s allocatng loads to plants for mnmum cost whle meetng the constrants, (lhat d http://en.wkpeda.org/) Economc Dspatch adalah pembagan pembebanan pada pembangktpembangkt

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Deskrps Data Hasl Peneltan Satelah melakukan peneltan, penelt melakukan stud lapangan untuk memperoleh data nla post test dar hasl tes setelah dkena perlakuan.

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 13 Bandar Lampung. Populasi dalam

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 13 Bandar Lampung. Populasi dalam III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SMP Neger 3 Bandar Lampung. Populas dalam peneltan n yatu seluruh sswa kelas VIII SMP Neger 3 Bandar Lampung Tahun Pelajaran 0/03 yang

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen yang telah dilaksanakan di SMA

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen yang telah dilaksanakan di SMA III. METODE PENELITIAN A. Waktu dan Tempat Peneltan Peneltan n merupakan stud ekspermen yang telah dlaksanakan d SMA Neger 3 Bandar Lampung. Peneltan n dlaksanakan pada semester genap tahun ajaran 2012/2013.

Lebih terperinci

PERANCANGAN JARINGAN AKSES KABEL (DTG3E3)

PERANCANGAN JARINGAN AKSES KABEL (DTG3E3) PERCG JRIG KSES KBEL (DTG3E3) Dsusun Oleh : Hafdudn,ST.,MT. (HFD) Rohmat Tulloh, ST.,MT (RMT) Prod D3 Teknk Telekomunkas Fakultas Ilmu Terapan Unverstas Telkom 015 Peramalan Trafk Peramalan Trafk Peramalan

Lebih terperinci

BAB II TEORI ALIRAN DAYA

BAB II TEORI ALIRAN DAYA BAB II TEORI ALIRAN DAYA 2.1 UMUM Perhtungan alran daya merupakan suatu alat bantu yang sangat pentng untuk mengetahu konds operas sstem. Perhtungan alran daya pada tegangan, arus dan faktor daya d berbaga

Lebih terperinci

PERCOBAAN 8 RANGKAIAN INVERTING DAN NON INVERTING OP-AMP

PERCOBAAN 8 RANGKAIAN INVERTING DAN NON INVERTING OP-AMP PCOBAAN 8 ANGKAIAN INVTING DAN NON INVTING OP-AMP 8. Tujuan : ) Mendemonstraskan prnsp kerja dar rangkaan penguat nvertng dan non nvertng dengan menggunakan op-amp 74. 2) Investgas penguatan tegangan closed

Lebih terperinci

BAB III METODE PENELITIAN. penelitian dilakukan secara purposive atau sengaja. Pemilihan lokasi penelitian

BAB III METODE PENELITIAN. penelitian dilakukan secara purposive atau sengaja. Pemilihan lokasi penelitian BAB III METODE PENELITIAN 3.1 Lokas Peneltan Peneltan dlaksanakan d Desa Sempalwadak, Kecamatan Bululawang, Kabupaten Malang pada bulan Februar hngga Me 2017. Pemlhan lokas peneltan dlakukan secara purposve

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SD Al-Azhar 1 Wayhalim Bandar Lampung. Populasi

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SD Al-Azhar 1 Wayhalim Bandar Lampung. Populasi 3 III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SD Al-Azhar Wayhalm Bandar Lampung. Populas dalam peneltan n adalah seluruh sswa kelas V yang terdr dar 5 kelas yatu V A, V B, V

Lebih terperinci

BAB 2 PRINSIP DASAR SISTEM TENAGA LISTRIK

BAB 2 PRINSIP DASAR SISTEM TENAGA LISTRIK BAB 2 PRINSIP DASAR SISTEM TENAGA LISTRIK Dalam bab 2 akan dlakukan nvestgas tentang bagamana alran energ dar rangkaan ac. Dengan menggunakan berbaga denttas trgonometr, daya sesaat p(t) dpsahkan menjad

Lebih terperinci

Pengukuran Laju Temperatur Pemanas Listrik Berbasis Lm-35 Dan Sistem Akuisisi Data Adc-0804

Pengukuran Laju Temperatur Pemanas Listrik Berbasis Lm-35 Dan Sistem Akuisisi Data Adc-0804 Pengukuran Laju Temperatur Pemanas Lstrk Berbass Lm-35 Dan Sstem Akuss Data Adc-0804 Ummu Kalsum Unverstas Sulawes Barat e-mal: [email protected] Abstrak Peneltan n merupakan pengukuran laju temperatur

Lebih terperinci

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan

Lebih terperinci

BAB 1 PENDAHULUAN. meningkatnya arus reaktif. Harmonisa telah terbukti memiliki dampak kerusakan

BAB 1 PENDAHULUAN. meningkatnya arus reaktif. Harmonisa telah terbukti memiliki dampak kerusakan BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Kualtas daya lstrk sangat dpengaruh oleh penggunaan jens-jens beban tertentu sepert beban non lner dan beban nduktf. Akbat yang dtmbulkannya adalah turunnya

Lebih terperinci

ANALISIS DATA KATEGORIK (STK351)

ANALISIS DATA KATEGORIK (STK351) Suplemen Respons Pertemuan ANALISIS DATA KATEGORIK (STK351) 7 Departemen Statstka FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referens Waktu Korelas Perngkat (Rank Correlaton) Bag. 1 Koefsen Korelas Perngkat

Lebih terperinci

UKURAN GEJALA PUSAT &

UKURAN GEJALA PUSAT & UKURAN GEJALA PUSAT & UKURAN LETAK UKURAN GEJALA PUSAT & LETAK Untuk mendapatkan gambaran yang jelas mengena suatu populas atau sampel Ukuran yang merupakan wakl kumpulan data mengena populas atau sampel

Lebih terperinci

KWARTIL, DESIL DAN PERSENTIL

KWARTIL, DESIL DAN PERSENTIL KWARTIL, DESIL DAN PERSENTIL 1. KWARTIL Kwartl merupakan nla yang membag frekuens dstrbus data menjad empat kelompok yang sama besar. Dengan kata lan kwartl merupakan nla yang membag tap-tap 25% frekuens

Lebih terperinci

BAB IV PEMBAHASAN HASIL PENELITIAN

BAB IV PEMBAHASAN HASIL PENELITIAN BAB IV PEMBAHASAN HASIL PENELITIAN A. Hasl Peneltan Pada peneltan yang telah dlakukan penelt selama 3 mnggu, maka hasl belajar matematka pada mater pokok pecahan d kelas V MI I anatussbyan Mangkang Kulon

Lebih terperinci

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai

II. TEORI DASAR. Definisi 1. Transformasi Laplace didefinisikan sebagai II. TEORI DASAR.1 Transormas Laplace Ogata (1984) mengemukakan bahwa transormas Laplace adalah suatu metode operasonal ang dapat dgunakan untuk menelesakan persamaan derensal lnear. Dengan menggunakan

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN. smoothing, dan siklis untuk barang jadi Mie Atom Metode Regresi Linier. Nama barang jadi: Mie Atom.

BAB 4 HASIL DAN PEMBAHASAN. smoothing, dan siklis untuk barang jadi Mie Atom Metode Regresi Linier. Nama barang jadi: Mie Atom. BAB 4 HASIL DAN PEMBAHASAN 4.1 Penghtungan 4.1.1 Penghtungan Peramalan 4.1.1.1 Peramalan Me Atom Contoh perhtungan peramalan permntaan dengan metode regres lner, regres kuadrats, double movng average,

Lebih terperinci

Matematika Keuangan Dan Ekonomi. Indra Maipita

Matematika Keuangan Dan Ekonomi. Indra Maipita Matematka Keuangan Dan Ekonom Indra Mapta NUITS BIS Pendahuluan Sebaga penabung seta nda keluar sebaga pemenang hadah undan, dan dapat memlh salah satu hadah berkut: Menerma uang sejumlah Rp 50.000.000

Lebih terperinci

METODE PENELITIAN. pelajaran 2011/ Populasi penelitian ini adalah seluruh siswa kelas X yang

METODE PENELITIAN. pelajaran 2011/ Populasi penelitian ini adalah seluruh siswa kelas X yang III. METODE PENELITIAN A. Waktu dan Tempat Peneltan Peneltan n telah dlaksanakan d SMA Neger 1 Bandar Lampung pada tahun pelajaran 011/ 01. Populas peneltan n adalah seluruh sswa kelas X yang terdr dar

Lebih terperinci

Deret Taylor & Diferensial Numerik. Matematika Industri II

Deret Taylor & Diferensial Numerik. Matematika Industri II Deret Taylor & Derensal Numerk Matematka Industr II Maclaurn Power Seres Deret Maclaurn adalah penaksran polnom derajat tak hngga 0 0! 0 n n 0 n! Notce: Deret nnte tak hngga menyatakan bahwa akhrnya deret

Lebih terperinci

BAB I Rangkaian Transient. Ir. A.Rachman Hasibuan dan Naemah Mubarakah, ST

BAB I Rangkaian Transient. Ir. A.Rachman Hasibuan dan Naemah Mubarakah, ST BAB I angkaan Transent Oleh : Ir. A.achman Hasbuan dan Naemah Mubarakah, ST . Pendahuluan Pada pembahasan rangkaan lstrk, arus maupun tegangan yang dbahas adalah untuk konds steady state/mantap. Akan tetap

Lebih terperinci

BAB VIII. Analisa AC Pada Transistor

BAB VIII. Analisa AC Pada Transistor Bab, Analsa A pada Transstot Hal 166 BAB Analsa A Pada Transstor Analsa A atau serngkal dsebut analsa snyal kecl pada penguat adala analsa penguat snyal A, dengan memblok snyal D yatu dengan memberkan

Lebih terperinci

PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Studi Kasus pada Data Inflasi Indonesia)

PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Studi Kasus pada Data Inflasi Indonesia) PENERAPAN METODE MAMDANI DALAM MENGHITUNG TINGKAT INFLASI BERDASARKAN KELOMPOK KOMODITI (Stud Kasus pada Data Inflas Indonesa) Putr Noorwan Effendy, Amar Sumarsa, Embay Rohaet Program Stud Matematka Fakultas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan

Lebih terperinci

IV. PERANCANGAN DAN IMPLEMENTASI SISTEM

IV. PERANCANGAN DAN IMPLEMENTASI SISTEM IV. PERANCANGAN DAN IMPLEMENTASI SISTEM Perancangan Sstem Sstem yang akan dkembangkan adalah berupa sstem yang dapat membantu keputusan pemodal untuk menentukan portofolo saham yang dperdagangkan d Bursa

Lebih terperinci

BAB 4 PERHITUNGAN NUMERIK

BAB 4 PERHITUNGAN NUMERIK Mata kulah KOMPUTASI ELEKTRO BAB PERHITUNGAN NUMERIK. Kesalahan error Pada Penelesaan Numerk Penelesaan secara numers dar suatu persamaan matemats kadang-kadang hana memberkan nla perkraan ang mendekat

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Data terdr dar dua data utama, yatu data denyut jantung pada saat kalbras dan denyut jantung pada saat bekerja. Semuanya akan dbahas pada sub bab-sub bab berkut. A. Denyut Jantung

Lebih terperinci

PENDUGAAN RASIO, BEDA DAN REGRESI

PENDUGAAN RASIO, BEDA DAN REGRESI TEKNIK SAMPLING PENDUGAAN RASIO, BEDA DAN REGRESI PENDAHULUAN Pendugaan parameter dar peubah Y seharusnya dlakukan dengan menggunakan nformas dar nla-nla peubah Y Bla nla-nla peubah Y sult ddapat, maka

Lebih terperinci

DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA

DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA DISTRIBUSI HASIL PENGUKURAN DAN NILAI RATA-RATA Dstrbus Bnomal Msalkan dalam melakukan percobaan Bernoull (Bernoull trals) berulang-ulang sebanyak n kal, dengan kebolehjadan sukses p pada tap percobaan,

Lebih terperinci

DAFTAR ISI DAFTAR ISI LATAR BELAKANG Teori Dasar Tujuan LANGKAH KERJA Rangkaian Buffer...

DAFTAR ISI DAFTAR ISI LATAR BELAKANG Teori Dasar Tujuan LANGKAH KERJA Rangkaian Buffer... DFT ISI DFT ISI....LT BELKNG... 2. Teor Dasar... 2.2 Tujuan... 3 2. LNGKH KEJ... 4.. angkaan Buer... 4.2. angkaan Invertng... 4.3. angkaan Non- Invertng... 5.4. angkaan Summng... 5.5. angkaan Derensator...

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi Daftar Is Daftar Is... Kata pengantar... BAB I...1 PENDAHULUAN...1 1.1 Latar Belakang...1 1.2 Rumusan Masalah...2 1.3 Tujuan...2 BAB II...3 TINJAUAN TEORITIS...3 2.1 Landasan Teor...4 BAB III...5 PEMBAHASAN...5

Lebih terperinci

III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan

III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan Pada bab n akan dbahas mengena penyelesaan masalah ops real menggunakan pohon keputusan bnomal. Dalam menentukan penlaan proyek, dapat dgunakan beberapa metode d antaranya dscounted cash flow (DF). DF

Lebih terperinci

BAB III METODE PENELITIAN. sebuah fenomena atau suatu kejadian yang diteliti. Ciri-ciri metode deskriptif menurut Surakhmad W (1998:140) adalah

BAB III METODE PENELITIAN. sebuah fenomena atau suatu kejadian yang diteliti. Ciri-ciri metode deskriptif menurut Surakhmad W (1998:140) adalah BAB III METODE PENELITIAN 3.1 Metode Peneltan Metode yang dgunakan dalam peneltan n adalah metode deskrptf. Peneltan deskrptf merupakan peneltan yang dlakukan untuk menggambarkan sebuah fenomena atau suatu

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c 6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan

Lebih terperinci

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat

Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat Mater Kulah Ekspermen Fska Oleh : Drs. Ishaft, M.S. Program Stud Penddkan Fska Unverstas Ahmad Dahlan, 07 Bab 3 Analss Ralat 3.. Menaksr Ralat Msalna suatu besaran dhtung dar besaran terukur,,..., n. Jka

Lebih terperinci

Bab 2 AKAR-AKAR PERSAMAAN

Bab 2 AKAR-AKAR PERSAMAAN Analsa Numerk Bahan Matrkulas Bab AKAR-AKAR PERSAMAAN Pada kulah n akan dpelajar beberapa metode untuk mencar akar-akar dar suatu persamaan yang kontnu. Untuk persamaan polnomal derajat, persamaannya dapat

Lebih terperinci

Penerapan Metode Runge-Kutta Orde 4 dalam Analisis Rangkaian RLC

Penerapan Metode Runge-Kutta Orde 4 dalam Analisis Rangkaian RLC Penerapan Metode Runge-Kutta Orde 4 dalam Analss Rangkaan RLC Rka Favora Gusa JurusanTeknk Elektro,Fakultas Teknk,Unverstas Bangka Beltung [email protected] ABSTRACT The exstence of nductor and capactor

Lebih terperinci

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA FI-500 Mekanka Statstk SEMESTER/ Sem. - 06/07 PR#4 : Dstrbus bose Ensten dan nteraks kuat Kumpulkan d Selasa 9 Aprl

Lebih terperinci

KWARTIL, DESIL DAN PERSENTIL

KWARTIL, DESIL DAN PERSENTIL KWARTIL, DESIL DAN PERSENTIL 1. KWARTIL Kwartl merupakan nla yang membag frekuens dstrbus data menjad empat kelompok yang sama besar. Dengan kata lan kwartl merupakan nla yang membag taptap 25% frekuens

Lebih terperinci

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen dengan populasi penelitian yaitu

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen dengan populasi penelitian yaitu 4 III. METODE PENELITIAN A. Populas Peneltan Peneltan n merupakan stud ekspermen dengan populas peneltan yatu seluruh sswa kelas VIII C SMP Neger Bukt Kemunng pada semester genap tahun pelajaran 01/013

Lebih terperinci

ANALISIS BENTUK HUBUNGAN

ANALISIS BENTUK HUBUNGAN ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel

Lebih terperinci

BOKS A SUMBANGAN SEKTOR-SEKTOR EKONOMI BALI TERHADAP EKONOMI NASIONAL

BOKS A SUMBANGAN SEKTOR-SEKTOR EKONOMI BALI TERHADAP EKONOMI NASIONAL BOKS A SUMBANGAN SEKTOR-SEKTOR EKONOMI BALI TERHADAP EKONOMI NASIONAL Analss sumbangan sektor-sektor ekonom d Bal terhadap pembangunan ekonom nasonal bertujuan untuk mengetahu bagamana pertumbuhan dan

Lebih terperinci

2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil

2.1 Sistem Makroskopik dan Sistem Mikroskopik Fisika statistik berangkat dari pengamatan sebuah sistem mikroskopik, yakni sistem yang sangat kecil .1 Sstem Makroskopk dan Sstem Mkroskopk Fska statstk berangkat dar pengamatan sebuah sstem mkroskopk, yakn sstem yang sangat kecl (ukurannya sangat kecl ukuran Angstrom, tdak dapat dukur secara langsung)

Lebih terperinci

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1

Pembayaran harapan yang berkaitan dengan strategi murni pemain P 2. Pembayaran Harapan bagi Pemain P1 Lecture : Mxed Strategy: Graphcal Method A. Metode Campuran dengan Metode Grafk Metode grafk dapat dgunakan untuk menyelesakan kasus permanan dengan matrks pembayaran berukuran n atau n. B. Matrks berukuran

Lebih terperinci

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK:

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA Contoh : hasl ulangan Matematka 5 sswa sbb: 6 8 7 6 9 Pengertan Statstka dan

Lebih terperinci

BAB III SKEMA NUMERIK

BAB III SKEMA NUMERIK BAB III SKEMA NUMERIK Pada bab n, akan dbahas penusunan skema numerk dengan menggunakan metoda beda hngga Forward-Tme dan Centre-Space. Pertama kta elaskan operator beda hngga dan memberkan beberapa sfatna,

Lebih terperinci

Bab 3. Penyusunan Algoritma

Bab 3. Penyusunan Algoritma Bab 3. Penusunan Algortma on anuwjaa/ 500030 Algortma merupakan penulsan permasalahan ang sedang dsorot dalam bahasa matematk. Algortma dbutuhkan karena komputer hana dapat membaca suatu masalah secara

Lebih terperinci

INFERENSI FUNGSI KETAHANAN DENGAN METODE KAPLAN-MEIER

INFERENSI FUNGSI KETAHANAN DENGAN METODE KAPLAN-MEIER Tatk Wdharh dan Naschah ska Andran (Inferens Fungs Ketahanan dengan Metode Kaplan-Meer INFERENI FUNGI KETAHANAN DENGAN METODE KAPLAN-MEIER Tatk Wdharh dan Naschah ska Andran Jurusan Matematka FMIPA UNDIP

Lebih terperinci

III. METODE PENELITIAN. bersifat statistik dengan tujuan menguji hipotesis yang telah ditetapkan.

III. METODE PENELITIAN. bersifat statistik dengan tujuan menguji hipotesis yang telah ditetapkan. 3 III. METDE PENELITIAN A. Metode Peneltan Metode peneltan merupakan langkah atau aturan yang dgunakan dalam melaksanakan peneltan. Metode pada peneltan n bersfat kuanttatf yatu metode peneltan yang dgunakan

Lebih terperinci

PHOTODETECTOR NOISE. Ref : Keiser. Fakultas Teknik Elektro 1

PHOTODETECTOR NOISE. Ref : Keiser. Fakultas Teknik Elektro 1 PHOTODETECTOR NOISE Ref : Keser Fakultas Teknk Elektro 1 Nose Detektor Foto S Daya snyal dr arus foto --- = ------------------------------------------------------------------ N Daya nose detektor foto

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan penelitian pengembangan (Research and

III. METODE PENELITIAN. Penelitian ini merupakan penelitian pengembangan (Research and III. METODE PENELITIAN A. Desan Peneltan Peneltan n merupakan peneltan pengembangan (Research and Development). Peneltan pengembangan yang dlakukan adalah untuk mengembangkan penuntun praktkum menjad LKS

Lebih terperinci

BAB IV PERHITUNGAN DAN ANALISIS

BAB IV PERHITUNGAN DAN ANALISIS BAB IV PERHITUNGAN DAN ANALISIS 4.1 Survey Parameter Survey parameter n dlakukan dengan mengubah satu jens parameter dengan membuat parameter lannya tetap. Pengamatan terhadap berbaga nla untuk satu parameter

Lebih terperinci

SOLUSI TUGAS MATA KULIAH STATISTIKA II

SOLUSI TUGAS MATA KULIAH STATISTIKA II SOLUSI TUGAS MATA KULIAH STATISTIKA II SOAL : Suatu Peneltan dlakukan untuk menelaah empat metode pengajaran, yatu Metode A (ceramah d kelas), Metode B (mengajak dskus langsung dengan sswa), Metode C (ceramah

Lebih terperinci

PHOTODETECTOR NOISE. Ref : Keiser

PHOTODETECTOR NOISE. Ref : Keiser PHOTODETECTOR NOISE Ref : Keser 1 Nose Detektor Foto S Daya snyal dr arus foto --- ------------------------------------------------------------------ N Daya nose detektor foto + daya nose enguat Sumber

Lebih terperinci

Interpretasi data gravitasi

Interpretasi data gravitasi Modul 7 Interpretas data gravtas Interpretas data yang dgunakan dalam metode gravtas adalah secara kualtatf dan kuanttatf. Dalam hal n nterpretas secara kuanttatf adalah pemodelan, yatu dengan pembuatan

Lebih terperinci

Hukum Termodinamika ik ke-2. Hukum Termodinamika ke-1. Prinsip Carnot & Mesin Carnot. FI-1101: Termodinamika, Hal 1

Hukum Termodinamika ik ke-2. Hukum Termodinamika ke-1. Prinsip Carnot & Mesin Carnot. FI-1101: Termodinamika, Hal 1 ERMODINAMIKA Hukum ermodnamka ke-0 Hukum ermodnamka ke-1 Hukum ermodnamka k ke-2 Mesn Kalor Prnsp Carnot & Mesn Carnot FI-1101: ermodnamka, Hal 1 Kesetmbangan ermal & Hukum ermodnamka ke-0 Jka dua buah

Lebih terperinci

APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Studi Kasus di PT. Sinar Terang Abadi )

APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Studi Kasus di PT. Sinar Terang Abadi ) APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Stud Kasus d PT. Snar Terang Abad ) Bagus Suryo Ad Utomo 1203 109 001 Dosen Pembmbng: Drs. I Gst Ngr Ra Usadha, M.S Jurusan Matematka

Lebih terperinci

PENGUAT FREKUENSI RENDAH (lanjutan)

PENGUAT FREKUENSI RENDAH (lanjutan) EEKTONKA ANAOG Pertemuan 5 PENGUAT FEKUENS ENDAH (lanjutan) Model-model Transstor Bpolar Snyal-ema yang Telt Model parameter yang lengkap dtunjukkan pada gamar erkut. Model snyal lema parameter- utk THB

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri I Tibawa pada semester genap

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri I Tibawa pada semester genap 5 BAB III METODOLOGI PENELITIAN 3. Lokas Dan Waktu Peneltan Peneltan n dlaksanakan d SMA Neger I Tbawa pada semester genap tahun ajaran 0/03. Peneltan n berlangsung selama ± bulan (Me,Jun) mula dar tahap

Lebih terperinci

PERBANDINGAN METODE PREDIKSI PENYELESAIAN PROYEK EARNED VALUE MANAGEMENT DAN EARNED SCHEDULE

PERBANDINGAN METODE PREDIKSI PENYELESAIAN PROYEK EARNED VALUE MANAGEMENT DAN EARNED SCHEDULE PERBANDINGAN METODE PREDIKSI PENYELESAIAN PROYEK EARNED VALUE MANAGEMENT DAN EARNED SCHEDULE Elsa Oktavtr And Tenrsukk Tenrajeng 2 Fakultas Teknk Spl Unverstas Gunadarma Abstrak Tujuan utama dalam sebuah

Lebih terperinci

Petunjuk Praktikum Fisika Dasar I. (Tumbukan Dalam Satu Dimensi)

Petunjuk Praktikum Fisika Dasar I. (Tumbukan Dalam Satu Dimensi) Petunjuk Praktkum Fska Dasar I (Tumbukan Dalam Satu Dmens) Dajukan Untuk Memenuh Tugas Tersruktur Mata ulah Ekspermen Fska Dasar 1 Jurusan Penddkan Fska Oleh : Muhamad Ihsanudn (0602425) JURUSAN PENDIDIAN

Lebih terperinci

SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA 2010 ANALISIS DISKRIMINAN DISKRIT UNTUK MENGELOMPOKKAN KOMPONEN

SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA 2010 ANALISIS DISKRIMINAN DISKRIT UNTUK MENGELOMPOKKAN KOMPONEN AALISIS DISKRIMIA DISKRIT UTUK MEGELOMPOKKA KOMPOE Bernk Maskun Jurusan Statstka FMIPA UPAD [email protected] Abstrak Untuk mengelompokkan hasl pengukuran yang dukur dengan p buah varabel dmana penlaan

Lebih terperinci

BAB II METODOLOGI PENELITIAN. Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian. variable independen dengan variabel dependen.

BAB II METODOLOGI PENELITIAN. Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian. variable independen dengan variabel dependen. BAB II METODOLOGI PENELITIAN A. Bentuk Peneltan Jens peneltan yang dgunakan dalam peneltan n adalah peneltan deskrptf dengan analsa kuanttatf, dengan maksud untuk mencar pengaruh antara varable ndependen

Lebih terperinci

BAB IV PEMBAHASAN HASIL PENELITIAN PENGARUH PENGGUNAAN METODE GALLERY WALK

BAB IV PEMBAHASAN HASIL PENELITIAN PENGARUH PENGGUNAAN METODE GALLERY WALK BAB IV PEMBAASAN ASIL PENELITIAN PENGARU PENGGUNAAN METODE GALLERY WALK TERADAP ASIL BELAJAR MATA PELAJARAN IPS MATERI POKOK KERAGAMAN SUKU BANGSA DAN BUDAYA DI INDONESIA A. Deskrps Data asl Peneltan.

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang Modul 1 Teor Hmpunan PENDAHULUAN Prof SM Nababan, PhD Drs Warsto, MPd mpunan sebaga koleks (pengelompokan) dar objek-objek yang H dnyatakan dengan jelas, banyak dgunakan dan djumpa dberbaga bdang bukan

Lebih terperinci

CONTOH SOAL #: PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA. dx dengan nilai awal: y = 1 pada x = 0. Penyelesaian: KASUS: INITIAL VALUE PROBLEM (IVP)

CONTOH SOAL #: PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA. dx dengan nilai awal: y = 1 pada x = 0. Penyelesaian: KASUS: INITIAL VALUE PROBLEM (IVP) PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA KASUS: INITIAL VALUE PROBLEM (IVP) by: st dyar kholsoh Mater Kulah: Pengantar; Metode Euler; Perbakan Metode Euler; Metode Runge-Kutta; Penyelesaan Sstem Persamaan

Lebih terperinci

Nama : Crishadi Juliantoro NPM :

Nama : Crishadi Juliantoro NPM : ANALISIS INVESTASI PADA PERUSAHAAN YANG MASUK DALAM PERHITUNGAN INDEX LQ-45 MENGGUNAKAN PORTOFOLIO DENGAN METODE SINGLE INDEX MODEL. Nama : Crshad Julantoro NPM : 110630 Latar Belakang Pemlhan saham yang

Lebih terperinci

BAB III PROSEDUR PENELITIAN. penelitian, hal ini dilakukan untuk kepentingan perolehan dan analisis data.

BAB III PROSEDUR PENELITIAN. penelitian, hal ini dilakukan untuk kepentingan perolehan dan analisis data. BAB III PROSEDUR PENELITIAN A. Metode Peneltan Metode peneltan harus dsesuakan dengan masalah dan tujuan peneltan, hal n dlakukan untuk kepentngan perolehan dan analss data. Mengena pengertan metode peneltan,

Lebih terperinci

Dalam sistem pengendalian berhirarki 2 level, maka optimasi dapat. dilakukan pada level pertama yaitu pengambil keputusan level pertama yang

Dalam sistem pengendalian berhirarki 2 level, maka optimasi dapat. dilakukan pada level pertama yaitu pengambil keputusan level pertama yang LARGE SCALE SYSEM Course by Dr. Ars rwyatno, S, M Dept. of Electrcal Engneerng Dponegoro Unversty BAB V OPIMASI SISEM Dalam sstem pengendalan berhrark level, maka optmas dapat dlakukan pada level pertama

Lebih terperinci

METODE NUMERIK. INTERPOLASI Interpolasi Beda Terbagi Newton Interpolasi Lagrange Interpolasi Spline.

METODE NUMERIK. INTERPOLASI Interpolasi Beda Terbagi Newton Interpolasi Lagrange Interpolasi Spline. METODE NUMERIK INTERPOLASI Interpolas Beda Terbag Newton Interpolas Lagrange Interpolas Splne http://maulana.lecture.ub.ac.d Interpolas n-derajat polnom Tujuan Interpolas berguna untuk menaksr hargaharga

Lebih terperinci

MANAJEMEN LOGISTIK & SUPPLY CHAIN MANAGEMENT KULIAH 3: MERANCANG JARINGAN SUPPLY CHAIN

MANAJEMEN LOGISTIK & SUPPLY CHAIN MANAGEMENT KULIAH 3: MERANCANG JARINGAN SUPPLY CHAIN MANAJEMEN LOGISTIK & SUPPLY CHAIN MANAGEMENT KULIAH 3: MERANCANG JARINGAN SUPPLY CHAIN By: Rn Halla Nasuton, ST, MT MERANCANG JARINGAN SC Perancangan jarngan SC merupakan satu kegatan pentng yang harus

Lebih terperinci