BAB X SISTEM PERSAMAAN LINIER

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB X SISTEM PERSAMAAN LINIER"

Transkripsi

1 BAB X SISTEM PERSAMAAN LINIER

2 10.1 Definisi Persamaan linier adalah persamaan aljabar yang terdiri dari satu atau lebih peubah dan masing-masing peubah mempunyai derajad satu. Sebagai contoh persamaan ax + by + cz + dw = h adalah persamaan linier yang terdiri dari empat peubah, yaitu x, y, z, dan w. Sedangkan a, b, c, dan d adalah koefisien-koefisien. Jika nilai h pada persamaan tersebut = 0, maka persamaan linier tersebut dikatakan persamaan linier homogen. Apabila nilai h tidak sama 0, maka dikatakan persamaan linier tak homogen.

3 Bentuk umum sistem persamaan Jika seluruh nilai b 1, b 2,, b m sama dengan nol, maka persamaan 10.1 disebut sistem persamaan linier homogen. Akan tetapi, jika setidak-tidaknya ada salah satu dari nilai b 1, b 2,, b m 0, maka persamaan 10.1 disebut sistem persamaan linier tak homogen. Persamaan 10.1 dapat ditulis dalam bentuk matriks berikut. (10.2)

4 Contoh 10.1 Berikut diberikan beberapa contoh sistem persamaan linier Tulis contoh 10.1 dalam bentuk matriks Contoh 10.2 Penyelesaian

5 10.2 Penyelesaian Sistem Persaman Linier Penyelesaian dengan Balikan Matriks Persamaan 10.2 adalah sistem persmaan linier yang ditulis dalam bentuk matriks. Jika dimisalkan, maka Ax = b Sehingga Persamaan 10.3 digunakan untuk penyelesaian sistem persamaan linier dengan cara menentukan balikan matriks A terlebih dahulu.

6 Contoh 10.3 Selesaikan sistem persamaan linier berikut! Penyelesaian

7 Penyelesaian dengan Eliminasi Gauss Selain dengan cara balikan matriks, kita juga dapat menyelesaikan sistem persamaan linier dengan cara eliminasi Gauss. Untuk tujuan tersebut persamaan 10.1 ditulis dalam bentuk matriks yang diperluas (augmented matrix). Untuk melakukan eliminasi Gauss, kita harus mereduksi matriks A menjadi bentuk eselon baris atau matriks segitiga atas. Langkah-langkah untuk menyelesaikan sistem persamaan linier dengan eliminasi Gauss:

8 1. Jika a 11 0, maka a 11 merupakan elemen pivot. Jika a 11 = 0, lakukan pertukaran baris. 2. Eliminasi a 21 dengan menggunakan rumus R 2 (a 21 /a 11 )R 1 a 31 dengan menggunakan rumus R 3 (a 31 /a 11 )R 1 : : a m1 dengan menggunakan rumus R m (a m1 /a( m-1)1 )R (m-1) 3. Eliminasi a 32 dengan menggunakan rumus R 3 (a 32 /a 22 )R 2 a 42 dengan menggunakan rumus R 3 (a 42 /a 22 )R 2 : : a m2 dengan menggunakan rumus R m (a m2 /a 22 )R 2 4. dst. sampai baris m dan kolom ke (n 1)

9 Contoh 10.3 Selesaikan sistem persamaam linier berikut! Penyelesaian: R 2 ½ R 1 R 3 3R 1 R 3 ( 16/3)R 2

10 11/3 x 3 = 64/3 x 3 = 64/11 Untuk menentukan nilai x 1 dan x 2 lakukan substitusi balik! 3/2 x 2 +1/2x 3 = 5/2 3/2 x 2 = 32/11 5/2 x 2 = 3/11 x 1 + 3/2x 2 + 1/2x 3 = 5/2 x 1 = 9/22 +32/11+ 55/22 x 1 = 110/22 = Penyelesaian dengan Eliminasi Gauss-Jordan Cara lain untuk menyelesaikan sistem persamaan linier adalah dengan metode eliminasi Gauss-Jordan. Sistem persamaan linier dapat ditulis dalam bentuk [A b].

11 Selanjutnya lakukan transformasi sehingga matriks A menjadi matriks eselon baris yang tereduksi atau matriks identitas [I]. Langkah-langkah untuk menyelesaikan sistem persamaan linier dengan eliminasi Gauss-Jordan: 1. Jika a 11 0, maka a 11 merupakan elemen pivot. Jika a 11 = 0, lakukan pertukaran baris. 2. Jika a 11 1, bagi elemen a 11 dengan a 11, sehingga a 11 =1 3. Eliminasi a 21 dengan menggunakan rumus R 2 a 21 R 1 a 31 dengan menggunakan rumus R 3 a 31 R 1 : : a m1 dengan menggunakan rumus R m a m1 R m 1 4. Jika setelah langkah 3, a 22 0, maka a 22 merupakan elemen pivot. Jika a 22 = 0, lakukan pertukaran baris.

12 5. Jika a 22 1, bagi elemen a 22 dengan a 22, sehingga a 22 =1 6. Eliminasi a 12 dengan menggunakan rumus R 1 a 12 R 2 a 32 dengan menggunakan rumus R 3 a 32 R 2 : : a m2 dengan menggunakan rumus R m a m2 R 2 7. dst. sampai seluruh elemen di luar diagonal terleliminasi, sehingga matriks A berhasil ditransformasikan menjadi matriks identitas. Contoh 10.4 Selesaikan sistem persamaam linier berikut! Penyelesaian:

13 ½ R 1 R 2 R 1 R 3 6R 1

14 Penyelesaian dengan Aturan Cramer Selain metode penyelesaian yang telah dijelaskan terdahulu, sistem persamaan linier dapat juga diselesaikan dengan menggunakan Aturan Cramer. Telah dijelaskan terdahulu bahwa sistem persamaan linier dapat ditulis dalam bentuk matriks berikut.

15 Aturan Cramer x n = Nilai variabel yang akan dicari An = Determinan matriks A, dengan terlebih dahulu mengganti kolom ke n dengan elemen-elemen pada matriks b A = Determinan matriks A

16 Dari persamaan (10.4) secara tersirat diketahui bahwa aturan Cramer hanya dapat digunakan jika A 0 Artinya, jumlah persamaan dalam sistem persamaan linier harus sama dengan jumlah variabel. Contoh 10.5 Selesaikan sistem persamaam linier berikut dengan menggunakan aturan Cramer! Penyelesaian

17

18 10.4 Ringkasan Jika seluruh nilai b 1, b 2,, b m = 0 maka sistem persamaan linier disebut homogen. Jika setidak-tidaknya ada salah satu dari nilai b 1, b 2,, b m 0 sitem persamaan linier disebut tak homogen.

19 Sistem persamaan linier dapat ditulis dalam bentuk matriks. Jika Maka Ax = b

20 Penyelesaian dengan Balikan Matriks Persamaan 10.2 adalah sistem persmaan linier yang ditulis dalam bentuk matriks. Jika dimisalkan,

21 Penyelesaian dengan Eliminasi Gauss Selain dengan cara balikan matriks, kita juga dapat menyelesaikan sistem persamaan linier dengan cara eliminasi Gauss. C adalah matriks segitiga atas.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci

dimana a 1, a 2,, a n dan b adalah konstantakonstanta

dimana a 1, a 2,, a n dan b adalah konstantakonstanta Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang

Lebih terperinci

BAB III : SISTEM PERSAMAAN LINIER

BAB III : SISTEM PERSAMAAN LINIER 3.1 PENDAHULUAN BAB III : SISTEM PERSAMAAN LINIER Penyelesaian suatu sistem n persamaan dengan n bilangan tak diketahui banyak dijumpai dalam permasalahan teknik. Di dalam Bab ini akan dipelajari sistem

Lebih terperinci

Sistem Persamaan Linier dan Matriks

Sistem Persamaan Linier dan Matriks Sistem Persamaan Linier dan Matriks 1.1 Pendahuluan linier: Sebuah garis pada bidang- dapat dinyatakan secara aljabar dengan sebuah persamaan Sebuah persamaan jenis ini disebut persamaan linier dalam dua

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL

Lebih terperinci

Pertemuan 13 persamaan linier NON HOMOGEN

Pertemuan 13 persamaan linier NON HOMOGEN Pertemuan 13 persamaan linier NON HOMOGEN 10 Metode CRAMER Aljabar Linier Hastha 2016 10. PERSAMAAN LINIER NONHOMOGEN 10.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara

Lebih terperinci

ALJABAR LINEAR [LATIHAN!]

ALJABAR LINEAR [LATIHAN!] Pada dasarnya cara yang digunakan untuk memperoleh penyelesaian sistem persamaan linear adalah sama yaitu mengubah sistem persamaan linear menjadi matriks yang diperbesar, kemudian mengubah matriks yang

Lebih terperinci

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut: SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau

Lebih terperinci

Pertemuan 14. persamaan linier NON HOMOGEN

Pertemuan 14. persamaan linier NON HOMOGEN Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat

Lebih terperinci

BAB 4 : SISTEM PERSAMAAN LINIER

BAB 4 : SISTEM PERSAMAAN LINIER BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR Persamaan Linear Pengertian Persamaan linear adalah persamaan yang mempunyai bentuk umum sebagai berikut. + + + Di mana:,,,, dan adalah konstanta-konstanta riil.,,,, adalah bilangan

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

02-Pemecahan Persamaan Linier (1)

02-Pemecahan Persamaan Linier (1) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER

Lebih terperinci

MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT)

MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Sub Pokok Bahasan Matriks dan Jenisnya Operasi Matriks Operasi Baris Elementer Matriks Invers (Balikan) Beberapa Aplikasi Matriks

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Suatu matriks A C m n dikatakan memiliki faktorisasi LU jika matriks tersebut dapat dinyatakan sebagai A = LU dengan L C m m matriks invertibel segitiga bawah

Lebih terperinci

Solusi Persamaan Linier Simultan

Solusi Persamaan Linier Simultan Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem

Lebih terperinci

Adri Priadana. ilkomadri.com

Adri Priadana. ilkomadri.com Adri Priadana ilkomadri.com Pengertian Sistem Persamaan Linier Persamaan linier adalah suatu persamaan dengan bentuk umum a 1 x 1 + a 2 x 2 + + a n x n = b yang tidak melibatkan hasil kali, akar, pangkat

Lebih terperinci

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung Course of Calculus MATRIKS Oleh : Hanung N. Prasetyo Information system Departement Telkom Politechnic Bandung Matriks dan vektor merupakan pengembangan dari sistem persamaan Linier. Matriks dapat digunakan

Lebih terperinci

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN MATEMATIKA MINGGU KE SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304 POKOK & SUB POKOK TUJUAN INSTRUKSIONAL TUJUAN INSTRUKSIONAL KHUSUS

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2 Determinan Determinan Setiap matriks bujur sangkar A yang berukuran (nxn) dapat dikaitkan dengan suatu skalar yang disebut determinan matriks tersebut dan ditulis dengan det(a) atau A. Untuk menghitung

Lebih terperinci

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah

Lebih terperinci

ALJABAR LINIER DAN MATRIKS

ALJABAR LINIER DAN MATRIKS ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya

Lebih terperinci

Secara umum persamaan linear untuk n peubah x 1, x 2,, x n dapatdinyatakandalambentuk: dimanaa 1, a 2,, a n danbadalahkonstantakonstanta

Secara umum persamaan linear untuk n peubah x 1, x 2,, x n dapatdinyatakandalambentuk: dimanaa 1, a 2,, a n danbadalahkonstantakonstanta Persamaan linear adalah persamaan dimana peubahnyatidakmemuateksponensial, trigonometri(sepertisin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan linear

Lebih terperinci

MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 =

MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 = NAMA : KELAS : 1 2 MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital

Lebih terperinci

Aljabar Linear Elementer MUG1E3 3 SKS

Aljabar Linear Elementer MUG1E3 3 SKS // ljabar Linear Elementer MUGE SKS // 9:7 Jadwal Kuliah Hari I Selasa, jam. Hari II Kamis, jam. Sistem Penilaian UTS % US % Quis % // 9:7 M- ljabar Linear // Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri

Lebih terperinci

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA.

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 a11 a12 x1 b1 a a x b 21 22 2 2 Setijo Bismo

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4 Aljabar Linear & Matriks Pert. 4 Evangs Mailoa Sistem Persamaan Linier & Matriks 1. Matriks dan Operasi Matriks 2. Pengantar Sistem Persamaan Linier 3. Eliminasi Gaus 4. Invers: Aturan Aritmatika Matriks

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMAA TEKNIK 1 KODE / SKS : IT042220 / 2 SKS Pokok Bahasan Pertemuan dan 1 Vektor : pengertian vektor, operasi aljabar vektor ruang, vektor cross product serta

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ)

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) OBE dan

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Mata : MATEMATIKA TEKNIK 1 Jurusan : TEKNIK ELEKTRO SKS : 2 Sks Kode Mata : KD-041205 MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Minggu Ke Pokok Bahasan dan TIU 1 Vektor tentang pengertian

Lebih terperinci

03-Pemecahan Persamaan Linier (2)

03-Pemecahan Persamaan Linier (2) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Matriks Invers Bagian : Eliminasi = Faktorisasi: A = LU Bagian : Transpos dan Permutasi Anny Bagian MATRIKS INVERS

Lebih terperinci

MODUL IV SISTEM PERSAMAAN LINEAR

MODUL IV SISTEM PERSAMAAN LINEAR MODUL IV SISTEM PERSAMAAN LINEAR 4.. Pendahuluan. Sistem Persamaan Linear merupakan salah satu topik penting dalam Aljabar Linear. Sistem Persamaan Linear sering dijumpai dalam semua bidang penyelidikan

Lebih terperinci

Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi

Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi Elvina Riama K. Situmorang 55) Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa

Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa Bab 7 Sistem Pesamaan Linier Oleh : Devie Rosa Anamisa Pendahuluan Bentuk umum dari aljabar linier sebagai berikut: a11x1 + a12a 12X2 +... + a1na 1nXn = b1b a21x1 + a22a 22X2 +... + a2na 2nXn = b2b...............

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks 1.1 LATAR BELAKANG BAB I PENDAHULUAN Teori matriks merupakan salah satu cabang ilmu aljabar linier yang menjadi pembahasan penting dalam ilmu matematika. Sejalan dengan perkembangan ilmu pengetahuan, aplikasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

Metode Matriks Balikan

Metode Matriks Balikan Metode Matriks Balikan MisalkanA -1 adalahmatriksbalikandaria. Sistempersamaan lanjar Ax = b dapat diselesaikan sebagai berikut: Ax= b A -1 Ax= A -1 b I x= A -1 b (A -1 A = I ) x= A -1 b Cara penyelesaiandenganmengalikanmatriksa

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

Aljabar Matriks. Aljabar Matriks

Aljabar Matriks. Aljabar Matriks Aljabar Matriks No No Unit Unit Kompetensi 1 Menerapkan keamanan web dinamis 2 Membuat halaman web dinamis dasar 3 Membuat halaman web dinamis lanjut 4 Menerapkan web hosting 5 Menerapkan konten web memenuhi

Lebih terperinci

Sistem Persamaan linier

Sistem Persamaan linier Sistem Persamaan linier 5.1 Sistem Persamaan Linier Dua Peubah (Variabel) Bentuk Umum: a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 Dimana a 1, b 1, c 1, a 2, b 2, c 2 R. Himpunan pasangan berurutan (x, y)

Lebih terperinci

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 313 322. ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM

Lebih terperinci

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR M AT E M AT I K A E K O N O M I MATRIKS DAN SPL TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 1 2 Kesetimbangan Dua Pasar Permintaan kopi bergantung tidak hanya pada harganya tetapi juga pada harga

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) Nama matakuliah : Aljabar Linier Kode matakuliah : MKK 315 Dosen Pengampu : Ega Gradini, M.Sc Diberikan pada : Semester 3 Jumlah sks : 2 SKS Jenis sks Alokasi Waktu Prasyarat

Lebih terperinci

Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan

Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan C. Determinan dan Invers Matriks C.. Determinan Suatu matriks persegi selalu dapat dikaitkan dengan suatu bilangan yang disebut determinan. Determinan dari matriks persegi dinotasikan dengan. Untuk matriks

Lebih terperinci

BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear

BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear BAB 4 Sistem Persamaan Linear berbentuk Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear Dengan koefisien dan adalah bilangan-bilangan yang diberikan. Sistem ini disebut

Lebih terperinci

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah

Lebih terperinci

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1 6- Operasi Matriks Contoh 6-1 : Budi diminta tolong oleh ibunya untuk membeli 2 kg gula dan 1 kg kopi. Dengan uang Rp. 10.000,- Budi mendapatkan uang kembali Rp. 3.000,-. Dihari yang lain, Budi membeli

Lebih terperinci

MAKALAH ALJABAR LINEAR TRANSFORMASI LINEAR ATAU PEMETAAN LINEAR

MAKALAH ALJABAR LINEAR TRANSFORMASI LINEAR ATAU PEMETAAN LINEAR MAKALAH ALJABAR LINEAR TRANSFORMASI LINEAR ATAU PEMETAAN LINEAR Disusun oleh : 1. Supriyani (0903040095) 2. Sri Hartati (0903040113) 3. Anisatul M. (0903040065) TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Ogin Sugianto [email protected] penma2b.wordpress.com Majalengka, 12 November 2016 Sistem Persamaan Linear (SPL) Homogen yang akan dibahas kali

Lebih terperinci

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1 Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini.

Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. . INVERS MTRIKS Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. a. RNK MTRIKS Matriks tak nol dikatakan mempunyai rank r jika paling

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 1 Matriks dan Operasinya MATRIKS DAN OPERASINYA Sub Pokok Bahasan Matriks Jenis-jenis Matriks Operasi Matriks Operasi Baris Elementer Matriks Invers (Balikan)

Lebih terperinci

Solusi Sistem Persamaan Linear Ax = b

Solusi Sistem Persamaan Linear Ax = b Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem

Lebih terperinci

Matriks. Baris ke 2 Baris ke 3

Matriks. Baris ke 2 Baris ke 3 Matriks A. Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegi panjang. Susunan bilangan itu diletakkan di dalam kurung

Lebih terperinci

Sistem Persamaan Linier FTI-UY

Sistem Persamaan Linier FTI-UY BAB V Sistem Persamaan Linier Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom.

1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom. Bab MATRIKS DAN OPERASINYA Memahami matriks dan operasinya merupakan langkah awal dalam memahami buku ini. Beberapa masalah real dapat direpresentasikan dalam bentuk matriks. Masalah tersebut antara lain

Lebih terperinci

Penyelesaian SPL dalam Rangkaian Listrik

Penyelesaian SPL dalam Rangkaian Listrik Penyelesaian SPL dalam Rangkaian Listrik Harry Octavianus Purba (13514050) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN KS96 KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mencari ruang baris, ruang kolom,

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA

PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA Yuniarsi Rahayu, S.Si, M.Kom Program Studi Teknik Informatika, Fakultas Ilmu Komputer Universitas

Lebih terperinci

ALJABAR LINIER. Kelas B JUMAT Ruang i.iii.3. Kelas A JUMAT Ruang i.iii.3

ALJABAR LINIER. Kelas B JUMAT Ruang i.iii.3. Kelas A JUMAT Ruang i.iii.3 ALJABAR LINIER ALJABAR LINIER Kelas B JUMAT 08.00 Ruang i.iii.3 Kelas A JUMAT 09.45 Ruang i.iii.3 Referensi Utama: Elementary Linear Algebra Howard Anton Chris Rores John Wiley, ninth edition Chapter 1

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik

Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik Ahmad Fa iq Rahman 13514081 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Banyak masalah di berbagai bidang, baik aplikasi ilmiah maupun industri melibatkan penyelesaian sistem persamaan linier, di antaranya adalah masalah lalu lintas dan

Lebih terperinci

ALJABAR VEKTOR MATRIKS. oleh: Yeni Susanti

ALJABAR VEKTOR MATRIKS. oleh: Yeni Susanti ALJABAR VEKTOR MATRIKS oleh: Yeni Susanti Materi SPL : Definisi, Solusi, SPL Nonhomogen, SPL Homogen, Matriks Augmented, Bentuk Eselon Baris (Bentuk Eselon baris Tereduksi), Eliminasi Gauss (Eliminasi

Lebih terperinci

Matematika Teknik DETERMINAN

Matematika Teknik DETERMINAN DETERMINN da satu cara lagi dalam menentukan solusi SPL dengan bekerja pada matriks koefisiennya. Cara berikut hanya akan berlaku untuk matriks koefiien berupa matriks bujursangkar atau SPL mempunyai banyak

Lebih terperinci

MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR

MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR 7.1 Matriks DEFINISI Susunan bilangan (fungsi) berbentuk persegi panjang yang ditutup dengan tanda kurung. Bilangan (fungsi) disebut entri-entri matriks.

Lebih terperinci

Penerapan Matriks dalam Analisis Sektor Perekonomian Indonesia

Penerapan Matriks dalam Analisis Sektor Perekonomian Indonesia Penerapan Matriks dalam Analisis Sektor Perekonomian Indonesia Scarletta Julia Yapfrine (13514074) Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3 11 II. M A T R I K S Untuk mencari pemecahan sistem persamaan linier dapat digunakan beberapa cara. Salah satu yang paling mudah adalah dengan menggunakan matriks. Dalam matematika istilah matriks digunakan

Lebih terperinci

ALJABAR LINEAR ELEMENTER

ALJABAR LINEAR ELEMENTER BAHAN AJAR ALJABAR LINEAR ELEMENTER Disusun oleh : Indah Emilia Wijayanti Al. Sutjijana Jurusan Matematika Fakultas MIPA Universitas Gadjah Mada Desember, 22 ii Daftar Isi Sistem Persamaan Linear dan Matriks.

Lebih terperinci

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 Deskripsi: Perkuliahan ini bertujuan mengembangkan kemampuan mahasiswa memahami konsep-konsep dasar Aljabar Matriks sebagai bekal untuk mengajar matematika

Lebih terperinci

MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika

MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika MATRIKS FTP UB Mas ud Effendi Pokok Bahasan Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar Invers suatu matriks bujursangkar Penyelesaian set persamaan linier Nilai-eigen dan

Lebih terperinci

a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE

a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Untuk DIPERHATIKAN! a A c Untuk mencari Matriks INVERS ordo 2, rumus: 1 1 d b A a d b c c a b

Lebih terperinci

MATRIKS. 3. Matriks Persegi Matriks persegi adalah matriks yang mempunyai baris dan kolom yang sama.

MATRIKS. 3. Matriks Persegi Matriks persegi adalah matriks yang mempunyai baris dan kolom yang sama. MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital (huruf besar)

Lebih terperinci

Lampiran 1 Pembuktian Teorema 2.3

Lampiran 1 Pembuktian Teorema 2.3 LAMPIRAN 16 Lampiran 1 Pembuktian Teorema 2.3 Sebelum membuktikan Teorema 2.3, terlebih dahulu diberikan beberapa definisi yang berhubungan dengan pembuktian Teorema 2.3. Definisi 1 (Matriks Eselon Baris)

Lebih terperinci

Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor.

Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor. Syarif Abdullah (G551150381) Matematika Terapan FMIPA Institut Pertanian Bogor e-mail: [email protected] 25 Maret 2016 Ringkasan Kuliah ke-6 Analisis Numerik (16 Maret 2016) Materi : System

Lebih terperinci

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3. MATRIKS Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar

Lebih terperinci

3 Langkah Determinan Matriks 3x3 Metode OBE

3 Langkah Determinan Matriks 3x3 Metode OBE 3 Langkah Determinan Matriks 3x3 Metode OBE Ogin Sugianto [email protected] penma2b.wordpress.com Majalengka, 10 Oktober 2016 Selain metode Sarrus dan Minor-Kofaktor, ada satu metode lain yang dapat

Lebih terperinci

Aljabar Linier & Matriks. Tatap Muka 2

Aljabar Linier & Matriks. Tatap Muka 2 Aljabar Linier & Matriks Tatap Muka 2 Matriks Matriks adalah susunan segi empat siku siku dari bilangan yang dibatasi dengan tanda kurung siku. Suatu matriks tersusun atas baris dan kolom, jika matriks

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

MATRIKS Nuryanto, ST., MT.

MATRIKS Nuryanto, ST., MT. MateMatika ekonomi MATRIKS TUJUAN INSTRUKSIONAL KHUSUS Setelah mempelajari bab ini, anda diharapkan dapat : 1. Pengertian matriks 2. Operasi matriks 3. Jenis matriks 4. Determinan 5. Matriks invers 6.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pembahasan mendasar mengenai matriks terutama yang berkaitan dengan matriks yang dapat didiagonalisasi telah jelas disajikan dalam referensi yang biasanya digunakan

Lebih terperinci

MATRIKS. Notasi yang digunakan NOTASI MATRIKS

MATRIKS. Notasi yang digunakan NOTASI MATRIKS MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.

Lebih terperinci