Pembahasan Soal-Soal Latihan 1.1
|
|
|
- Sukarno Sudirman Kurniawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Pembahasan Soal-Soal Latihan. Oleh : Fendi Alfi Fauzi Anda pasti masih ingat bagaimana memanipulasi bilangan, tetapi tidak ada salahnya untuk mengulang kembali sejenak. Dalam Soal-soal 0, sederhanakanlah sebanyak mungkin. Pastikan untuk menghilangkan semua tanda kurung dan memudahkan semua pecahan.. ) ) + 0. [ )] [ )] [ + ] ). [ + ) 9)] [7) )] [ + ] 9). [ 7 + ) + ] + [ + ] + ) ) 0 7 ) 9 ) 7 7 [ + ) ] [ ) + ] [ ) + ] [ ) ] [ + ] + [ ] [ )]. [ )] )] [ )] [ [ ] [ ] [ ] 9
2 9. ) 7 ) ) / + 9) ) + 9 ) / + 9 ) ) ) ) / 9 9 ) ) ) ) ) + ) ). [ + ] [ + ] [ ] + ) [ + ) ] [ ] + [ ] ) + ) ) ) 9 0. ) ) ) ) ) 9 9 Sedikit latihan aljabar akan baik untuk mahasiswa kalkulus. Dalam Soal-soal -, lakukan operasi yang diminta dan sederhanakan.
3 . x ) x + ) x 9. x ) x x + 9. x 9) x + ) x + x x 9 x + x 9. x + ) x ) x x + x x + 0x. t t + ) t t + ) t t + ) t t + ) 9t t + t t + t t + t t + 9t t + 7t t +. t ) t )t )t ) t t + )t ) t t + t 7. x x x )x + ) x ) x +. x x x x )x + ) x ) x + 9. x x...? ingat kembali bahwa x a) x x a + xa a maka x a ) x a) + x a xa sehingga x x x ) + x x x x ) + xx ) x ) x ) + x x x + + x x + x x x x x + x x + x x + x + x x) xx x + ) x) x )x + ) x ) x )x + ) x + x + x x + x + x + ) + x x + x
4 x + x x + x + x xx + ) x + ) xx + ) x. y + y 9y y + y y + y 9y y + y y ) + y 9y y + y ) y ) + y y )y + ) + y + y ) y + ) + y + y + )y + ) y + )y ) y + ) + y + y + y + y + )y ) y + 9y + y + )y ).. x + x x x x x x+ + x x x + x x + x + x + ) x ) x + ) x ) x + ) x ) x + ) x + ) x ) x + ) x x x x+ + x x x x x )x ) + x x x x ) x ) x ) x x ) x ) x ) x x ) x ) x ) x x x + x ) x + ) 0x 0 x ) x + ) 0 x ) x + 0 : x ) + x ) x ) x ) x ) x ) x ) + x )
5 . Carilah nilai masing-masing yang berikut; jika tak terdenisi, katakan demikian a) dikalikan dengan bilangan apapun akan bernilai 0 b). 0 tak terdefenisi 0 c). 0 0 d). tak terdefenisi 0 e). 0 f) Perlihatkan bahwa pembagian oleh 0 adalah tanpa arti sebagai berikut: Andaikan a 0. Jika a 0 Sekarang cari alasan mengapa 0 0 b, maka a b 0 0 yang merupakan kontradiksi. juga tanpa arti. 0 0 tak terdenisi. Jika kita misalkan x adalah hasil bagi dari 0 0 maka 0 x 0 sehingga 0 x 0. Maka berapapun nilai x pada himpunan bilangan Real akan memenuhi persamaan diatas mulai dari sampai + sehingga sangat banyak nilai x yang memenuhi. satu. Jadi 0 0 tak terdefenisi Tidak mungkin suatu pembagian punya hasil lebih dari 7. Nyatakanlah apakah masing-masing yang berikut benar atau salah. a). < 0 salah) b). > 9 benar) c). < 9 benar) d). > benar) e). 7 < 9 benar) f). 7 < 9 salah). Buktikan masing-masing jika a > 0, b > 0 a). a < b a < b a < b a < ab a < b ab < b Sehingga a < b b). a < b a > b a < b a b < sehingga b < a maka kita dapatkan a > b 9. Buktikan bahwa rata-rata dua buah bilangan terletak di antara kedua bilangan itu, artinya, buktikan bahwa: a < b a < a + b < b a < b a < a + b dan a < b a + b < b maka a < a + b < b sehingga a < a+b < b 0. Mana diantara yang berikut selalu benar jika a b? a). a b benar)
6 a b Pertaksamaan bernilai benar jika masing-masing dikurangi dengan sehingga) a b b). a b salah) a b Pertaksamaan dikalikan dengan ) sehingga a b c). a ab salah) a b pertaksamaan dikalikan dengan a dengan a < 0) a ab d). a a b a b pertaksamaan dikalikan dengan a baik a < 0 maupun a > 0 tetapi a akan selalu bernilai > 0 dan tanda ketaksamaan tidak akan berubah) a a b. Bilangan prima adalah bilangan asli bilangan bulat positif) yang hanya mempunyai dua bilangan asli pembagi, bilangan itu sendiri dan. Beberapa bilangan prima yang pertama adalah,,, 7,,, 7. Menurut Teorema Dasar Hitungan, setiap bilangan asli selain ) dapat kita tulis sebagai hasil kali suatu himpunan unik bilangan prima. Misalnya,... Tuliskan masing-masing yang berikut sebagai suatu hasil kali bilangan-bilangan prima. Catatan: Hasil kali tersebut adalah trivial jika bilangan itu adalah prima yaitu, ia hanya mempunyai satu faktor a) 0... b) 0.. c) d) Gunakan Teorema Dasar Hitungan Soal ) untuk membuktikan bahwa kuadrat sebarang bilangan asli selain ) dapat kita tulis sebagai hasil kali suatu himpunan unik bilangan prima, dengan masing-masing bilangan prima ini muncul sebanyak bilangan genap. Misaalnya, )... a b.b.c.d.d.d dimana b, c, dan d adalah bilangan prima a b.b.c.d.d.d) a b b c d d d ) b b b b b c c d d d d d d ) dari uraian di atas nampak bahwa kuadrat bilangan asli selain ) dapat kita tulis sebagai hasil kali suatu himpunan unik bilangan prima dengan masing-masing bilangan prima mucul sebanyak bilangan genap
7 . Buktikan bahwa adalah tak tasional! Petunjuk : Andaikan p di mana p dan q adalah bilangan-bilangan asli bukan q ). Maka p sehingga q p. Sekarang gunakan Soal untuk menemukan q suatu kontradiksi. Andaikan p q p q sehingga p q p q q Sementara pada soal no. disampaikan bahwa bilangan asli selain ) dapat ditulis sebagai hasil kali suatu himpunan unik bilangan prima, dengan masing-masing bilangan pima mucul sebanyak bilangan genap, sedangkan pada uraian di atas, angka hanya muncul sebanyak kali bukan sebanyak bilangan genap, sudah jelas bertentangan dengan Soal.. Buktikan bahwa adalah tak rasional lihat soal ) Andaikan adalah rasional maka dapat kita tuliskan menjadi p q dimana p dan q adalah bilangan-bilangan asli bukan ). p p q p q q q Terlihat bahwa angka hanya muncul sebanyak kali, bertentangan dengan pernyataan pada Soal. Terbukti bahwa takrasional.. Buktikan bahwa jumlah dua bilangan rasional adalah rasional. Pembahasan: Misalkan a dan b adalah bilangan rasional, maka dapat kita misalkan a m n dan b p dimana m, n, p, q adalah bilangan bulat. q a + b m + p mq+np n q nq Dari uraian diatas terbukti bahwa a + b dapat ditulis dalam bentuk x y dengan x mq + np dan y nq dimana x dan y adalah bilangan bulat. Jadi terbukti bahwa jumlah dua bilangan rasional adalah rasional. Buktikan bahwa hasilkali sebuah bilangan rasional selain 0) dengan sebuah bilangan takrasional adalah takrasional. Petunjuk: Coba buktikan melalui dengan kontradiksi misalkan: a bilangan rasional selain 0), dengan demikian a m, di mana m dan n n adalah bilangan bulat. b bilangan takrasional, Andaikan a.b rasional, dan dengan demikian a.b p p, di mana p dan q adalah bilangan bulat. Maka b pn q qa qm dari uraian di atas didapat bahwa b rasional bertentangan dengan hipotesis. Maka terbukti bahwa hasilkali bilangan rasional selain 0) dengan sebuah bilangan tak rasional adalah tak rasional 7. Mana di antara yang berikut rasional dan mana yang tak rasional? 7
1 SISTEM BILANGAN REAL
Pertemuan Standar kompetensi: mahasiswa memahami cara membangun sistem bilangan real, aturan dan sifat-sifat dasarnya. Kompetensi dasar Memahami aksioma atau sifat aljabar bilangan real Memahami fakta-fakta
1 SISTEM BILANGAN REAL
Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang
1 SISTEM BILANGAN REAL
Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang
KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA
KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan
PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya.
PEMAHAAN 1. Pengertian Kontradiksi Kontradiksi adalah dua pernyataan yang bernilai salah untuk setiap nilai kebenaran dari setiap komponen-komponennya. 2. Pembuktian dengan Kontradiksi Kontradiksi merupakan
Sistem Bilangan Real
TUGAS I ANALISIS REAL I Sistem Bilangan Real Tugas 1 Analisis Real I Disusun oleh : Nariswari Setya D. Kartini Marvina Puspito M0108022 M0108050 M0108056 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU
MA5032 ANALISIS REAL
(Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: [email protected]. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan
Sistem Bilangan Real. Pendahuluan
Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga
BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang
Pertemuan 2. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuanku Tambusai Bangkinang 0. Bilangan Real 0. Bilangan Real sebagai bentuk desimal Pada pembahasan berikutnya kita diasumsikan telah mengetahui dengan
Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan
4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan
BAB 1. PENDAHULUAN KALKULUS
BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan
1 SISTEM BILANGAN REAL
1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita
SOAL-SOAL PEMBAHASAN FUNGSI KOMPOSISI & INVERS FUNGSI
SOAL-SOAL PEMBAHASAN FUNGSI KOMPOSISI & INVERS FUNGSI Fendi Alfi Fauzi 16 April 014 1. Jika f x) p x, p konstanta positif, maka f x + x ) Jawab: f x + 1) f x) p x f x + x ) p x +x f x + 1) p x+1 f x +
SISTEM BILANGAN REAL
DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............
BILANGAN BERPANGKAT DAN BENTUK AKAR
BILANGAN BERPANGKAT DAN BENTUK AKAR 1. Bilangan Berpangkat Sederhana Dalam kehidupan sehari-hari kita sering menemui perkalian bilangan-bilangan dengan faktorfaktor yang sama. Misalkan kita temui perkalian
MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi
MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN Dosen : Fitri Yulianti, SP. MSi Skema Himpunan Kompleks Real Rasional Bulat Cacah Asli Genap Ganjil Prima Komposit Nol Bulat Negatif Pecahan Irasional Imajiner Pengertian
Contoh-contoh soal induksi matematika
Contoh-contoh soal induksi matematika Buktikan bahwa 2 n > n + 20 untuk setiap bilangan bulat n 5. (i) Basis induksi : Untuk n = 5, kita peroleh 2 5 > 5 + 20 adalah suatu pernyataan yang benar. (ii) Langkah
Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid
Bab 2 Daerah Euclid Pada bab ini akan dijelaskan mengenai daerah Euclid beserta struktur lain yang terkait nya. Beberapa struktur aljabar tersebut selanjutnya akan digunakan untuk melihat struktur gelanggang
KALKULUS 1 UNTUK MAHASISWA CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA
KALKULUS UNTUK MAHASISWA 9 CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA BAB I PENDAHULUAN. Sistem Bilangan Real Dalam Uraian
MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun
MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Tentang Mata Kuliah MA3231 Mata kuliah ini merupakan mata kuliah wajib bagi mahasiswa program studi S1 Matematika, dengan
2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com
2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut
INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK
INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3
Sistem Bilangan Riil. Pendahuluan
Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga
Relasi, Fungsi, dan Transformasi
Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian
Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.
Induksi Matematik 1 Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!
Induksi 1 Matematika
Induksi 1 Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Contoh : p(n): Jumlah bilangan bulat positif dari 1 sampai n adalah n(n + 1)/2. Buktikan p(n) benar!
Prestasi itu diraih bukan didapat!!! SOLUSI SOAL
SELEKSI OLIMPIADE TINGKAT PROVINSI 009 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 009 Bagian
BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak
BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi
III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf.
III BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk 00) Konsep ini merupakan pengembangan dari konsep dimensi partisi pewarnaan graf Pewarnaan titik pada
BAB I BILANGAN. Skema Bilangan. I. Pengertian. Bilangan Kompleks. Bilangan Genap Bilangan Ganjil Bilangan Prima Bilangan Komposit
BAB I BILANGAN Skema Bilangan Bilangan Kompleks Bilangan Real Bilangan Imajiner Bilangan Rasional Bilangan Irasional Bilangan Bulat Bilangan Pecahan Bilangan Cacah Bilangan Bulat Negatif Bilangan Asli
Pengantar Teori Bilangan. Kuliah 4
Pengantar Teori Bilangan Kuliah 4 Materi Kuliah Bilangan Prima dan Distribusinya Teorema Fundamental Aritmatika Saringan Eratosthenes 22/2/2014 Yanita, FMIPA Matematika Unand 2 Bilangan Prima dan Komposit
Sistem Bilangan Riil
Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0
BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN
BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR
TEKNIK PEMBUKTIAN. (Yus Mochamad Cholily)
TEKNIK PEMBUKTIAN (Yus Mochamad Cholily) Pembuktian merupakan aktifitas yang tidak bisa dipisahkan dengan Matematika. Hal ini disebabkan produk matematika pada umumnya berbentuk teorema yang harus dibuktikan
Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik.
Induksi Matematika Metode pembuktian untuk proposisi yang berkaitan dengan bilangan bulat adalah induksi matematik. Contoh: 1. Buktikan bahwa jumlah n bilangan bilangan bulat positif pertama adalah n(n
METODA PEMBUKTIAN DALAM MATEMATIKA
1 1 Program Studi Pend Matematika FKIP UM Ponorogo October 29, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat
PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN
Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 27 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENGKONSTRUKSIAN BILANGAN TIDAK KONGRUEN RATI MAYANG SARI Program Studi Matematika Fakultas Matematika
Sistem Bilangan Riil
Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga
n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai
Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritma Pembagian............................. 3 1.2 Pembagi persekutuan terbesar......................... 6 1.3 Algoritma Euclides............................... 11
KUMPULAN SOAL DAN PEMBAHASAN BILANGAN I SMP. Abdul Azis Abdillah. Januari 2017
Soal KUMPULAN SOAL DAN PEMBAHASAN BILANGAN I SMP Abdul Azis Abdillah Januari 07. Angka satuan dari + ( ) + ( 3) + ( 3 4) +... + ( 3 4... 07) adalah.... Diberikan dua buah bilangan yaitu x = 070707 06060606
Pertemuan 3 METODE PEMBUKTIAN
Pertemuan 3 METODE PEMBUKTIAN Metode Pembuktian Petunjuk umum dalam pembuktian Langkah-langkah untuk melakukan pembuktian adalah sebagai berikut: 1. Tulislah teorema yang akan dibuktikan 2. Tandailah permulaan
Pengantar Analisis Real
Modul Pengantar Analisis Real Dr Endang Cahya, MA, MSi P PENDAHULUAN ada Modul ini disajikan beberapa topik pengantar mata kuliah Analisis Real, yang terbagi dalam beberapa kegiatan belajar yang harus
METODA PEMBUKTIAN DALAM MATEMATIKA
1 1 Program Studi Pend Matematika FKIP UM Ponorogo January 12, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat
INF-104 Matematika Diskrit
Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?
TEORI BILANGAN. Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0.
TEORI BILANGAN Bilangan Bulat Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Sifat Pembagian pada Bilangan Bulat Misalkan a dan b adalah dua buah bilangan
METODA PEMBUKTIAN DALAM MATEMATIKA
METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan HERNADI & Uki Suhendar, S.Pd (Asrul dan Enggar) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 8 FONDASI MATEMATIKA Matematika Bukan Sekedar
II. TINJAUAN PUSTAKA. 2.1 Bilangan Bulat, Bilangan Rasional, dan Bilangan Real. dengan huruf kecil. Sebagai contoh anggota himpunan A ditulis ;
4 II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat, Bilangan Rasional, dan Bilangan Real Himpunan dinyatakan dengan huruf kapital dan anggota himpunan dinyatakan dengan huruf kecil. Sebagai contoh anggota himpunan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 9-10 METODE KONTRADIKSI & METODE KONTRAPOSISI (c) Hendra Gunawan (2015) 2 Metode Pembuktian Lainnya Pada bab-bab sebelumnya kita telah
Soal dan Pembahasan Tentang Suku Banyak
Soal dan Pembahasan Tentang Suku Banyak Oleh : Fendi Alfi Fauzi 9 Maret 014 1. Nilai suku banyak untuk f (x) = x 3 x 3x + 5 untuk x = adalah... f ( ) = ( ) 3 ( ) 3 ( ) + 5 = 16 4 + 6 + 5 = 0 + 11 = 9.
UNIVERSITAS GADJAH MADA. Bahan Ajar:
UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB / POKOK BAHASAN
Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.
Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3
Prestasi itu diraih bukan didapat!!! SOLUSI SOAL
"We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang
G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.
2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,
BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional
BAB III PECAHAN KONTINU dan PIANO A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional Sekarang akan dibahas tentang pecahan kontinu tak hingga yang diawali dengan barisan tak hingga bilangan bulat mendefinisikan
Keterbagian Pada Bilangan Bulat
Latest Update: March 8, 2017 Pengantar Teori Bilangan (Bagian 1): Keterbagian Pada Bilangan Bulat Muhamad Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit
BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT
BAB I TEORI KETERBAGIAN DALAM BILANGAN BULAT. Pendahuluan Well-Ordering Principle Jika S himpunan bagian dari himpunan bilangan bulat positif yang tidak kosong, maka S memiliki sebuah unsur terkecil. Unsur
Catatan Kuliah MA1123 Kalkulus Elementer I
Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):
SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum
Bab I. Sekilas Tentang Konsep Dasar Grup antonius cp 2 1. Tertutup, yakni jika diambil sebarang dua elemen dalam G maka hasil operasinya juga akan merupakan elemen G dan hasil tersebut adalah tunggal.
Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep
GRUP Bab ini merupakan awal dari bagian pertama materi utama perkuliahan Struktur Aljabar I. Pada bab ini disajikan tentang pengertian grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep
Logika Pembuktian. Matematika Informatika 3 Onggo
Logika Pembuktian Matematika Informatika 3 Onggo Wr @OnggoWr Metode Pembuktian 1. Metode Pembuktian Langsung (Direct Proof) 2. Metode Pembuktian Tak-Langsung (Indirect Proof) a. Proof by Contrapositive
1 INDUKSI MATEMATIKA
1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua
Arief Ikhwan Wicaksono, S.Kom, M.Cs
Arief Ikhwan Wicaksono, S.Kom, M.Cs [email protected] masawik.blogspot.com @awik1212 Kalkulus (Bahasa Latin: calculus, artinya "batu kecil", untuk menghitung) adalah cabang ilmu matematika
BAB III KUANTOR kuantor, 1. Kuantor Universal 3. Kuantor Eksistensial
BAB III KUANTOR Untuk mengubah kalimat tebuka menjadi kalimat deklaratif, selain dengan jalan mengganti variabel dengan konstanta, dapat juga dilakukan dengan menggunakan kuantor, yaitu dengan menggunakan
BAB I NOTASI, KONJEKTUR, DAN PRINSIP
BAB I NOTASI, KONJEKTUR, DAN PRINSIP Kompetensi yang akan dicapai setelah mempelajari bab ini adalah sebagai berikut. (1) Dapat memberikan sepuluh contoh notasi dalam teori bilangan dan menjelaskan masing-masing
Pengantar : Induksi Matematika
Pengantar : Induksi Matematika Analisis Real /2 SKS/ Ega Gradini, M.Sc Induksi Matematika adalah cara standar dalam membuktikan bahwa sebuah pernyataan tertentu berlaku untuk setiap bilangan asli. Pembuktian
Sistem Bilangan Ri l
Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π
Induksi Matematika. Fitriyanti Mayasari
Induksi Matematika Fitriyanti Mayasari Pendahuluan Induksi Matematika merupakan salah satu cara yang dapat digunakan untuk membuktikan pernyataan-pernyataan yang menegaskan bahwa suatu p(n) adalah benar
FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya
FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah
ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB
(Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: [email protected]. August 18, 2011 Kita telah mencatat sebelumnya bahwa supremum dan infimum suatu himpunan tidak harus merupakan anggota himpunan
B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)
1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat
Diktat Kuliah. Oleh:
Diktat Kuliah TEORI GRUP Oleh: Dr. Adi Setiawan UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2015 Kata Pengantar Aljabar abstrak atau struktur aljabar merupakan suatu mata kuliah yang menjadi kurikulum nasional
TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses
II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi teori pendukung dalam proses penelitian untuk penyelesaian persamaan Diophantine dengan relasi kongruensi modulo m mengenai aljabar dan
Himpunan dan Fungsi. Modul 1 PENDAHULUAN
Modul 1 Himpunan dan Fungsi Dr Rizky Rosjanuardi P PENDAHULUAN ada modul ini dibahas konsep himpunan dan fungsi Pada Kegiatan Belajar 1 dibahas konsep-konsep dasar dan sifat dari himpunan, sedangkan pada
MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS
MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan
BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN
BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب
BAB II KETERBAGIAN. 1. Mahasiswa bisa memahami pengertian keterbagian. 2. Mahasiswa bisa mengidentifikasi bilangan prima
BAB II KETERBAGIAN 2.1 Pendahuluan Pada pertemuan minggu ke-3, dan 4 ini dibahas konsep keterbagian, algoritma pembagian dan bilangan prima pada bilangan bulat. Relasi keterbagian pada himpunan semua bilangan
Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih
Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint
Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS
Nama Mata Kuliah : Teori Bilangan Kode Mata Kuliah/SKS : MAT- / 2 SKS Program Studi : Pendidikan Matematika Semester : IV (Empat) Oleh : Nego Linuhung, M.Pd Faktor Persekutuan Terbesar (FPB) dan Kelipatan
PENGANTAR ANALISIS REAL
Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,
SISTEM BILANGAN REAL
DAFTAR ISI SISTEM BILANGAN REAL. Sifat Aljabar Bilangan Real......................2 Sifat Urutan Bilangan Real..................... 6.3 Nilai Mutlak dan Jarak Pada Bilangan Real.............4 Supremum
OSN 2014 Matematika SMA/MA
Soal 1. Bilangan-bilangan 1,2,..., 9 akan ditempatkan ke dalam papan catur berukuran 3 3. Mungkinkah bilangan-bilangan ini ditempatkan sehingga setiap dua persegi yang bertetangga, baik secara vertikal
Pengantar Teori Bilangan
Pengantar Teori Bilangan Kuliah 2 2/2/2014 Yanita, FMIPA Matematika Unand 1 Materi Kuliah 2 Teori Pembagian dalam Bilangan Bulat Algoritma Pembagian Pembagi Persekutuan Terbesar 2/2/2014 2 Algoritma Pembagian
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 536 Oleh : Fendi Alfi Fauzi. Nilai p agar vektor 2i + pj + k dan i 2j 2k saling tegak lurus adalah... a) 6
INF-104 Matematika Diskrit
Teori Himpunan Jurusan Informatika FMIPA Unsyiah February 25, 2015 Himpunan (set) adalah koleksi dari objek-objek yang terdefinisikan dengan baik. Terdefinisikan dengan baik dimaksudkan bahwa untuk sebarang
PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)
PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan
BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN
BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN 2.1 Pendahuluan Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi
ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan
(Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: [email protected]. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang
MATEMATIKA 3 TPP: Disusun oleh Dr. Ir. Dwiyati Pujimulyani,MP. Program Studi Teknologi Hasil Pertanian Fakultas Agroindustri
MATEMATIKA 3 TPP: 1202 Disusun oleh Dr. Ir. Dwiyati Pujimulyani,MP Program Studi Teknologi Hasil Pertanian Fakultas Agroindustri Universitas Mercu Buana Yogyakarta 2013 BILANGAN REAL/ RIIL Sistem bilangan
Ringkasan Materi Kuliah Bab II FUNGSI
Ringkasan Materi Kuliah Bab II FUNGSI. FUNGSI REAL, FUNGSI ALJABAR, DAN FUNGSI TRIGONOMETRI. TOPIK-TOPIK YANG BERKAITAN DENGAN FUNGSI.3 FUNGSI KOMPOSISI DAN FUNGSI INVERS. FUNGSI REAL, FUNGSI ALJABAR,
BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi.
BAB PENDAHULUAN Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi Himpunan Real Ada beberapa notasi himpunan yang sering digunakan dalam Analisis () merupakan
Bilangan Real. Modul 1 PENDAHULUAN
Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah
CHAPTER 5 INDUCTION AND RECURSION
CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil
CHAPTER 5 INDUCTION AND RECURSION
CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil
2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika
Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun
03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa
0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :
Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya
BAB I A. SISTEM BILANGAN REAL Sistem bilangan real dan berbagai sifatnya merupakan basis dari kalkulus. Sistem bilangan real terdiri dari himpunan unsur yang dinamakan Bilangan Real yang sering dinyatakan
RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6)
RUMUS-RUMUS TAUTOLOGI (Minggu ke-5 dan 6) 1 1 Rumus-rumus tautologi Rumus 1.1 (Komutatif) 1. p q q p 2. p q q p Bukti: p q p q q p T T T T T F F F F T F F F F F F 2 Rumus 1.2 (Distributif) 1. p (q r) (p
Lembar Kerja Mahasiswa 1: Teori Bilangan
Lembar Kerja Mahasiswa 1: Teori Bilangan N a m a : NIM/Kelas : Waktu Kuliah : Kompetensi Dasar dan Indikator: 1. Memahami pengertian faktor dan kelipatan bilangan bulat. a) Menuliskan denisi faktor suatu
Bilangan Riil, Nilai Mutlak, Fungsi
Bilangan Riil, Nilai Mutlak, Fungsi Kalkulus Dasar - Kimia Mohammad Mahfuzh Shiddiq Universitas Lambung Mangkurat September 13, 2016 M.Mahfuzh S. () kalkulus dasar September 13, 2016 1 / 20 Sistem Bilangan
