INF-104 Matematika Diskrit
|
|
|
- Ivan Kurniawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Teori Himpunan Jurusan Informatika FMIPA Unsyiah February 25, 2015
2 Himpunan (set) adalah koleksi dari objek-objek yang terdefinisikan dengan baik. Terdefinisikan dengan baik dimaksudkan bahwa untuk sebarang objek x yang diberikan dapat kita tentukan apakah objek x tersebut kepunyaan dari suatu himpunan atau bukan. Objek yang merupakan kepunyaan dari suatu himpunan disebut elemen atau anggota. Kita akan nyatakan himpunan dengan huruf besar, seperti A atau X dan elemen dengan huruf kecil, seperti a atau x. Jika a adalah elemen dari himpunan A, kita tulis a A dan jika a adalah bukan elemen dari himpunan A, kita tulis a / A.
3 Himpunan dapat dinyatakan dengan mendaftarkan semua elemennya di dalam sepasang tanda kurung atau dengan menyatakan sifat-sifat keanggotaannya sehingga dapat ditentukan apakah suatu objek adalah elemen dari suatu himpunan atau bukan. Kita dapat tuliskan X = {x 1, x 2,, x n } untuk himpunan yang memuat elemen-elemen x 1, x 2,, x n atau X = {x x memenuhi } jika setiap x di dalam X memenuhi suatu sifat tertentu dari.
4 jika E adalah himpunan bilangan bulat genap, kita dapat nyatakan E dengan menuliskan ke dalam salah satu notasi atau E = {2, 4, 6, } E = {x x adalah bilangan bulat genap dan x > 0}. Kita tuliskan 2 E bila kita ingin mengatakan bahwa 2 adalah elemen dari E, dan 3 E untuk mengatakan bahwa 3 adalah bukan elemen dari E.
5 Berikut ini adalah beberapa himpunan penting yang akan sering digunakan dalam pembahasan kita selanjutnya: N = {n n adalah bilangan asli } = {1, 2, 3, }; Z = {n n adalah bilangan bulat } = {, 2, 1, 0, 1, 2, }; Q = {r r adalah bilangan rasional } = { p q p, q Z dimana q 0}; R = {x x adalah bilangan real }; C = {z z adalah bilangan kompleks }. R + = {x x adalah bilangan real positif }; R = {x x adalah bilangan real tak nol};
6 Kita dapat menemukan berbagai relasi antara himpunan-himpunan dan juga dapat melakukan operasi-operasi pada himpunan. Himpunan A adalah subhimpunan (subset) dari B, ditulis A B atau B A, jika setiap elemen dari A juga elemen dari B. Sebagai contoh, {4, 5, 8} {2, 3, 4, 5, 6, 7, 8, 9} dan N Z Q R C
7 Jika A B dan B memuat elemen yang bukan elemen dari A maka A disebut subhimpunan sejati (proper subset) dari B dan dinotasikan A B. Kita juga akan menemukan suatu himpunan tanpa unsur-unsur di dalamnya. Himpunan yang seperti ini disebut himpunan kosong (empty set) dan dinotasikan dengan {} atau. Sebagai catatan bahwa himpunan kosong adalah sub-himpunan dari setiap himpunan.
8 Banyaknya elemen suatu himpunan A disebut sebagai kardinalitas (cardinality) atau ukuran (size) dan dinotasikan dengan A atau n(a) atau card(a). Suatu himpunan disebut berhingga (finite) jika memiliki kardinalitas yang berhingga. Suatu himpunan disebut takberhingga (infinite) jika memiliki kardinalitas yang takberhingga (dinotasikan oleh ℵ 0. Suatu himpunan disebut takterhitung (uncountable) jika himpunan tersebut bukan himpunan terhitung.
9 Untuk memperoleh sebuah himpunan baru dari himpunan-himpunan yang telah ada, kita dapat melakukan operasi-operasi tertentu: gabungan (union) A B dari himpunan A dan B didefinisikan sebagai A B = {x x A atau x B; } irisan (intersection) A B dari himpunan A dan B didefinisikan sebagai A B = {x x A dan x B.} Jika A = {1, 3, 5} dan B = {1, 2, 3, 9}, maka A B = {1, 2, 3, 5, 9} dan A B = {1, 3}.
10 Untuk kasus dimana gabungan dan irisan melibatkan lebih dari dua himpunan yaitu A 1, A 2,, A n, maka untuk gabungan dan irisan secara berurutan kita tuliskan sebagai n A i = A 1 A 2 A n i=1 dan n A i = A 1 A 2 A n i=1
11 Jika dua buah himpunan tidak memiliki elemen yang sama maka kedua himpunan tersebut dikatakan saling lepas (disjoint). Sebagai contoh, jika E himpunan bilangan bulat genap dan O himpunan bilangan bulat ganjil, maka E dan O adalah saling lepas. Dua buah himpunan A dan B adalah saling lepas jika A B =.
12 Kadang-kadang kita akan bekerja dalam suatu himpunan tertentu U yang disebut dengan himpunan semesta (universal set). Untuk setiap himpunan A U, kita definisikan komplemen (complement) dari A, dinotasikan dengan A atau A, adalah himpunan A = {x x U dan x A}.
13 Selanjutnya kita definisikan selisih (difference) dari dua himpuan A dan B sebagai A B = A B = {x x A dan x B} dan selisih simetrik (symmetric difference) dari dua himpuan A dan B sebagai A B = {x (x A x B) x / A B} = {x (x A B) x / A B}.
14 Contoh Misalkan R adalah himpunan semesta dan anggap bahwa bahwa A = {x R 0 < x 3} dan B = {x R 2 x < 4} maka A B = {x R 2 x 3} A B = {x R 0 < x < 4} A B = {x R 0 < x < 2} A = {x R x 0 atau x > 3}
15 Berikut ini adalah beberapa sifat penting operasi gabungan dan irisan: 1 A A = A, A A = A, dan A A = ; 2 A = A dan A = ; 3 A (B C) = (A B) C dan A (B C) = (A B) C; 4 A B = B A dan A B = B A; 5 A (B C) = (A B) (A C); 6 A (B C) = (A B) (A C).
16 Disini akan dibuktikan hasil (1) dan (3), sisanya sebagai latihan. (1) Perhatikan bahwa dan A A = {x x A atau x A} = {x x A} = A A A = {x x A dan x A} = {x x A} = A Juga, A A = A A =.
17 (3) Untuk himpunan A, B dan C, A (B C) = A {x x B atau x C} = {x x A atau x B, atau x C} = {x x A atau x B} C = (A B) C. Dengan langkah yang sama dapat ditunjukkan bahwa A (B C) = (A B) C.
18 Teorema berikut ini dikenal sebagai Hukum De Morgan s. Teorema Misalkan A dan B adalah himpunan-himpunan maka 1 (A B) = A B ; 2 (A B) = A B.
19 Kita harus tunjukkan bahwa (A B) A B dan (A B) A B. Misalkan x (A B) maka x A B. Dari definisi gabungan himpunan, maka x bukan elemen dari A dan juga bukan elemen dari B. Dari definisi komplemen x A dan x B. Sehingga x A B dan kita peroleh (A B) A B. Untuk menunjukkan dalam arah sebaliknya, andaikan bahwa x A B. Maka x A dan x B, sehingga x A dan x B. Jadi x A B dan diperoleh x (A B). Dengan demikian (A B) A B sehingga (A B) = A B.
20 Contoh Buktikan bahwa (A B) (B A) = Perhatikan bahwa (A B) (B A) = (A B ) (B A ) = A A B B =.
21 Contoh Tentukan himpunan A dan B dimana memenuhi A B = {1, 3, 7, 11}, B A = {2, 6, 8} dan A B = {4, 9}. Jawab: Karena A = (A B) (A B) maka kita peroleh bahwa A = {1, 3, 7, 11} {4, 9} = {1, 3, 4, 7, 9, 11}. Dengan cara yang sama B = (B A) (A B) = {2, 6, 8} {4, 9} = {2, 4, 6, 8, 9}.
INF-104 Matematika Diskrit
Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?
TEORI HIMPUNAN. A. Penyajian Himpunan
TEORI HIMPUNAN A. Penyajian Himpunan Definisi 1 Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Dalam
Matematika Diskrit 1
Dr. Ahmad Sabri Universitas Gunadarma Pendahuluan Apakah Matematika Diskrit itu? Matematika diskrit adalah kajian terhadap objek/struktur matematis, di mana objek-objek tersebut diasosiasikan sebagai nilai-nilai
HIMPUNAN. Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si
HIMPUNAN Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si 1. Himpunan kosong & semesta 2. Himpunan berhingga & tak berhingga Jenis-jenis himpunan 3. Himpunan bagian (subset) 4. Himpunan saling lepas
Modul ke: Penyajian Himpunan. operasi-operasi dasar himpunan. Sediyanto, ST. MM. 01Fakultas FASILKOM. Program Studi Teknik Informatika
Modul ke: 01Fakultas FASILKOM Penyajian Himpunan operasi-operasi dasar himpunan Sediyanto, ST. MM Program Studi Teknik Informatika Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda.
BAB I HIMPUNAN. Contoh: Himpunan A memiliki 5 anggota, yaitu 2,4,6,8 dan 10. Maka, himpunan A dapat dituliskan: A = {2,4,6,8,10}
BAB I HIMPUNAN 1 1. Definisi Himpunan Definisi 1 Himpunan (set) adalah kumpulan dari objek yang berbeda. Masing masing objek dalam suatu himpunan disebut elemen atau anggota dari himpunan. Tidak ada spesifikasi
HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma
HIMPUNAN MATEMATIKA Program Studi Agroteknologi Universitas Gunadarma Ruang Lingkup Pengertian Himpunan Notasi Himpunan Cara menyatakan Himpunan Macam Himpunan Diagram Venn Operasi Himpunan dan Sifat-sifatnya
TEORI HIMPUNAN Penyajian Himpunan
TEORI HIMPUNAN 1.1. Penyajian Himpunan Definisi 1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu
HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI
HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI Himpunan Jenis-jenis himpunan Operasi Pada Himpunan Cara Menuliskan Himpunan Himpunan kosong & semesta Himpunan berhingga & tak berhingga
HIMPUNAN Adri Priadana ilkomadri.com
HIMPUNAN Adri Priadana ilkomadri.com Definisi Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di teknik informatika Salah satu topik yang diturunkan dari Himpunan adalah Class
Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo
1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota
Logika Matematika Modul ke: Himpunan
Logika Matematika Modul ke: Himpunan Fakultas FASILKOM Syukri Nazar. M.Kom Program Studi Teknik Informatika Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut
Teori Himpunan Elementer
Teori Himpunan Elementer Kuliah Matematika Diskret Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Himpunan Januari 2016 1 / 72 Acknowledgements
Himpunan. Himpunan (set)
BAB 1 HIMPUNAN Himpunan (set) Himpunan Himpunan (set) adalah kumpulan dari objek-objek yang mempunyai sifat tertentu dan didefinisikan secara jelas. Anggota Himpunan Objek di dalam himpunan disebut elemen,
DEFINISI. Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
BAB 1 HIMPUNAN 1 DEFINISI Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTI adalah contoh sebuah himpunan, di dalamnya berisi anggota
Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan
Himpunan. by Ira Prasetyaningrum. Page 1
Himpunan by Ira Prasetyaningrum Page 1 Set / Himpunan Set/Himpunan = kumpulan dari objek-objek yang berbeda Anggota Himpunan disebut elemen/anggota Contoh Listing: Example: A = {1,3,5,7} = {7, 5, 3, 1,
Himpunan. Nur Hasanah, M.Cs
Himpunan Nur Hasanah, M.Cs 1 Cara Penyajian Himpunan 1. Enumerasi Setiap anggota himpunan didaftarkan secara rinci. Himpunan lima bilangan genap positif pertama: B ={2, 4, 6, 8, 10}. C = {kucing, a, Amir,
PENDAHULUAN. 1. Himpunan
PENDAHULUAN 1. Himpunan Definisi 1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu himpunan biasanya
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. - Himpunan empat bilangan
BAB 2. HIMPUNAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK. Senin, 17 Oktober 2016
PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER BAB 2. HIMPUNAN ILHAM SAIFUDIN Senin, 17 Oktober 2016 Universitas Muhammadiyah Jember ILHAM SAIFUDIN MI HIMPUNAN 1 DASAR-DASAR
BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat
1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan
Ulang Kaji Konsep Matematika
Ulang Kaji Konsep Matematika Teori Bahasa dan Automata Viska Mutiawani - Informatika FMIPA Unsyiah 1 Ulang Kaji Konsep Matematika Set / himpunan Fungsi Relasi Graf Teknik pembuktian Viska Mutiawani - Informatika
HIMPUNAN Adri Priadana ilkomadri.com
HIMPUNAN Adri Priadana ilkomadri.com Definisi Set atau Himpunan adalah bentuk dasar matematika yang paling banyak digunakan di teknik informatika Salah satu topik yang diturunkan dari Himpunan adalah Class
Mohammad Fal Sadikin
Mohammad Fal Sadikin Purcell, Varberg, Rigdon, Kalkulus, Erlangga, 2004. Dumairy, Matematika Terapan Untuk Bisnis dan Ekonomi, Penerbit BPFE Yogyakarta, 1996. Himpunan : kumpulan objek yang didefinisikan
Teori Himpunan Ole l h h : H anu n n u g n N. P r P asetyo
Teori Himpunan Oleh : Hanung N. Prasetyo Meski sekilas berbeda, akan kita lihat bahwa logika matematika dan teori himpunan berhubungan sangat erat. Matematika Diskrit Kuliah-2 2 Definisi: himpunan (set)
1.1 Pengertian Himpunan. 1.2 Macam-macam Himpunan. 1.3 Relasi Antar Himpunan. 1.4 Diagram Himpunan. 1.5 Operasi pada Himpunan. 1.
I. HIMPUNAN 1.1 Pengertian Himpunan 1.2 Macam-macam Himpunan 1.3 Relasi Antar Himpunan 1.4 Diagram Himpunan 1.5 Operasi pada Himpunan 1.6 Aljabar Himpunan Pengertian Himpunan 1. Apa yang dimaksud dengan
Teori Himpunan. Author-IKN. MUG2B3/ Logika Matematika 9/8/15
Teori Himpunan Author-IKN 1 Materi Jenis Himpunan Relasi Himpunan Operasi Himpunan Hukum-Hukum Operasi Himpunan Representasi Komputer untuk Himpunan 2 Teori Himpunan Himpunan Sekumpulan elemen unik, terpisah,
Urian Singkat Himpunan
Urian Singkat Himpunan Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:[email protected] February 27, 2013 1 Daftar Isi 1 Tujuan 3 2 Notasi Himpunan 3 3 Operasi
Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
1 HIMPUNAN DEFINISI Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMK adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa
Kode MK/ Nama MK. Cakupan 8/29/2014. Himpunan. Relasi dan fungsi Kombinatorial. Teori graf. Pohon (Tree) dan pewarnaan graf. Matematika Diskrit
Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 Cakupan Himpunan Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 Himpunan Tujuan Mahasiswa memahami konsep dasar
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa
DEFINISI. Himpunan (set): Dengan kata lain : Elemen dari himpunan : Kumpulan objek-objek yang berbeda.
HIMPUNN Himpunan (set): DEFINISI Kumpulan objek-objek yang berbeda. Dengan kata lain : Kumpulan dari objek-objek tertentu yang merupakan suatu kesatuan. Elemen dari himpunan : Obyek-obyek itu sendiri.
MATEMATIKA BISNIS. Himpunan. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen.
MATEMATIKA BISNIS Modul ke: Himpunan Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Konsep Himpunan merupakan suatu konsep yang paling mendasar bagi
Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Bahan kuliah Matematika Diskrit 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan,
[HIMPUNAN] MODUL MATEMATIKA SMP KELAS VII KURIKULUM 2013 RAJASOAL..COM. istiyanto
2014 MODUL MATEMATIKA SMP KELAS VII RAJASOAL..COM KURIKULUM 2013 istiyanto [HIMPUNAN] Modul ini berisi rangkuman materi mengenai Himpunan untuk siswa SMP kelas VII. Modul ini disusun sesuai dengan kurikulum
HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) EvanRamdan
HIMPUNAN (Pengertian, Penyajian, Himpunan Universal, dan Himpunan Kosong) Pengertian Himpunan Himpunan adalah kumpulan dari benda atau objek yang berbeda dan didefiniskan secara jelas Objek di dalam himpunan
Induksi Matematika. Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik.
Induksi Matematika Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Misalkan p(n) adalah pernyataan yang menyatakan: Jumlah bilangan bulat positif dari 1 sampai n adalah
1.2 PENULISAN HIMPUNAN
BAB I HIMPUNAN 1.1 PENGERTIAN Definisi : Himpunan adalah kumpulan benda atau hal hal lain yang telah terdefinisi secara jelas. Benda atau hal hal lain tersebut disebut elemen atau unsure atau anggota himpunan.
PERTEMUAN 5. Teori Himpunan
PERTEMUAN 5 Teori Himpunan Teori Himpunan Definisi 7: Himpunan (set) adalah kumpulan objek-objek yang terdfinisi dengan jelas Penyajian Himpunan 1. Enumerasi Enumerasi artinya menuliskan semua elemen (anggota)
HIMPUNAN. A. Pendahuluan
HIMPUNAN A. Pendahuluan Konsep himpunan pertama kali dicetuskan oleh George Cantor (185-1918), ahli mtk berkebangsaan Jerman Semula konsep tersebut kurang populer di kalangan matematisi, kurang diperhatikan,
MODUL 1. A. Himpunan 1. Pengertian Himpunan Himpunan adalah kumpulan objek-objek yang berlainan yang memenuhi suatu syarat keanggotaan tertentu.
MODUL 1 A. Himpunan 1. Pengertian Himpunan Himpunan adalah kumpulan objek-objek yang berlainan yang memenuhi suatu syarat keanggotaan tertentu. 2. Penyajian Himpunan Suatu himpunan dapat disajikan dengan
H I M P U N A N. 1 Matematika Ekonomi Definisi Dasar
H I M P U N A N 1.1. Definisi Dasar Definisi 1.1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu
Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
HIMPUNAN Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan Enumerasi Simbol-simbol Baku Notasi
Uraian Singkat Himpunan
Uraian Singkat Himpunan Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:[email protected] March 3, 2014 1 Daftar Isi 1 Tujuan 3 2 Notasi Himpunan 3 3 Operasi
Matematika Komputasional. Himpunan. Oleh: M. Ali Fauzi PTIIK - UB
Matematika Komputasional Himpunan Oleh: M. Ali Fauzi PTIIK - UB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah
Himpunan (set) Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Teori Himpunan 2011 Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. -
HIMPUNAN MEMBAHAS TENTANG:
Modul ke: HIMPUNAN MEMBAHAS TENTANG: Fakultas Ekonomi dan Bisnis Program Studi Akuntansi www.mercubuana.ac.id PENGERTIAN HIMPUNAN, PENYAJIAN HIMPUNAN, HIMPUNAN UNIVERSAL DAN HIMPUNAN KOSONG, OPERASI HIMPUNAN,
RINGKASAN CATATAN KULIAH PENDAHULUAN TEORI HIMPUNAN
RINGKASAN CATATAN KULIAH PENDAHULUAN TEORI HIMPUNAN Apakah himpunan itu? Tidak ada definisi himpunan, yang ada hanya sinonim-sinonim atau kesamaan kata. 1. Menurut Kamus Besar Bahasa Indonesia: himpunan
Modul 03 HIMPUNAN. Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas.
Modul 03 HIMPUNAN I. Cara Menyatakan Himpunan PENGERTIAN Himpunan adalah kumpulan objek-objek yang keanggotaannya didefinisikan dengan jelas. Contoh: Himpunan siswi kelas III SMU 6 tahun 1999-2000 yang
Materi 1: Teori Himpunan
Materi 1: Teori Himpunan I Nyoman Kusuma Wardana STMIK STIKOM Bali Himpunan (set) kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Terdapat beberapa cara
LOGIKA MATEMATIKA PENGERTIAN HIMPUNAN DAN OPERASI OPERASI DALAM HIMPUNAN. TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM
LOGIKA MATEMATIKA Modul ke: PENGERTIAN HIMPUNAN DAN OPERASI OPERASI DALAM HIMPUNAN Fakultas ILKOM TITI RATNASARI, SSi., MSi Program Studi SISTEM INFORMASI www.mercubuana.ac.id Pengertian Himpunan Definisi
Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1
Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan
BAB I H I M P U N A N
1 BAB I H I M P U N A N Dalam kehidupan nyata, banyak sekali masalah yang terkait dengan data (objek) yang dikumpulkan berdasarkan kriteria tertentu. Kumpulan data (objek) inilah yang selanjutnya didefinisikan
1 Pendahuluan I PENDAHULUAN
1 Pendahuluan 1.1 Himpunan I PENDAHULUAN Himpunan merupakan suatu konsep mendasar dalam semua cabang ilmu matematika. Mengapa himpunan adalah hal yang sangat penting dalam matematika?, untuk mencari jawaban
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. - Himpunan empat bilangan
Matematika Ekonomi, MKK30234 FEBI, IAIN Palopo
Matematika Ekonomi, MKK30234 FEBI, IAIN Palopo 1 2 Definisi 1.1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggotaanggota dari
MATEMA TEMA IKA BISNIS BY : NINA SUDIBYO
MTEMTIK BISNIS BY : NIN SUDIBYO BB 1. HIMPUNN Himpunan adalah suatu kumpulan atau gugusan dari sejumlah obyek yang harus didefinisikan dengan jelas. Obyek-obyek yang mengisi atau membentuk sebuah himpunan
Teori himpunan. 2. Simbol baku: dengan menggunakan simbol tertentu yang telah disepakati. Contoh:
Teori himpunan Teori Himpunan adalah teori mengenai kumpulan objek-objek abstrak. Teori himpunan biasanya dipelajari sebagai salah satu bentuk: Teori himpunan naif, dan Teori himpunan aksiomatik, yang
Himpunan. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa.
Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.
Himpunan 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota
1 P E N D A H U L U A N
1 P E N D A H U L U A N 1.1.Himpunan Himpunan (set) adalah kumpulan objek-objek yang terdefenisi dengan baik (well defined). Artinya bahwa untuk sebarang objek x yang diberikan, maka kita selalu akan dapat
BAB I HIMPUNAN. Matematika Infomatika. Universitas Gunadarma Halaman 1
BAB I HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan dari objek tertentu (dinamakan unsur, anggota, elemen) yang dirumuskan secara jelas dan tegas, sehingga dapat dibeda-bedakan antara satu dengan
Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1
Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan
LANDASAN MATEMATIKA Handout 2
LANDASAN MATEMATIKA Handout 2 (Himpunan bagian, kesamaan dua himpunan, comparable, himpunan kosong, himpunan kuasa, kardinalitas, himpunan hingga dan tak hingga) Tatik Retno Murniasih, S.Si., M.Pd. [email protected]
BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya;
BAB II TINJAUAN PUSTAKA A. Himpunan 1. Pengertian Himpunan Himpunan merupakan konsep mendasar yang terdapat dalam ilmu matematika. Himpunan adalah kumpulan obyek yang didefinisikan secara jelas. Ada tiga
MATEMATIKA EKONOMI 1. Oleh : Muhammad Imron H
MATEMATIKA EKONOMI 1 Oleh : Muhammad Imron H UNIVERSITAS GUNADARMA 015 Universitas Gunadarma Halaman BAB I HIMPUNAN A. Pengertian Himpunan Himpunan adalah kumpulan dari objek tertentu (dinamakan unsur,
[Enter Post Title Here]
[Enter Post Title Here] SISTEM BILANGAN REAL DAN HIMPUNAN A. Perubah, Konstanta dan Parameter Suatu perubah (variable) adalah sesuatu yang besarnya dapat berubah. Luas lingkaran tergantung dari jari-jarinya.
HIMPUNAN. A. Pendahuluan
HIMPUNAN A. Pendahuluan Konsep himpunan pertama kali dicetuskan oleh George Cantor (185-1918), ahli mtk berkebangsaan Jerman Semula konsep tersebut kurang populer di kalangan matematisi, kurang diperhatikan,
MATEMATIKA BISNIS. Dosen Hikmah Agustin,SP.,MM. Politeknik Dharma Patria Kebumen 2016
MATEMATIKA BISNIS Dosen Hikmah Agustin,SP.,MM Politeknik Dharma Patria Kebumen 2016 Himpunan Himpunan adalah kumpulan benda atau objek-objek atau lambang-lambang yang mempunyai arti yang dapat didefinisikan
PENGANTAR MATEMATIKA DISKRIT DAN HIMPUNAN PERTEMUAN I
PENGANTAR MATEMATIKA DISKRIT DAN HIMPUNAN PERTEMUAN I oleh : Lisna Zahrotun, S.T, M.Cs [email protected] lisnazahrotun.tif.uad.ac.id 1 Penilaian : 1. UTS 25% 2. UAS 30% 3. Keaktifan 4. Praktikum
BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI
BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan
H I M P U N A N. A. Pendahuluan
H I M P U N A N A. Pendahuluan Konsep himpunan pertama kali dicetuskan oleh George Cantor (1845-1918), ahli mtk berkebangsaan Jerman. Semula konsep tersebut kurang populer di kalangan matematisi, kurang
Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Obyek-obyek diskret ada di sekitar kita. Matematika Diskret (TKE132107)
BAB III HIMPUNAN. 2) Mahasiswa dapat menyebutkan relasi antara dua himpunan. 3) Mahasiswa dapat menentukan hasil operasi dari dua himpunan
BAB III HIMPUNAN Tujuan Instruksional Umum Mahasiswa memahami pengertian himpunan, relasi antara himpunan, operasi himpunan, aljabar himpunan, pergandaan himpunan, serta himpunan kuasa. Tujuan Instruksional
H i m p u n a n. Himpunan. Oleh : Panca Mudji Rahardjo, ST. MT.
H i m p u n a n Oleh : Panca Mudji Rahardjo, ST. MT. Himpunan Definisi himpunan Penyajian himpunan Definisi-definisi Operasi himpunan Prinsip inklusi dan eksklusi Himpunan ganda 1 Definisi Himpunan (set)
: SRI ESTI TRISNO SAMI
MATEMATIKA DISKRIT By : SRI ESTI TRISNO SAMI 082334051324 Bahan Bacaan / Refferensi : 1. Seymour Lipschutz dan Marc Lars Lipson, Matematika Diskkrit Shcaum s Outline Series, Mc Graw-Hill Book Company,
Mendeskripsikan Himpunan
BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan
Matematika Terapan. Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 1
Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 1 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Kolonel Wahid Udin Lk. I Kel. Kayuara, Sekayu 30711 web:www.polsky.ac.id mail: [email protected]
Bahan kuliah Matematika Diskrit. Himpunan. Oleh: Didin Astriani P, M.Stat. Fakultas Ilkmu Komputer Universitas Indo Global Mandiri
Bahan kuliah Matematika Diskrit Himpunan Oleh: Didin Astriani P, M.Stat Fakultas Ilkmu Komputer Universitas Indo Global Mandiri 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek
Mendeskripsikan Himpunan
BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan
Logika Matematika Himpunan
Modul ke: Logika Matematika Himpunan Modul ini menjelaskan mengenai himpunan dan operasi-operasi dasar himpunan. Fakultas ILMU KOMPUTER Tedjo Nugroho, ST. MT Program Studi Sistem Informasi www.mercubuana.ac.id
I. Aljabar Himpunan Handout Analisis Riil I (PAM 351)
I. Aljabar Himpunan Aljabar Himpunan Dalam bab ini kita akan menyajikan latar belakang yang diperlukan untuk mempelajari analisis riil. Dua alat utama analisis riil, yakni aljabar himpunan dan fungsi,
INF-104 Matematika Diskrit
Teori Bilangan Jurusan Informatika FMIPA Unsyiah April 13, 2013 Metode pembuktian untuk pernyataan perihal bilangan bulat adalah induksi matematik. Induksi matematik merupakan teknik pembuktian yang baku
Teori Himpunan. Modul 1 PENDAHULUAN
Modul 1 Teori Himpunan Drs. Sukirman, M.Pd. M PENDAHULUAN odul ini memuat pembahasan teori himpunan dan himpunan bilangan bulat. Teori himpunan memuat notasi himpunan, relasi dan operasi dua himpunan atau
PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015
PENGANTAR TOPOLOGI EDISI PERTAMA Dosen Pengampu: Siti Julaeha, M.Si UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 by Matematika Sains 2012 UIN SGD, Copyright 2015 BAB 0. HIMPUNAN, RELASI, FUNGSI,
MATEMATIKA 1. Pengantar Teori Himpunan
MATEMATIKA 1 Silabus: Logika, Teori Himpunan, Sistem Bilangan, Grup, Aljabar Linier, Matriks, Fungsi, Barisan dan deret, Beberapa Cara pembuktian Pengertian Himpunan Pengantar Teori Himpunan Himpunan adalah
MATEMATIKA DISKRIT MATEMATIKA DISKRIT
MATEMATIKA DISKRIT BAB I HIMPUNAN Huruf-huruf besar A, B, C,... menyatakan himpunan dan huruf-huruf kecil a, b, c,... menyatakan elemen-elemen atau anggota dari himpunan. Notasi himpunan : p Є A A B atau
PENGANTAR MODEL PROBABILITAS
PENGANTAR MODEL PROBABILITAS (PMP, Minggu 1-7) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 1:HIMPUNAN Operasi Himpunan Sifat-Sifat Operasi Himpunan 2 Minggu 2:COUNTING TECHNIQUE
Matematika: Himpunan 10/18/2011 HIMPUNAN. Syawaludin A. Harahap 1
HIMPNN Syawaludin. Harahap 1 Dikembangkan oleh matematikawan Jerman bernama George Cantor (1845-1918), dan dikenal sebagai bapak dari teori himpunan. Himpunan didefinisikan sebagai suatu kumpulan/koleksi
Pertemuan 6. Operasi Himpunan
Pertemuan 6 Operasi Himpunan Operasi Terhadap Himpunan 1. Irisan (intersection) Notasi : A B = { x x A dan x B } Contoh (i) Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18}, maka A B = {4, 10} (ii) Jika
Himpunan dan Fungsi. Modul 1 PENDAHULUAN
Modul 1 Himpunan dan Fungsi Dr Rizky Rosjanuardi P PENDAHULUAN ada modul ini dibahas konsep himpunan dan fungsi Pada Kegiatan Belajar 1 dibahas konsep-konsep dasar dan sifat dari himpunan, sedangkan pada
Diktat Kuliah. Oleh:
Diktat Kuliah TEORI GRUP Oleh: Dr. Adi Setiawan UNIVERSITAS KRISTEN SATYA WACANA SALATIGA 2015 Kata Pengantar Aljabar abstrak atau struktur aljabar merupakan suatu mata kuliah yang menjadi kurikulum nasional
BAB 1 PENGANTAR. 1.1 Himpunan
BAB 1 PENGANTAR Bab ini menyajikan tentang materi pengantar untuk mata kuliah struktur Aljabar. Bab ini bertujuan untuk membantu mahasiswa untuk menyiapkan diri dalam menempuh matakuliah Struktur Aljabar.
BAB I PEMBAHASAN A. HIMPUNAN DAN SUB HIMPUNAN. 1. PENGERTIAN HIMPUNAN Marilah kita perhatikan firman Allah swt dalam al qur an surat al-nur ayat 45.
BAB I PEMBAHASAN A. HIMPUNAN DAN SUB HIMPUNAN 1. PENGERTIAN HIMPUNAN Marilah kita perhatikan firman Allah swt dalam al qur an surat al-nur ayat 45. Artinya : dan Allah telah menciptakan semua jenis hewan
Bab1. Himpunan. Gajah Merpati. Burung Nuri Jerapah
Bab1. Himpunan I. Pengantar Himpunan merupakan konsep yang sangat mendasar dalam ilmu matematika. Banyak sekali kegiatan-kegiatan dalam kehidupan sehari-hari berkaitan dengan himpunan. Untuk memahami himpunan
Himpunan dapat dikomposisikan satu sama lain. Komposisi yang menyangkut dua himpunan disebut operasi biner, seperti Gabungan (union),
Lecture 1: ALGEBRA OF SETS Himpunan dapat dikomposisikan satu sama lain. Komposisi yang menyangkut dua himpunan disebut operasi biner, seperti Gabungan (union), A B = {x x A x B} Irisan (intersection),
Aturan Penilaian & Grade Penilaian. Deskripsi. Matematika Diskrit 9/7/2011
Matematika Diskrit Sesi 01-02 Dosen Pembina : Danang Junaedi Tujuan Instruksional Setelah proses perkuliahan, mahasiswa memiliki kemampuan Softskill Meningkatkan kerjasama dalam kelompok dan kemampuan
Himpunan, Dan Fungsi. Ira Prasetyaningrum,M.T
Himpunan, Dan Fungsi Ira Prasetyaningrum,M.T Materi Matematika 1 Himpunan dan fungsi Matrik Limit dan kekontinuan Differensial Trigonometri Integral Bilangan Komplek Peraturan Di Kelas Mahasiswa Maksimal
