Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Ukuran: px
Mulai penontonan dengan halaman:

Download "Prestasi itu diraih bukan didapat!!! SOLUSI SOAL"

Transkripsi

1 SELEKSI OLIMPIADE TINGKAT PROVINSI 009 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh :

2 Solusi Olimpiade Matematika Tk Provinsi 009 Bagian Pertama BAGIAN PERTAMA. Banyaknya macam adalah (,, 6), (,, 5), (,, 4), (,, 4), (,, ) beserta permutasi yang berturut-turut ada sebanyak, 6, 6, dan. Banyaknya macam hasil lemparan ( ) + ( 44) Karena bilangan kuadrat tidak mungkin negatif maka tidak ada real yang memenuhi. Banyaknya bilangan real yang memenuhi adalah 0. a b c. + + b c a Karena a, b dan c positif maka dengan ketaksamaan AM-GM didapat a b c a b c + + b c a b c a Tanda kesamaan terjadi jika a b c. a b c Karena + + maka haruslah a b c yang kontradiksi dengan a < b < c. b c a Banyaknya bilangan positif a yang memenuhi adalah n + S n N N n n + n + + N n + n + n + Karena n + n maka haruslah n + Jadi n +, tetapi n N sehingga tidak ada n N yang memenuhi. Semua himpunan bagian dari S adalah { }. Banyaknya himpunan bagian dari S adalah. 5. Misalkan garis tinggi dari A memotong sisi BC di D dan AD. Tanpa mengurangi keumuman misalkan CD dan DB 7.

3 Solusi Olimpiade Matematika Tk Provinsi 009 Bagian Pertama tan CAD + tan DAB tan CAB tan( CAD + DAB) tan CAD tan DAB 7 + yang ekivalen dengan ( )( + 5) 0 Karena > 0 maka AD Luas ABC ½ AD BC ½ ( + 7) Luas ABC adalah 0. 9 sin + 4 sin Untuk 0 < < π maka sin > 0 Dengan AM-GM didapat 6. f ( ) 9 sin f sin sin sin 4 Tanda kesamaan terjadi jika 9 sin atau sin sin 9 sin + 4 Nilai minimum dari f ( ) adalah. sin ( ) 9sin + 9sin 7. Misalkan garis tinggi ketiga t. Misalkan juga 6, 0 dan t adalah garis tinggi-garis tinggi yang berturut-turut sepadan dengan sisisisi a, b dan c. Dengan rumus luas segitiga ABC didapat hubungan 6a 0b tc a > b + c Dengan ketaksamaan segitiga didapat b c > + a a 6 > + 5 t t < 5. Jika t 4 maka 6a 0b 4c a : b : c : : 5 : : Karena a 5k < b + c 6k untuk suatu nilai real k maka t 4 memenuhi. Panjang maksimum garis tinggi ketiga adalah 4.

4 Solusi Olimpiade Matematika Tk Provinsi 009 Bagian Pertama 8. f ( + ) ( ) ( ) + f dan f() f + f () f ( 4) + f () f ( 6 ) Sehingga nilai f(n) untuk n bulat akan periodik dengan kala ulang 4. Karena 009 4(50) + maka nilai f(009) f(5) Nilai fungsi f(009) adalah. 9. r ( a + b + c) R Luas ABC r( a + b + c) ab abc 4R ab R Alternatif : Dengan mensubtitusikan bahwa c R, a c sin A dan b c cos A maka 4 sin A cos A sin A Karena a < b < c maka A < B < C.

5 Solusi Olimpiade Matematika Tk Provinsi 009 Bagian Pertama Jadi, A 0 o, B 60 o dan C 90 o. ( a + b + c) r r ab c sin 0 c cos0 a + b + c c r a + b + c ( a + b + c) ( a + b + c) ( csin 0 + c cos0 + ) ( ) 6 Alternatif : Karena R c maka 4ab c a + b c a + b 4ab ( a b )( a b ) 0 Karena a < b maka b a dan c a ab a r a + b + c a + a + + a + a + r a a + b + c a r a + b + c ( + )( a + a + ) ( ) tan + tan y 5 cot + cot y tan tan y tan + tan y 0 tan tan y 5 tan tan y 6 tan ( + y) tan + tan y tan tan y tan ( + y) Nilai maksimal k sehingga 5 k ! adalah Bagian kanan 00! terdapat digit 0 berturut-turut sebanyak 4.

6 Solusi Olimpiade Matematika Tk Provinsi 009 Bagian Pertama. Alternatif : Akan ada dua kasus ) Ada tepat sepasang sepatu yang berpasangan dan dua lainnya dipilih dari pasang sepatu tersisa sehinga keduanya tidak berpasangan. Sepasang sepatu dipilih dari kemungkinan 4 pasangan. Banyaknya cara memilih ada 4. Banyaknya cara memilih dua sepatu dari tiga pasang sepatu sehingga keduanya tidak berpasangan adalah C. Banyaknya cara memilih sehingga tepat sepasang sepatu yang berpasangan dan lainnya dipilih dari pasang sepatu tersisa sehinga keduanya tidak berpasangan ) Ada tepat dua pasang sepatu berpasangan yang dipilih dari kemungkinan empat pasang sepatu. Banyaknya cara memilih adalah 4 C Peluang kejadian 8 C4 5 Alternatif : Komplemen dari kejadian dimaksud adalah tidak ada sepasang sepatu dari keempat sepatu tersebut yang berpasangan, sehingga masing-masing satu buah sepatu dipilih dari masingmasing empat pasang sepatu tersebut. Banyaknya cara adalah 6. 6 Peluang kejadian 8 C4 7 Peluang kejadian. 5. k m + m 4 n 6 dengan k, m dan n adalah tiga bilangan bulat positif. m n(m 6k) Karena ruas kiri positif maka haruslah m > 6k > 6. Ruas kanan pasti genap sehingga m harus genap. Karena m genap dan m > 6 maka m 8. Jika m 8 maka 48 4n kn 48 n(4 k) n 48 dan k adalah salah satu pasangan (n, k) yang memenuhi. Bilangan m terkecil yang memenuhi adalah (p ) + (p) 6 p untuk suatu bilangan prima p. Jika p maka sehingga p tidak memenuhi. Jika p maka sehingga p tidak memenuhi. Karena p, dan p prima maka p dapat dinyatakan p 6k + atau 6k + 5 dengan k bulat taknegatif. Jika p 6k + Persamaan semula akan ekivalen dengan (k + ) + 9(6k + ) 6 6k+ (k) + (k) + (k) + + 9(6k + ) 6 6k+ Ruas kiri dibagi 9 bersisa sedangkan ruas kanan habis dibagi 9.

7 Solusi Olimpiade Matematika Tk Provinsi 009 Bagian Pertama Maka tidak ada nilai k asli yang memenuhi. Jika p 6k + 5 Persamaan semula akan ekivalen dengan (k + 9) + 9(6k + 5) 6 6k- (4k + ) + 4k 540k k+5 Karena 80 9 (mod 7) maka ruas kiri dibagi 7 bersisa 9 sedangkan 7 membagi ruas kanan. Maka tidak ada nilai k asli yang memenuhi. Jadi, tidak ada bilangan prima p yang memenuhi. Banyaknya bilangan prima p yang memenuhi adalah Misalkan k cos sin + cos sin + + cos 009 sin maka k cos sin + cos sin + + cos 009 sin Mengingat bahwa sin α + cos α maka 009+k cos + cos sin + (sin + cos ) + cos sin + (sin + cos ) + + cos 009 sin + sin 009+k(cos + cos sin + sin )+(cos + cos sin + sin )+ +(cos cos 009 sin + sin ) k (cos + sin ) + (cos + sin ) + + (cos sin ) + (cos + sin 009 ) Karena bilangan kuadrat tidak mungkin negatif maka k min k min Nilai minimum didapat jika cos sin, cos sin, cos sin, cos sin,, π cos 009 sin dan cos 009 sin yang dapat dipenuhi oleh L rad. Nilai minimum dari cos sin + cos sin + + cos 009 sin adalah akar-akarnya a, b dan c. Maka a + b + c 8. 8 y Subtitusi y 8 sehingga ke persamaan Maka 8 y 8 y 8 y memiliki akar-akar 8 a, 8 b dan 8 c Polinom f() + p + q + r memiliki akar-akar, yaitu a + b c 8 c, a + c b 8 b dan b + c a 8 a. Karena koefisien dari f() sama dengan maka Polinom f ( ) juga memiliki akar-akar 8 a, 8 b dan 8 c f () f() 45.

8 Solusi Olimpiade Matematika Tk Provinsi 009 Bagian Pertama 7. Tanpa mengurangi keumuman misalkan sisi-sisi segitiga adalah a, b dan 0 dengan a b 0. Ketaksamaan segitiga, a + b > 0 Karena segitiga tumpul maka a + b < 0 Pasangan (a, b) bilangan asli yang memenuhi kedua ketaksamaan tersebut adalah (,9), (,8), (,9), (4,7), (4,8), (4,9), (5,6), (5,7), (5,8), (6,6), (6,7) dan (7,7). Banyaknya pasangan (a, b) bilangan asli yang memenuhi ada. Banyaknya segitiga yang memenuhi adalah maka 7 dan 4 haruslah merupakan faktor dari n. n min memenuhi banyaknya faktor positif dari n adalah (40 + )(6 + )(6 + ) 009 Faktor prima terkecil dari n adalah. 9. p() 6 p(p() ( 6) ( + )( )( + 5) 0 Nilai yang memenuhi adalah,,, Karena < maka nilai terbesar yang memenuhi adalah. Nilai maksimal dari { : A} adalah Karena q maka q q + 5 q q n nq + n Karena n bulat maka q n nq + n qn + n () q qn (q ) qn + qn Karena qn bulat maka q qn (q ) qn + qn () ( ) ( )( ) + q qn q qn n n n Karena q tak bulat maka 5 ( q ) qn ( q ) qn 5 + < < n n

9 Solusi Olimpiade Matematika Tk Provinsi 009 Bagian Pertama Karena n > (q ) qn n maka (q ) qn n q qn (q ) qn + qn q qn n + qn () Kurangkan persamaan () dengan persamaan () q qn q n (n + qn ) ( qn + n) q qn q n Nilai q qn q n untuk sebarang n N adalah.

10 SELEKSI OLIMPIADE TINGKAT PROVINSI 009 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN KEDUA Disusun oleh :

11 Solusi Olimpiade Matematika Tk Provinsi 009 Bagian Kedua BAGIAN KEDUA. Jelas bahwa semut harus melangkah ke depan lebih dari kali. Jika semut melangkah ke depan lebih dari 5 kali maka semut tersebut harus mundur sekurangkurangnya 8 langkah sehingga total langkah lebih dari 0. Jadi, hanya ada kasus : - Semut tersebut maju 4 langkah dan mundur langkah, total langkah 4. Banyaknya cara sama saja dengan banyaknya susunan 6! Banyaknya cara 5 cara. 4!! Cara lainnya sama dengan menempatkan 4 angka tiga ke 4 dari 6 tempat. Banyaknya cara 6C 4 5 cara. - Semut tersebut maju 5 langkah dan mundur 5 langkah, total langkah 0. Banyaknya cara sama saja dengan banyaknya susunan 0! Banyaknya cara 5 cara. 5! 5! Cara lainnya sama dengan menempatkan 5 angka tiga ke 5 dari 0 tempat. Banyaknya cara 0C 5 5 cara. Banyaknya cara semut tersebut melangkah agar mencapai makanan adalah n 009 a b dengan a dan b bilangan bulat dan b 0. Karena ( q n )( p + q n ) ( p p + q q n) + ( p q p q ) n p + + yang juga berbentuk pi + qi n untuk suatu bilangan asli p i dan q i dengan i adalah bilangan asli maka i juga akan berbentuk pi + qi n untuk suatu bilangan asli i. Karena 0 maka p008 + q008 n a p + q n b 009 a b 008 ( a q b q ) n b p008 a p + a b 008 Karena a, b, p, p 008, q dam q 008 adalah bilangan bulat maka n haruslah merupakan kuadrat dari suatu bilangan rasional. k n dengan k, m bilangan asli dan FPB(k, m) m Karena n bilangan asli maka haruslah m sehingga n merupakan kuadrat dari suatu bilangan asli. Terbukti bahwa n merupakan kuadrat dari suatu bilangan asli.

12 Solusi Olimpiade Matematika Tk Provinsi 009 Bagian Kedua. Misalkan [ABC] menyatakan luas ABC, maka [ABC] [ABD] + [BCD] r ( AB + BC + AC) r ( AB + BD + AD) + r ( BC + BD + DC) Pada ABD dan BCD berturut-turut berlaku BD < AD + AB dan BD < BC + DC sehingga r(ab + BC + AC) r (AB + BD + AD) + r (BC + BD + DC) < r (AB + BC + DC + AD) + r (BC + AD + AB + DC) Karena AD + DC AC maka r(ab + BC + AC) < r (AB + BC + AC) + r (BC + AC + AB) r < r + r Terbukti bahwa r + r > r 4. 7p 8 () p y () Jika (, y) (, y ) memenuhi persamaan maka (, y ) pasti memenuhi sehingga tanpa mengurangi keumuman dapat dimisalkan, y 0. p y y. Karena y 0 dan y tidak memenuhi persamaan maka y > sehingga p > y () Jika p maka 5 8 yang tidak akan terpenuhi untuk bilangan bulat. Jika p maka 8 yang tidak akan terpenuhi untuk bilangan bulat. Jika p 5 maka 6 8 yang tidak akan terpenuhi untuk bilangan bulat. Jika p 7 maka 50 8 yang tidak akan terpenuhi untuk bilangan bulat. Jadi, p > 7. Kurangkan persamaan () dengan () didapat p(p 7) (y + )(y ) Karena p > 7 maka y > sehingga p > y > (4) Karena p maka p (y + )(y ) Karena p > y y dan p bilangan prima maka p y + Karena p y + < p + p p maka hanya terpenuhi jika p y + Maka p (p ) sehingga p 8p Subtitusikan persamaan () sehingga p 8p + 7p 0 Karena p 0 maka p 8 7 (5) Subtitusikan persamaan (5) ke persamaan () 7(8 7) 8 ( 6)( ) 0 * Jika dan sesuai persamaan (5) maka p (tidak memenuhi bahwa p bilangan prima) * Jika 6 maka p 4 dan y 9 yang memenuhi bahwa p bilangan prima dan y bulat Semua nilai p yang memenuhi adalah p 4.

13 Solusi Olimpiade Matematika Tk Provinsi 009 Bagian Kedua 5. Misalkan A H dan B H yang memenuhi A B { } serta A dan B keduanya bukan himpunan kosong. H {0,,, 4, 8} merupakan counter eample dari soal. Bagaimana pun disusun A H dan B H serta A B { } tidak akan didapat jika semua anggota A dijumlahkan hasilnya akan sama dengan jumlah semua anggota B. Tidak dapat dibuktikan ada dua himpunan bagian dari H, yang tidak kosong dan saling asing, yang jika semua anggotanya dijumlahkan hasilnya sama.

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Waktu : 210 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2009 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2009 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2010

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2009 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2010 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 009 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 00 Bidang Matematika Waktu : Jam DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA 1. ABC adalah segitiga sama

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 204 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 205 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 013 TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 013

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 202 TIM OLIMPIADE MATEMATIKA INDONESIA 203 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA. Tanpa mengurangi keumuman misalkan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 013 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 94 + 013 = a + b 013 = 61

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 015 TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 015

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 006 TINGKAT PROVINSI TAHUN 005 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 00 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI TAHUN 2002 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : BAGIAN PERTAMA. A + B + C = ( )

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat Pembahasan OSN Matematika SMA Tahun 013 Seleksi Tingkat Provinsi Tutur Widodo Bagian Pertama : Soal Isian Singkat 1. Diberikan tiga lingkaran dengan radius r =, yang saling bersinggungan. Total luas dari

Lebih terperinci

didapat !!! BAGIAN Disusun oleh :

didapat !!! BAGIAN Disusun oleh : SELEKSI OLIMPIADE TINGKAT PROVINSI 2012 TIM OLIMPIADE MATEMATIKAA INDONESIA 2013 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 2012

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009 Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b

OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan. n = F P B(a, b) + KP K(a, b) a b OSN MATEMATIKA SMA Hari 1 Soal 1. Buktikan bahwa untuk sebarang bilangan asli a dan b, bilangan adalah bilangan bulat genap tak negatif. n = F P B(a, b + KP K(a, b a b Solusi. Misalkan d = F P B(a, b,

Lebih terperinci

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA PETUNJUK UNTUK PESERTA: 1. Tes bagian pertama ini terdiri dari 20 soal. 2. Waktu yang disediakan adalah

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2012 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 015 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 015 = 5 13 31 Banyaknya faktor

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2012 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG)

PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 2012 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI 2 MALANG) PEMBAHASAN SOAL OSN MATEMATIKA SMP TINGKAT PROPINSI 0 OLEH :SAIFUL ARIF, S.Pd (SMP NEGERI MALANG) PEMBAHASAN SOAL OLIMPIADE SAINS NASIONAL SMP A. ISIAN SINGKAT SELEKSI TINGKAT PROPINSI TAHUN 0 BIDANG STUDI

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 005 TINGKAT PROVINSI TAHUN 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Kedua Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 003 TIM OLIMPIADE MATEMATIKA INDONESIA 004 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika Tutur Widodo Pembahasan OSP Matematika SMA 011 Pembahasan OSN Tingkat Provinsi Tahun 011 Jenjang SMA Bidang Matematika Bagian A : Soal Isian Singkat 1. Diberikan segitiga sama kaki ABC dengan AB = AC.

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Nasional Tutur Widodo Tutur Widodo OSN Matematika SMA 01 Pembahasan OSN Matematika SMA Tahun 01 Seleksi Tingkat Nasional Tutur Widodo 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA 1) Sebuah barisan baru diperoleh dari barisan bilangan bulat positif 1, 2, 3, 4, dengan menghilangkan bilangan kuadrat yang ada di dalam barisan tersebut.

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2006 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2007

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2006 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2007 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 006 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 007 Bidang Matematika Waktu : 3,5 Jam DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT PROVINSI 007 TIM OLIMPIADE MATEMATIKA INDONESIA 008 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 01 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 0 soal isian singkat dan tes

Lebih terperinci

Berapakah nilai a? a. 25. d. 25 b. 15. e. 15 c. 10. Penyelesaian: Berarti bahwa 1, 3, 5, 7 dan 9 adalah akar-akar persamaan polinomial g(x) = 0.

Berapakah nilai a? a. 25. d. 25 b. 15. e. 15 c. 10. Penyelesaian: Berarti bahwa 1, 3, 5, 7 dan 9 adalah akar-akar persamaan polinomial g(x) = 0. KOMPETISI MATEMATIKA 07 TINGKAT SMA SE-SULUT SOLUSI BABAK SEMI FINAL Rabu, Februari 07 . Misalkan f(x) = x 5 + ax 4 + bx 3 + cx + dx + c dan f() = f(3) = f(5) = f(7) = f(9). Berapakah nilai a? a. 5 d.

Lebih terperinci

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar.

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar. SOAL 1. Diketahui bangun persegi panjang berukuran 4 dengan beberapa ruas garis, seperti pada gambar. Dengan menggunakan ruas garis yang sudah ada, tentukan banyak jajar genjang tanpa sudut siku-siku pada

Lebih terperinci

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika Solusi Olimpiade Sains Tingkat Kabupaten/Kota 01 Bidang Matematika Oleh : Tutur Widodo 1. Karena 01 = 13 31 maka banyaknya faktor positif dari 01 adalah (1 + 1) (1 + 1) (1 + 1) = 8. Untuk mencari banyak

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2016 Bidang Matematika

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2016 Bidang Matematika Solusi Olimpiade Sains Tingkat Kabupaten/Kota 06 Bidang Matematika. Jika a, b, c, d, e merupakan bilangan asli dengan a < b, b < 3c, c < 4d, d < 5e dan e < 00, maka nilai maksimum dari a adalah... Jawaban

Lebih terperinci

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n )

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n ) Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi adalah... (n 1)(n 3)(n 5)(n 013) = n(n + )(n + )(n + 01) Jawaban : 0 ( tidak

Lebih terperinci

Contoh-contoh soal induksi matematika

Contoh-contoh soal induksi matematika Contoh-contoh soal induksi matematika Buktikan bahwa 2 n > n + 20 untuk setiap bilangan bulat n 5. (i) Basis induksi : Untuk n = 5, kita peroleh 2 5 > 5 + 20 adalah suatu pernyataan yang benar. (ii) Langkah

Lebih terperinci

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA)

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA) Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS KABUPATEN/KOTA SMA 018 OSK Matematika SMA (Olimpiade Sains Kabupaten/Kota Matematika SMA) Disusun oleh: Pak Anang Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P. D APRIL 2008 SMA NEGERI 1 PEKANBARU Jl. Sulthan Syarif Qasim 159 Pekanbaru

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2012 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2013 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

Teori Bilangan. Contoh soal : 1. Buktikan bahwa untuk setiap berlaku. Jawaban : a. Petama, kita uji untuk. Ruas kiri sama dengan.

Teori Bilangan. Contoh soal : 1. Buktikan bahwa untuk setiap berlaku. Jawaban : a. Petama, kita uji untuk. Ruas kiri sama dengan. Contoh soal : Teori Bilangan 1. Buktikan bahwa untuk setiap berlaku a. Petama, kita uji untuk Ruas kiri sama dengan dan ruas kanan Jadi pernyataan benar untuk n=1 b. Langkah kedua, asumsikan bahwa pernyataan

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 21 YOGYAKARTA55281 lmnas@ugm.ac.id http://lmnas.fmipugm.ac.id

Lebih terperinci

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika Pembahasan OSN Tingkat Provinsi Tahun 202 Jenjang SMP Bidang Matematika Bagian A : Soal Isian Singkat. Sebuah silinder memiliki tinggi 5 cm dan volume 20 cm 2. Luas permukaan bola terbesar yang mungkin

Lebih terperinci

a b c d e. 4030

a b c d e. 4030 I. Pilihan Ganda. What is last three digit non zero of 05! a. 34 b. 344 c. 444 d. 534 e. 544. If x x + = 0, find (x x ) + (x + x ) + (x + x ) + (x 3 + x 3) + + (x 05 + a. 0 b. 05 c. 400 d. 405 e. 4030

Lebih terperinci

Shortlist Soal OSN Matematika 2015

Shortlist Soal OSN Matematika 2015 Shortlist Soal OSN Matematika 2015 Olimpiade Sains Nasional ke-14 Yogyakarta, 18-24 Mei 2015 ii Shortlist OSN 2015 1 Aljabar A1 Fungsi f : R R dikatakan periodik, jika f bukan fungsi konstan dan terdapat

Lebih terperinci

STRATEGI PENYELESAIAN MASALAH (PROBLEM SOLVING STRATEGIES) EDDY HERMANTO

STRATEGI PENYELESAIAN MASALAH (PROBLEM SOLVING STRATEGIES) EDDY HERMANTO STRATEGI PENYELESAIAN MASALAH (PROBLEM SOLVING STRATEGIES) EDDY HERMANTO Strategi Penyelesaian Masalah Beberapa Strategi Penyelesaian Masalah : 1. Membuat daftar Yang Teratur 2. Memisalkan Dengan Suatu

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 014 TIM OLIMPIADE MATEMATIKA INDONESIA 015 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 014

Lebih terperinci

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012 Tutur Widodo Pembahasan OSK Matematika SMA 01 Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 01 Oleh Tutur Widodo 1. Banyaknya bilangan bulat n yang memenuhi (n 1(n 3(n 5(n 013 = n(n + (n

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA 2015 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 2 YOGYAKARTA5528 lmnas@ugm.ac.id http://lmnas.fmipa.ugm.ac.id

Lebih terperinci

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 (90menit) 1. Semua tripel (x, y, z) yang memenuhi bahwa salah satu bilangan jika ditambahkan dengan hasil kali kedua bilangan

Lebih terperinci

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-25 Babak Penyisihan Tingkat SMA Minggu, 9 November 20 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP

Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 2012 Tingkat SMP Pembahasan Soal Final Kompetisi Matematika Pasiad ( KMP ) VIII Tahun 01 Tingkat SMP Oleh Tutur Widodo I. Soal Pilihan Ganda (Cara Penilaian : Benar = 1 poin, Kosong = 0, Salah = 0.5 poin) 1. Terdapat berapa

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-5 Babak Penyisihan Tingkat SMP Minggu, 9 November 04 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika

Lebih terperinci

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 2006

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 2006 OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah 4. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat,

Lebih terperinci

BAB 1. PENDAHULUAN KALKULUS

BAB 1. PENDAHULUAN KALKULUS BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 014 TIM OLIMPIADE MATEMATIKA INDONESIA 015 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 014

Lebih terperinci

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006 OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat, maka salah satu

Lebih terperinci

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab :

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab : 3 2 1. Diketahui suatu polynomial 15 A B 3C D. Berapakah koefisien dari 5 15 6 2 2 A B C D Jawab :? 2. Diberikan polinomial f(x) = x n + a 1 x n-1 + a 2 x n-2 + + a n-1 x + a n dengan koefisien a 1, a

Lebih terperinci

Pembahasan OSN SMP Tingkat Nasional Tahun 2012

Pembahasan OSN SMP Tingkat Nasional Tahun 2012 Pembahasan OSN SMP Tingkat Nasional Tahun 2012 Bidang Matematika Oleh Tutur Widodo Soal 1. Jika diketahui himpunan H = {(x, y) (x y) 2 + x 2 15x + 50 = 0, dengan x dan y bilangan asli}, tentukan banyak

Lebih terperinci

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Oleh. Nikenasih B 1.1 SIFAT HABIS DIBAGI PADA BILANGAN BULAT Untuk dapat memahami sifat habis dibagi pada bilangan bulat, sebelumnya perhatikan

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

Pembahasan Simak UI Matematika Dasar 2012

Pembahasan Simak UI Matematika Dasar 2012 Pembahasan Simak UI Matematika Dasar 2012 PETUNJUK UMUM 1. Sebelum mengerjakan ujian, periksalah terlebih dulu, jumlah soal dan nomor halaman yang terdapat pada naskah soal. Naskah soal ini terdiri dari

Lebih terperinci

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional  contact person : ALJABAR ALJABAR 1. Diberikan a 4 + a 3 + a 2 + a + 1 = 0. Tentukan a 2000 + a 2010 + 1. 2. Diberikan sistem persamaan 2010(x y) + 2011(y z) + 2012(z x) = 0 2010 2 (x y) + 2011 2 (y z) + 2012 2 (z x) = 2011 Tentukan

Lebih terperinci

Bab1. Sistem Bilangan

Bab1. Sistem Bilangan Modul Pra Kalkulus -0. Bab. Sistim Bilangan Bab. Sistem Bilangan. Sistim Bilangan Jenis bilangan berkembang sejalan dengan perkembangan peradaban dan ilmu pengetahuan. Jenis bilangan yang pertama kali

Lebih terperinci

SOAL BRILLIANT COMPETITION 2013

SOAL BRILLIANT COMPETITION 2013 PILIHAN GANDA. Pada suatu segitiga ABC, titik D berada di AC sehingga AD : DC = 4 :. Titik E berada di BC sehingga BE : EC = : 3. Titik F adalah titik perpotongan antara garis BD dan garis AE. Jika luas

Lebih terperinci

Pembahasan OSN SMP Tingkat Nasional Tahun 2012 Bidang Matematika

Pembahasan OSN SMP Tingkat Nasional Tahun 2012 Bidang Matematika Tutur Widodo Pembahasan OSN SMP Tahun 01 Pembahasan OSN SMP Tingkat Nasional Tahun 01 Bidang Matematika Hari Kedua Pontianak, 1 Juli 01 1. Pada suatu hari, seorang peneliti menempatkan dua kelompok spesies

Lebih terperinci

Matematika EBTANAS Tahun 2002

Matematika EBTANAS Tahun 2002 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Ditentukan nilai a = 9, b = dan c =. Nilai a b c = 9 EBT-SMA-0-0 Hasil kali akar-akar persamaan kuadrat + = 0 adalah EBT-SMA-0-0 Persamaan kuadrat + (m ) + 9 = 0

Lebih terperinci

SOAL OLIMPIADE MATEMATIKA TINGKAT SMP PART 2. Departemen Matematika - Wardaya College MMXVIII-XII

SOAL OLIMPIADE MATEMATIKA TINGKAT SMP PART 2. Departemen Matematika - Wardaya College MMXVIII-XII SOAL OLIMPIADE MATEMATIKA TINGKAT SMP PART - Wardaya College MMXVIII-XII TIPE A. Andi dan Bobby berlari berlawanan arah dalam suatu lintasan melingkar. Keduanya berawal dari titik-titik yang saling berseberangan

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-26

LOMBA MATEMATIKA NASIONAL KE-26 LOMBA MATEMATIKA NASIONAL KE-6 Babak Penyisihan Tingkat SMA Minggu, 8 November 015 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

PELUANG. Jika seluruhnya ada banyak kegiatan, dan masing-masing berturut-turut dapat dilakukan dalam

PELUANG. Jika seluruhnya ada banyak kegiatan, dan masing-masing berturut-turut dapat dilakukan dalam PELUANG Prinsip Perkalian Bila suatu kegiatan dapat dilakukan dalam n 1 cara yang berbeda, dan kegiatan yang lain dapat dilakukan dalam n 2 cara yang berbeda, maka seluruh peristiwa tersebut dapat dikerjakan

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMA Minggu, 0 Oktober HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR

Lebih terperinci

1. Pada operasi di bawah, tiap titik mewakili satu angka tertentu. Bilangan 3 angka yang ada pada baris IV adalah... A) 830 C) 622 B) 720 D) 525

1. Pada operasi di bawah, tiap titik mewakili satu angka tertentu. Bilangan 3 angka yang ada pada baris IV adalah... A) 830 C) 622 B) 720 D) 525 1. Pada operasi di bawah, tiap titik mewakili satu angka tertentu Kompetisi Matematika PASIAD Se-Indonesia IV + 1. I.. II.... III.... IV... V Bilangan angka ang ada pada baris IV adalah... 80 6 B) 70 D)

Lebih terperinci

BIDANG MATEMATIKA SMA

BIDANG MATEMATIKA SMA MATERI PENGANTAR OLIMPIADE SAINS NASIONAL BIDANG MATEMATIKA SMA DISUSUN OLEH: TIM PEMBINA OLIMPIADE MATEMATIKA TIM OLIMPIADE MATEMATIKA INDONESIA Juli 009 KATA PENGANTAR Olimpiade Sains Nasional (OSN)

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : Tutur Widodo Pembahasan Matematika IPA SIMAK UI 0 Pembahasan Matematika IPA SIMAK UI 0 Kode 5 Oleh Tutur Widodo. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : maka nilai x y

Lebih terperinci

KOTA - PROVINSI - NASIONAL TAHUN 2017 MATA PELAJARAN: MATEMATIKA

KOTA - PROVINSI - NASIONAL TAHUN 2017 MATA PELAJARAN: MATEMATIKA OLIMPIADE SAINS SMP/MTs TINGKAT KOTA - PROVINSI - NASIONAL TAHUN 07 MATA PELAJARAN: MATEMATIKA Mata Pelajaran : Matematika Jenjang : SMP/MTs MATA PELAJARAN PETUNJUK UMUM () Kerjakan soal ini dengan JUJUR,

Lebih terperinci

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO DIURUTKAN BERDASARKAN TAHUN DAN DIKUMPULKAN BERDASARKAN TOPIK MATERI BILANGAN 2011 1. Jika x adalah jumlah 99 bilangan

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI Bidang Matematika Bagian Pertama Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN. MARZAN NURJANAH, S.Pd.

BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN. MARZAN NURJANAH, S.Pd. BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN MARZAN NURJANAH, S.Pd. Agenda Pengertian dan Sifat Eksponen Persamaan Eksponen Pertidaksamaan Eksponen Latihan Soal Agenda Pengertian

Lebih terperinci

Kontes Terbuka Olimpiade Matematika

Kontes Terbuka Olimpiade Matematika Kontes Terbuka Olimpiade Matematika Kontes Bulanan Januari 2017 20 23 Januari 2017 Berkas Soal Definisi dan Notasi Berikut ini adalah daftar definisi yang digunakan di dokumen soal ini. 1. Notasi N menyatakan

Lebih terperinci

Matematika Dasar FUNGSI DAN GRAFIK

Matematika Dasar FUNGSI DAN GRAFIK FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

kkkk EKSPONEN 1. SIMAK UI Matematika Dasar 911, 2009 A. 4 2 B. 3 2 C. 2 D. 1 E. 0 Solusi: [B] 2. SIMAK UI Matematika Dasar 911, 2009 Jika x1

kkkk EKSPONEN 1. SIMAK UI Matematika Dasar 911, 2009 A. 4 2 B. 3 2 C. 2 D. 1 E. 0 Solusi: [B] 2. SIMAK UI Matematika Dasar 911, 2009 Jika x1 kkkk. SIMAK UI Matematika Dasar 9, 009... EKSPONEN A. 4 B. C. D. E. 0 Solusi: [B]. SIMAK UI Matematika Dasar 9, 009 Jika dan merupakan akar-akar persamaan 6, maka... A. B. C. D. E. Solusi: [C] 6 6 0. SIMAK

Lebih terperinci

SOAL DAN SOLUSI PENYISIHAN KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

SOAL DAN SOLUSI PENYISIHAN KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011 SOAL DAN SOLUSI PENYISIHAN KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 011 (90 menit) 1. Misalkan 1995 a. ( x) x 9 1 1995. Maka nilai dari... x 9 3... 1995 1995 b. c. d. e. 3 4 3 4 ( x) 9 9 x x 3 (1

Lebih terperinci

Sistem Bilangan Real

Sistem Bilangan Real TUGAS I ANALISIS REAL I Sistem Bilangan Real Tugas 1 Analisis Real I Disusun oleh : Nariswari Setya D. Kartini Marvina Puspito M0108022 M0108050 M0108056 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 004 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota

Lebih terperinci

KUMPULAN SOAL DAN PEMBAHASAN BILANGAN I SMP. Abdul Azis Abdillah. Januari 2017

KUMPULAN SOAL DAN PEMBAHASAN BILANGAN I SMP. Abdul Azis Abdillah. Januari 2017 Soal KUMPULAN SOAL DAN PEMBAHASAN BILANGAN I SMP Abdul Azis Abdillah Januari 07. Angka satuan dari + ( ) + ( 3) + ( 3 4) +... + ( 3 4... 07) adalah.... Diberikan dua buah bilangan yaitu x = 070707 06060606

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci