Mr.alex Hu Method Halaman 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Mr.alex Hu Method Halaman 1"

Transkripsi

1 . EBTANAS 00/P-/No. Nilai minimum fungsi objektif +y yang memenuhi pertidaaksamaan +y, +y 8, +y 8, 0 adalah. A. 8 B. 9 C. D. 8 E. Objektif Z = AX +By Misal berat ke y B > A) Maka Z min = AX Z maks = By Objektif Z = +y berat ke y) berarti hanya dibaca : minimumkan Z = minimum, PP harus Besar, maksudnya pilih pertidaksamaan yang besar ambil nilai Peubah yang Besar +y. = +y 8... = 8, terlihat peubah besar = 8 maka Z min = = 8 Mr.ale Hu Method Halaman

2 . EBTANAS 00/P-/No.0 Untuk daerah yang diarsir, nilai maksimum dari fungsi objektif T = +y terjadi di titik A. O B. P C. Q D. R E. S +y = 8 S R Q +y = 8 O P +y = 5 g adalah garis selidik +y =.Perhatikan garis g berada di R, artinya maksimum fungsi T beradadi R S R m em otong R di paling kanan Q O P g' digeser sejajar ke kanan) g garis selidik) Mr.ale Hu Method Halaman

3 . UAN 00/P-/No. Nilai maksimum bentuk objektif +0y) yang memenuhi himpunan penyelesaian system pertidaksamaan linier 0, y 0, +y 0, +y 6 adalah. A. 0 B. 80 C. 7 D. 8 E. Objektif Z = AX +By Misal berat ke y B > A) Maka Z min = AX Z maks = By Objektif Z = +0y berat ke y) berarti hanya dibaca : maksimumkan Z = 0y Maksimum, PP harus Kecil, maksudnya pilih pertidaksamaan yang kecil ambil nilai Peubah yang kecil +y. y = +y 6 y = 8, terlihat peubah kecil = 8 Mr.ale Hu Method Halaman

4 . Nilai maksimum dari z = 0 +0y untuk,y) yang terletak dalam daerah +y 6, +y, dan y 0 adalah A. 00 B. 0 C. 0 D. 60 E. 80 Sasaran Ma, berarti pilih pertidaksamaan dan peubah PP) Kecil Z = 0 +0y ambil nilai pertidaksamaan kecil pada interval, berarti = = substitusi ke + y = 6 di dapat y=. Dengan demikian nilai z maksimum akan di capai pada titik,) z ma = = = 60 Mr.ale Hu Method Halaman

5 5. Seorang anak diharuskan makan dua jenis vitamin tablet setiap hari. Tablet pertama mengandung unit vitamin A dan unit vitamin B, sedangkan tablet kedua mengandung unit vitamin A dan unit vitamin B. Dalam satu hari ibu memerlukan unit vitamin A dan 7 unit vitamin B. Jika harga tablet pertama Rp 50,00/biji dan tablet kedua Rp 00,00/biji, maka pengeluaran minimum untuk membeli tablet perhari. A. Rp 00,00 B. Rp 50,00 C. Rp 00,00 D. Rp 50,00 E. Rp 00,00 = unit vitamin A y = unit vitamin B, berarti : +y +y 7 Min, Sasaran besar dan PP kecil z = y, koefisien y besar, berarti pilih nilai y yang kecil saja minimum) dari : +y = dan +y = 7. Dari +y = 7 di dapat y = 7/. Z min = 7/. 00 = 50 Mr.ale Hu Method Halaman 5

6 6. SPMB 00/60/No.0 Nilai maksimum dari +y -6 yang memenuhi 0, y 0, +8y 0, dan 7 +y 80 adalah. A. 5 B. 5 C. 50 D. 9 E. 8 Objektif Z = A +By+C Misal Seimbang A =B) Maka Z min = A+By+C Z Fungsi Objektif maks = A+ By+C Z= +y -6 Perhatikan Koefisien dan y Seimbang Berarti penyelesaian ada di titik potong P kecil X 7 +y = 80 +8y = 0 +8y = = -0 = 0 = 0 susupkan ke : 7 +y = 80 70) +y = 80 y = 5 Z = = 9 m aks Mr.ale Hu Method Halaman 6

7 7. Nilai maksimum f,y) = 5 +0y di daerah yang diarsir adalah. A B. 0 C. 6 D. 0 E. 6 6 Penyelesaian terletak pada titik potong y = dengan 6 +y = 6 + = = 5 karena y = maka y = 5 F ma = = + = 6 Mr.ale Hu Method Halaman 7

8 8. Nilai maksimum dari +y yang memenuhi syaratsyarat 0, y 0, +y -6 0, +y-9 0 dan +y - 0 adalah. A. 6 B. 7 C. 8 D. 9 E. 0 6 Sasaran Ma, berarti pilih pertidaksamaan dan peubah PP) Kecil z = +y di cari maksimum, maka pilih pertidaksamaannya yang kecil yakni +y -9 0 dan +y - 0, dipotongkan +y = y = 57 +y =. 6 +y = 5y = 5 y =, = 5 z ma = 5 + = 8 Mr.ale Hu Method Halaman 8

9 9. Nilai minimum P = 0 +0y dengan syarat : +y 6 +y 6 y 0 0 y 0 adalah. A. 5 B. 0 C. 50 D. 00 E Sasaran Min, berarti pilih pertidaksamaan dan peubah PP) Besar P = 0 +0y di cari minimum, maka pilih pertidaksamaannya yang besar yakni +y, berarti : y = sasaran berat ke-) Jadi P ma = 0. =0 Mr.ale Hu Method Halaman 9

10 0. Pedagang buah akan membeli apel dan jeruk. Harga setiap kg apel dan setiap kg jeruk berturut-turut adalah Rp 6.000,00 dan Rp.000,00. Pedagang itu memiliki uang Rp ,00 dan hanya ingin membeli buah paling banyak 00 kg. Misalnya banyak apel kg dan banyaknya jeruk y kg, maka system pertidaksamaan yang harus dipenuhi adalah A. +y 50, +y 00, 0, y 0 B. +y 50, +y 00, 0, y 0 C. +y 50, +y 00, 0, y 0 D. +y 50, +y 00, 0, y 0 E. +y 50, +y 00, 0, y 0 6 Misal = apel y = jeruk Harga buah : y disederhanakan menjadi : +y 50 i ) Kapasitas : + y 00. ii ) Syarat : 0 dan y 0. A) Mr.ale Hu Method Halaman 0

11 . Rokok A yang harga belinya Rp.000 dijual dengan harga Rp.00 per bungkus sedangkan rokok B yang harga belinya Rp.500 dijual dengan harga Rp.700 per bungkus. Seorang pedagang rokok yang mempunyai modal Rp dan kiosnya dapat menampung paling banyak 50 bungkus rokok akan mendapat keuntungan maksimum jika ia membeli. A. 50 bungkus rokok A dan 00 bungkus rokok B B. 00 bungkus rokok A dan 50 bungkus rokok B C. 50 bungkus rokok A dan 00 bungkus rokok B D. 50 bungkus rokok A saja E. 00 bungkus rokok B saja 6 Sistem pertidaksamaannya : y harga beli) disederhanakan : +y i ) Kapasitas : + y ii ) Fungsi sasarannya : z = y Terlihat berat ke posisi y, berarti cari nilai y yang kecil dari i ) dan ii ) +y = 600 = 0, y = 00 + y = 50 = 0, y = 50 Kelihatan y yang kecil adalah 00 Jadi keuntungan maksimum pasti pada saat ia membeli 00 bunkus rokok B saja Mr.ale Hu Method Halaman

12 . UAN 00/P-/No. Daerah yang di arsir merupakan penyelesaian dari system pertidaksamaan. Y 0,6) 0,8) 0,) O,0) 8,0),0) X A. +y 8, +y, + 6y B. +y 8, +y, + 6y C. +y 8, +y, + 6y D. +y 8, +y, + 6y Terlihat : Jawaban : C 8 6 atas " B esar " 8 y 6 atau y 8 baw ah " K ecil " 6 8 y 8 atau y 8 atas " B esar " y atau 6 y Mr.ale Hu Method Halaman

13 . Jika adalah. A. B. C. f ) dan g) = -, maka f og) - ) D. E. a b f ), maka c d d b f ) c a f ) dan g) = - 0. f og)) = f og) - ) = Mr.ale Hu Method Halaman

14 . Jika g of)) = +, dan g) = -, maka f -) adalah A. + B. - C. - D. + E. -5 g of)) = +, g) = - gf)) = + f )- = + f ) = + + = +) f) = + f -) = -) + = - f ) = a +b maka : f -k) = a -k) +b sebaliknya : f-k) = a+b, maka : f) = a +k) +b Mr.ale Hu Method Halaman

15 . Jika f ) dan g) = -, maka g of)) adalah. A. B. - C. + D. - E. + a a, tapi : a ) a jadi : f ) ) f ) f) =, g) = - g of)) = g f ) = ) = + = Mr.ale Hu Method Halaman 5

16 . Jika f ) dan sama dengan. A. B. D. C. E. fog ) ), maka g) f og) = f = f g ) = g g = =, g - = = 6 8 = + Mr.ale Hu Method Halaman 6

17 5. Fungsi f : R R dan g : R R ditentukan oleh f) = - dan g) = +6 +9, maka g of)) adalah. A B C. + + D E g of)) = gf)) f) = -, g) = g of)) = gf)) = -) +6 -) +9 = = +8 + Mr.ale Hu Method Halaman 7

18 Mr.ale Hu Method Halaman 8 6. Jika ) f dan 5 ) ) fog, maka g -) = A. 5 B. D. C. E. f og)) = 5 5 g 5) ) g ) ) 5 g = ) g 5 ) g

19 7. Diketahui fungsi f ). Invers dari f) adalah. A. ) B. -) ) C. -) ) D. -) ) / E. -) ) / f ) f f -) = = f -) f ) f ) ) f ) ) ) Mr.ale Hu Method Halaman 9

20 8. Jika f) =, 0 dan g ) ;, maka g of) - ) = A. ¼ B. ½ C. D. E. g of) - ) = f - og - )) = g of) - ) = f) = f - ) = g ) g ) Mr.ale Hu Method Halaman 0

21 9. Jika f) = - dan g of)) = +, maka g) =. A. + B. + C. +5 D. +7 E. + Jika f) = a +b dan g of)) = u) Maka : g) = u a b f) = -, g of)) = + g) = Mr.ale Hu Method Halaman

22 0. Jika f og)) = +8 - dan g) = +, maka f - ) = A. +9 B. + C. - - D. E. 7 g) = +, f og)) = +8 - f) = 8 ) = = - - = -) -7 f - ) = + 7 Mr.ale Hu Method Halaman

23 . Prediksi UAN/SPMB Jika f) = + dan f o g)) = Nilai dari g) =... A. 0 B. - C. 9 D. -9 E. 8 f ) a b dan fog ) ) p q r g ) p q a r b maka : Mr.ale Hu Method Halaman

24 . Prediksi UAN/SPMB f ) maka invers dari f) adalah... A. log B. log C. log D. log E. log Jika p a maka f ) f ) a log p f ) maka f ) log log Mr.ale Hu Method Halaman

25 . UAN 00/P-/No.6 Ditentukan gf)) = fg)). Jika f) = +p dan g) = +0, maka nilai p =. A. 0 B. 60 C. 90 D. 0 E. 50 gf)) = fg)) g +p) = f +0) +p) +0 = +0) +p 6 +p +0 = p p p = 0-0 p = 0 Mr.ale Hu Method Halaman 5

26 . UAN 00/P-/No.6 Jika f - ) adalah invers dari fungsi 5 f ), A.,75 B. C.,5 D.,50 E.,75. Maka nilai f - ) sama dengan a b f ), maka c d f ) c d a b f ) 5 f f ) ) 5. 5.,5 Mr.ale Hu Method Halaman 6

27 Mr.ale Hu Method Halaman 7 5. UAN 00/P-/No.7 Fungsi f : R R didefinisikan sebagai, ) f.invers dari fungsi f adalah f - ) = A., B., D., C., E., ) f ) f kali : -) f ) d c b a f ), maka a c b d f )

28 6. UAN 00/P-/No.7 5 Diketahui f) = + dan g) = untuk 0. Jika f - ) = fungsi invers dari f) dan g - ) = fungsi invers dari g), maka nilai f - o g - )) = dipenuhi untuk =. A. B. C. 5 D. 8 E. 0 f - o g - )) = f = +,maka : f - = - 5 g =, maka g - 5 = f - g - )) = f - 5 ) = Jadi : = = atau = 5 Mr.ale Hu Method Halaman 8

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] htt://meetabied.wordress.com SMAN 1 Bone-Bone, Luwu Utara, Sul-Sel Sukses seringkali datang ada mereka yang berani bertindak, dan jarang menghamiri enakut yang tidak berani mengambil konsekuensi (Jawaharlal

Lebih terperinci

[RUMUS CEPAT MATEMATIKA] SMAN 1 Bone-Bone, Luwu Utara, Sul-Sel

[RUMUS CEPAT MATEMATIKA]  SMAN 1 Bone-Bone, Luwu Utara, Sul-Sel http://meetabied.wordpress.com SMAN BoneBone, Luwu Utara, SulSel Bergaullah dengan para pemenang karena pemenang memberi pengaruh baik kepada Anda. Sedangkan pecundang dapat meracuni Anda. (John D. Rockefeller)

Lebih terperinci

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488

02. Nilai maksimum dari 20x + 8y untuk x dan y yang memenuhi x + y 20, 2x + y 48, 0 x 20 dan 0 y 48 adalah. (A) 408 (B) 456 (C) 464 (D) 480 (E) 488 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan: -2x + y 0 x - 2y 0 dan x + 2y 8, maka a + b =. (A) 2 (B) 1 (C) 2 (D) (E) 6 02. Nilai maksimum dari

Lebih terperinci

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8

Tablet I x Tablet II y Batasan Vitamin A 5 10 Minimal 20 Vitamin B 3 1 Minimal 5 Harga/Biji 4 8 2. Program Linier a. Defenisi Program linier adalah metode untuk mendapatkan penyelesaian optimum dari suatu fungsi sasaran yang mengandung kendala atau batasan yang dapat dibuat dalam bentuk sistem pertidaksamaan

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Program Linier - Latihan Soal Doc. Name: RK13AR11MATWJB0401 Version : 2016-10 halaman 1 01. Nilai z = 3x + 2y maksimum pada x = a dan y = b. Jika x = a dan

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel.

PROGRAM LINEAR. Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. NAMA : KELAS : 1 2 Ingat: Langkah-langkah dalam menggambar ax + by = c 1. Buat daftar nilai x dan y pada tabel. x y PROGRAM LINEAR 2. Tentukan titik potong dengan sumbu X, yaitu saat y = 0. 3. Tentukan

Lebih terperinci

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan

Model Matematika. Persamaan atau pertidaksamaan Matematika Tujuan Kehidupan Nyata Bisa Disajikan Bahasa Matematika Diperlukan Alat Bantu Model Matematika Menggunakan Persamaan atau pertidaksamaan Matematika Tujuan Penyelesaian masalah Kemampuan yang akan dibahas Menentukan

Lebih terperinci

Xpedia Matematika Dasar

Xpedia Matematika Dasar Xpedia Matematika Dasar Soal Program Linear Doc. Name: XPMATDAS0999 Doc. Version : 01-09 halaman 1 01. Nilai z = 3x + y maksimum pada x = a dan y = b. Jika x = a dan y = b juga memenuhi pertidaksamaan

Lebih terperinci

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal :

PROGRAM LINEAR 2 SMA SANTA ANGELA. Contoh Soal : 1 SMA SANTA ANGELA PROGRAM LINEAR Standar kompetensi : Menyelesaikan masalah program linear Kompetensi Dasar : Menyelesaikan sistem pertidaksamaan linear dua variabel. Menyelesaikan masalah program linear.

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR

LEMBAR AKTIVITAS SISWA PROGRAM LINEAR LEMBAR AKTIVITAS SISWA PROGRAM LINEAR c) Subtitusikan titik (0,0) kedalam pertidaksamaan. Nama Siswa : Jika hasil benar, maka penyelesaiaannya adalah daerah Kelas : yang memuat titik tersebut. Jika hasil

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK

MATEMATIKA. Sesi MENCARI MAKSIMUM DAN MINIMUM FUNGSI A. METODE TITIK POJOK MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 08 Sesi N MENCARI MAKSIMUM DAN MINIMUM FUNGSI Kita sudah belajar bagaimana menggambar daerah dari batas pertidaksamaan ang diketahui atau pun sebalikna. Suatu

Lebih terperinci

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA

ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN MATEMATIKA XII BAHASA ULANGAN UMUM MADRASAH ALIYAH SEMESTER GANJIL TAHUN PELAJARAN 29-21 MATEMATIKA XII BAHASA Hari / tanggal :... Desember 29 Waktu : 12 menit Pilih salah satu jawaban ang benar dengan memberi tanda silang

Lebih terperinci

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang :

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : 1. Menggambar daerah yang memenuhi 2. Menentukan system pertidaksamaan suatu daerah 3. Menentukan nilai optimum

Lebih terperinci

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1

PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) y 2. (0, a) y 1. (x 1, y 1 ) (b, 0) X. x 1 PROGRAM LINEAR A. Persamaan Garis Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) a (0, a) 0 x 1 x 1 0 x 2 (b, 0) 0 b a. Persamaan garis yang bergradien m dan melalui titik (x 1, y 1 ) adalah: y

Lebih terperinci

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3

Pilihlah jawaban yang paling tepat! 1. Ordo dari matriks A = adalah. A. 2 x 3 B. 2 x 2 C. 3 x 1 D. 3 x 2 E. 3 x 3 Pilihlah jawaban yang paling tepat!. Ordo dari matriks A = 7 A. x B. x C. x D. x x adalah.. Berikut ini yang termasuk Matriks identitas adalah... A. 7 B. 7 C. D. a b. Diketahui A = dan B = b A. B. C. D..

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR E. Kegiatan Belajar 2 PENERAPAN PROGRAM LINEAR 1. K A. Nilai Optimum Fungsi Obyektif Fungsi objektif merupakan fungsi yang menjelaskan tujuan (meminimumkan atau memaksimumkan)

Lebih terperinci

17. SOAL-SOAL PROGRAM LINEAR

17. SOAL-SOAL PROGRAM LINEAR 17. SOAL-SOAL PROGRAM LINEAR EBTANAS2000 1. Himpunan penelesaian sistem pertidaksamaan 5x + 10 2x + 8 2 x = 2 titik (2,0 titk potong dengan sumbu jika x = 0 = 10 titik (0,10 daerah 5x + 10 berada pada

Lebih terperinci

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Program Linear. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bab II Program Linear 51 Tujuan Pembelajaran Setelah mempelajari bab ini, diharapkan kalian dapat 1. menjelaskan sistem pertidaksamaan linear dua variabel dan penyelesaiannya; 2. menentukan fungsi tujuan

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas :

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas : PROGRAM LINEAR Bukti : + = a + b = a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

A. Sistem Persamaan Linier dengan dua Variabel

A. Sistem Persamaan Linier dengan dua Variabel Jurnal Materi Umum Peta Konsep Peta Konsep Daftar Hadir MateriA SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Kelas X, Semester 1 Sistem Persamaan Linier Dua Variabel Tiga Variabel Sistem Pertidaksamaan linier

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika Persiapan UTS Doc. Name: ARMAT0UTS Doc. Version : 04-0 halaman 0. Integral substitusi dasar serie A (A) x 4 dx 5 cos x dx = 0. (A) 5x dx sin x d x 0. 7 x x x dx 04. dx 5x 05.

Lebih terperinci

BAB III. PROGRAM LINEAR

BAB III. PROGRAM LINEAR BAB III. PROGRAM LINEAR Salah satu pokok bahasan dalam mata pelajaran matematika kelas III IPA semester gasal, menurut Kurikulum 2004 (KBK) SMA / MA, memuat : Kompetensi dasar : Siswa menggunakan dan menghargai

Lebih terperinci

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel PROGRAM LINIER A. Pengertian Program Linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika Persiapan UAS Doc. Name: ARMAT0UAS Doc. Version : 06-08 halaman 0. Jika f(x)= (x x 5)dx dan f()=0, maka f(x) =... x + x - 5x - 6 4x - x + 5x - 4 5 5 x x x x - x + 5x - 5 x +

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT 2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax 2 + bx + c =, a 2) Nilai determinan persamaan kuadrat : D = b 2 4ac 3) Akar-akar persamaan kuadrat

Lebih terperinci

2. FUNGSI KUADRAT. , D = b 2 4ac

2. FUNGSI KUADRAT. , D = b 2 4ac . FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax + bx + c =, a ) Akar akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus: x 1, b D, D = b 4ac a 3) Jumlah,

Lebih terperinci

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 05 / 06 SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON SMA / MA MATEMATIKA Program Studi IPS Kerjasama dengan Dinas Pendidikan Provinsi DKI Jakarta,

Lebih terperinci

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS

SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS SOAL DAN PEMBAHASAN PROGRAM LINEAR KELAS XI IPA/IPS UJI KOMPETENSI 1.1 1. PT Lasin adalah suatu pengembang perumahan di daerah pemukiman baru. PT tersebut memiliki tanah seluas 12.000 meter persegi berencana

Lebih terperinci

MODUL 1 : PROGRAM LINEAR

MODUL 1 : PROGRAM LINEAR MODUL 1 : PROGRAM LINEAR A. Pendahuluan Dalam kehidupan sehari-hari sering dijumpai aplikasi program linear, seperti pembangunan perumahan atau apartemen, pemakaian obat-obatan dalam penyembuhan pasien,

Lebih terperinci

Matematika Proyek Perintis I Tahun 1980

Matematika Proyek Perintis I Tahun 1980 Matematika Proyek Perintis I Tahun 980 MA-80-0 Di antara lima hubungan di bawah ini, yang benar adalah Jika B C dan B C, maka A C Jika A B dan C B, maka A C Jika B A dan C B, maka A C Jika A C dan C B,

Lebih terperinci

PERTIDAKSAMAAN LINEAR DUA VARIABEL

PERTIDAKSAMAAN LINEAR DUA VARIABEL PRGRAM LINEAR Intisari Teori A. PERTIDAKSAMAAN LINEAR DUA VARIABEL (PtLDV) Suatu pernyataan yang berbentuk a by c 0 (tanda ketidaksamaan dapat diganti dengan, >, atau < ) dengan a dan b tidak semuanya

Lebih terperinci

2 sama dengan... 5, x R adalah.

2 sama dengan... 5, x R adalah. . Menjelang hari raya, sebuah toko M memberikan diskon % untuk setiap pembelian barang. Jika Rini membayar pada kasir sebesar Rp 7.00,00, maka harga barang yang dibeli Rini sebelum dikenakan diskon adalah...

Lebih terperinci

PROGRAM LINEAR. Dasar Matematis

PROGRAM LINEAR. Dasar Matematis PROGRAM LINEAR Dasar Matematis PROGRAM LINIER adalah suatu teknik optimalisasi dimana variabel-variabelnya linier. Metode ini dipakai pada saat kita dihadapkan pada beberapa pilihan dengan batasan-batasan

Lebih terperinci

Gambar 1.1 Mesin dan SDM perusahaan

Gambar 1.1 Mesin dan SDM perusahaan BAB I PROGRAM LINEAR Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menyelesaikan sistem pertidaksamaan linear dua variabel, 2. merancang model matematika dari masalah

Lebih terperinci

Program Linear. Bab I

Program Linear. Bab I Program Linear 1 Bab I Program Linear Sumber: Ensiklopedia Pelajar, 1999 Motivasi Setiap pedagang, pengusaha, atau orang yang berkecimpung di bidang usaha pasti menginginkan keuntungan sebanyak-banyaknya

Lebih terperinci

SOAL-SOAL LATIHAN UN A35

SOAL-SOAL LATIHAN UN A35 SAL-SAL LATIHAN 1. UN A5 01 Penjahit Hidah Pantes akan membuat pakaian wanita dan pria. Untuk membuat pakaian wanita diperlukan bahan bergaris m dan bahan polos 1 m. Untuk membuat pakaian pria diperlukan

Lebih terperinci

Program Linear - IPA

Program Linear - IPA Program Linear - IPA Tahun 2005 1. Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak

Lebih terperinci

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,-

ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp10.021,- ISBN : 978-979-068-858- (No. jil lengkap) ISBN : 978-979-068-863-6 PUSAT PERBUKUAN Departemen Pendidikan Nasional Harga Eceran Tertinggi: Rp0.0,- i Khazanah Matematika 3 untuk Kelas XII SMA dan MA Program

Lebih terperinci

4. Jika log 3 = 0,477 dan log 5 = 0,699, maka nilai log 45 adalah. a. 1,176 b. 1,431 c. 1,649 d. 1,653 e. 1,954. merupakan invers dari fungsi f (x)

4. Jika log 3 = 0,477 dan log 5 = 0,699, maka nilai log 45 adalah. a. 1,176 b. 1,431 c. 1,649 d. 1,653 e. 1,954. merupakan invers dari fungsi f (x) . Sebuah tempat air berbentuk balok digambar dengan menggunakan skala : 00, mempunyai ukuran cm x cm x cm. Volume tempat air sebenarnya adalah.600 cm 60.000 cm 6 m.600 m 6.000 m. Nilai dari () 6 6 8 x

Lebih terperinci

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010

ISTIYANTO.COM PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPS. Kemampuan yang diuji UN 2009 = UN Materi. Soal UN 2009 Prediksi UN 2010 PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPS Materi Logika Matematika Kemampuan yang diuji UN 009 = UN 00 Menentukan nilai kebenaran suatu pernyataan majemuk Menentukan ingkaran suatu pernyataan Perhatikan

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 010/011 Program Studi IPA 1. Akar-akar persamaan 3x -1x + = 0 adalah α dan β. Persamaan Kuadrat baru yang akar-akarnya (α +) dan (β +)

Lebih terperinci

muhammadamien.wordpress.com

muhammadamien.wordpress.com 1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya 1 3 5 7 9. Jika nilai maksimum 3. Jika maka 4. 5. 1 3 4 5 6 1 6. 7. Luas daerah yang dibatasi oleh parabola

Lebih terperinci

PEMBAHASAN DAN KUNCI JAWABAN UN MATEMATIKA SMA 2011 PAKET 12 PLUS TRIK SUPERKILAT DAN LOGIKA PRAKTIS (By Pak Anang

PEMBAHASAN DAN KUNCI JAWABAN UN MATEMATIKA SMA 2011 PAKET 12 PLUS TRIK SUPERKILAT DAN LOGIKA PRAKTIS (By Pak Anang 1. Bentuk sederhana dari A. LOGIKA PRAKTIS: PEMBAHASAN DAN KUNCI JAWABAN UN MATEMATIKA SMA 2011 PAKET 12 PLUS TRIK SUPERKILAT DAN LOGIKA PRAKTIS (By Pak Anang http://www.facebook.com/pak.anang ) Pembilang

Lebih terperinci

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII

PROGRAM LINEAR. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII LA - WB (Lembar Aktivitas Warga Belajar) PROGRAM LINEAR Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XII Created By Ita Yuliana 9 Program Linear Kompetensi

Lebih terperinci

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m

h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m 1. Dalam permasalahan program linear dikenal dua istilah, yaitu : a. Fungsi Kendala/ pembatas, berupa pertidaksamaan pertidaksamaan linear ax by 0; ax by p; ax by 0; ax by 0 b. Fungsi/ bentuk objektif,

Lebih terperinci

http://meetabied.wordpress.com SMAN Bone-Bone, Luwu Utara, Sul-Sel Kebahagiaan akan tumbuh berkembang manakala Anda membantu orang lain. Namun bilamana Anda tidak mencoba membantu sesama, kebahagiaan akan

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS 1 Penusun Editor : Rifan Nadhifi, S.Si. ; Imam Indra Gunawan, S.Si. : Drs. Keto Susanto, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Indra Gunawan, S.Si. A. Sistem Pertidaksamaan Linear Pertidaksamaan linear

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas 10 Matematika Persiapan UAS -1 Doc. Name: K1AR10MATWJB01UAS doc. Version : 015-04 halaman 1 01. Nilai dari a 1 a 6 adalah. a 8 a 9 a 10 a 11 a 1 0. 8 60. ( B) 6 5 6 5 5 A, B, C, dan D salah

Lebih terperinci

Antiremed Kelas 11 Matematika

Antiremed Kelas 11 Matematika Antiremed Kelas Matematika Persiapan UTS Doc. Name: KARMATWJB0UTS Version: 04-0 halaman 0. Nilai maksimum dari 0 + 8 untuk dan y yang memenuhi + y 0, + y 48, 0 0 dan 0 y 48 adalah. (A) 408 (B) 456 (C)

Lebih terperinci

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY

SOAL PENJAJAKAN UN MATEMATIKA 2012 PROVINSI DIY SOAL PENJAJAKAN UN MATEMATIKA 0 PROVINSI DIY. Suatu proyek akan selesai dalam waktu 0 hari oleh 0 orang pekerja. Tambahan pekerja yang dibutuhkan agar proyek tersebut selesai dalam waktu 90 hari adalah.

Lebih terperinci

PREDIKSI UN SMA IPS MATEMATIKA 2012

PREDIKSI UN SMA IPS MATEMATIKA 2012 Prediksi Matematika UN SMA IPS 01 PREDIKSI UN SMA IPS MATEMATIKA 01 1. Diketahui dua pernyataan p dan q p : bernilai besar q : bernilai salah Pernyataan majemuk di bawah ini bernilai benar, kecuali. A.

Lebih terperinci

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah...

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah... UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN 0. Bentuk sederhana dari A. B. 6 a b 6 6 a b 6 a C. 8 D. b 6 a 9 b 6 a E. 8 b Solusi: [E] a b 0

Lebih terperinci

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL

SOAL-SOAL LATIHAN PROGRAM LINEAR UJIAN NASIONAL SAL-SAL LATIHAN PRGRAM LINEAR UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik program linear. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual

Lebih terperinci

Solusi: [Jawaban C] Solusi: [Jawaban ]

Solusi: [Jawaban C] Solusi: [Jawaban ] SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari

Sistem Bilangan 06. UN-SMK-BIS adalah... Jika a = 4, b = 5 maka nilai dari Sistem Bilangan 0. UN-SMK-PERT-0-0 Bentuk sederhana dari ( ) =... 7 8 9 8 0. UN-SMK-TEK-0-0 Hasil perkalian dari (a) - (a) =... a a a a a 0. UN-SMK-PERT-0-0 Bentuk sederhana dari 0. UN-SMK-TEK-0-0 6 6.

Lebih terperinci

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA

BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA BAB 3 PROGRAM LINEAR 1. MODEL MATEMATIKA Masalah 1.1 Sekelompok tani transmigran mendapatkan 10 hektar tanah yang dapat ditanami padi, jagung, dan palawija lain. Karena keterbatasan sumber daya petani

Lebih terperinci

UN SMA IPA 2011 Matematika

UN SMA IPA 2011 Matematika UN SMA IPA 0 Matematika Kode Soal Doc. Name: UNSMAIPA0MAT999 Doc. Version : 0- halaman 0. Suku ke- dan ke-9 suatu barisan aritmetika berturut-turut adalah 0 dan 50. Suku ke- 0 barisan aritmetika tersebut

Lebih terperinci

SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014

SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 SOLUSI DINAS PENDIDIKAN KOTA BOGOR KELOMPOK KERJA KEPALA SEKOLAH (SMA/MA SE KOTA BOGOR) TES UJI COBA UJIAN NASIONAL TAHUN PELAJARAN 0/0 TES UJI COBA UJIAN NASIONAL SMA/MA MATEMATIKA IPS 7 7.... SOAL B6

Lebih terperinci

BAB V. PERTIDAKSAMAAN

BAB V. PERTIDAKSAMAAN BAB V. PERTIDAKSAMAAN Pengertian: Pertidaksamaan adalah kalimat terbuka dimana ruas kiri dan kanannya dihubungkan dengan tanda pertidaksamaan > (lebih dari), < (kurang dari), (lebih besar dari dan sama

Lebih terperinci

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan Pilihlah satu jawaban yang tepat.. (x x 4 ) dx.. ULANGAN AKHIR SEMESTER TAHUN PELAJARAN 007/008 Mata Pelajaran : Matematika Kelas / Program : XII / Ilmu Alam Hari, Tanggal : Waktu : 90 menit ( ) ` a. x

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

Dengan merasionalkan penyebut, hasil dari. 1. Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah

Dengan merasionalkan penyebut, hasil dari. 1. Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah 00-008-00- . Diketahui premis-premis: I Jika cuaca cerah, maka Andi pergi sekolah II Andi tidak pergi sekolah atau Andi bermain bola Kesimpulan yang sah dari premis-premis tersebut adalah.... cuaca cerah

Lebih terperinci

Berdasarkan definisi di atas, maka pertidaksamaan linear dua variabel dapat dinyatakan dalam bentuk:

Berdasarkan definisi di atas, maka pertidaksamaan linear dua variabel dapat dinyatakan dalam bentuk: BAHAN AJAR A. Kompetensi Inti KI 1 : Menghayati dan mengamalkan ajaran agama yang dianutnya. KI 2: Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama,

Lebih terperinci

PROGRAM LINIER. Pembahasan: Jika: banyak sepatu jenis I = x banyak sepatu jenis II = y

PROGRAM LINIER. Pembahasan: Jika: banyak sepatu jenis I = x banyak sepatu jenis II = y PROGRAM LINIER A. Pengertian Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimalisi linier (nilai maksimal atau nilai minimal). B. Model Matematika

Lebih terperinci

Ujian Nasional. Tahun Pelajaran 2010/2011 IPS MATEMATIKA (D10) UTAMA. SMA / MA Program Studi

Ujian Nasional. Tahun Pelajaran 2010/2011 IPS MATEMATIKA (D10) UTAMA. SMA / MA Program Studi Ujian Nasional Tahun Pelajaran 2010/2011 UTAMA SMA / MA Program Studi IPS MATEMATIKA (D10 c Fendi Alfi Fauzi alfysta@yahoo.com Ujian Nasional Tahun Pelajaran 2010/2011 (Pelajaran Matematika Tulisan ini

Lebih terperinci

BAB XVII. PROGRAM LINEAR

BAB XVII. PROGRAM LINEAR BAB XVII. PROGRAM LINEAR Bukti : + a + b a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear

Program Linear. Program linear merupakan salah satu bidang matematika terapan. Sistem Pertidaksamaan Linear B. Program Linear Bab w. me da li.c om : er mb Su ww Program Linear Program linear merupakan salah satu bidang matematika terapan ang banak digunakan untuk memecahkan permasalahan dalam kehidupan sehari-hari. Misalna, program

Lebih terperinci

PROGRAM LINIER. Sumber: Art & Gallery

PROGRAM LINIER. Sumber: Art & Gallery 4 PROGRAM LINIER Sumber: Art & Gallery 114 Matematika X SMK Kelompok: Penjualan dan Akuntansi Standar kompetensi program linier terdiri atas empat kompetensi dasar. Dalam penyajian pada buku ini setiap

Lebih terperinci

B B S S B S S B S S B B S S S B B S B S S S S B B S B B

B B S S B S S B S S B B S S S B B S B S S S S B B S B B 1. Ingkaran pertanyaan: Petani panen beras atau harga beras murah. A. Petani panen beras dan harga beras mahal. B. Petani panen beras dan harga beras murah. C. Petani tidak panen beras dan harga beras

Lebih terperinci

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( )

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( ) Nama : Ximple Education No. Peserta : 08-6600-747. Bentuk sederhana dari 6 6 3 3 5 64 7 000 3 A. 36 B. 6 C. D. 6 E. 36 =.. Bentuk sederhana dari ( 6)(6 +3 6) 3 4 A. 3 ( 3 + 4) B. 3 ( 3 + 4) C. ( 3 + 4)

Lebih terperinci

Soal dan Pembahasannya.

Soal dan Pembahasannya. Soal dan Pembahasanna Perhatikan tabel di bawah ini! p q p q ~ q B B B S S B S S Nilai kebenaran dari pernataan majemuk p q ~ q pada tabel di atas adalah p q p q ~ q p q ~ q B B B S B B S S B B S B B S

Lebih terperinci

UN SMA IPS 2009 Matematika

UN SMA IPS 2009 Matematika UN SMA IPS 009 Matematika Kode Soal P88 Doc. Name: UNSMAIPS009MATP88 Doc. Version : 011-06 halaman 1 01. Diberikan beberapa pernyataan: Premis 1: Jika Santi sakit maka ia pergi ke dokter Premis : Jika

Lebih terperinci

SOAL-SOAL TO UN MATEMATIKA IPA PAKET A ... A B. x 3 C. 2 5 D E. 3 x Bentuk sederhana dari ... A. B. C. D. E. 3. Nilai dari =...

SOAL-SOAL TO UN MATEMATIKA IPA PAKET A ... A B. x 3 C. 2 5 D E. 3 x Bentuk sederhana dari ... A. B. C. D. E. 3. Nilai dari =... SOAL-SOAL TO UN MATEMATIKA IPA PAKET A 5. 4 4 Nilai dari 4 ( )4 5 4.0..... 4 5 4 5. Bentuk sederhana dari 5... 0 8 5 8 5 5 8 8 5 8 5 5 log 4. log log8. Nilai dari log 4 log 8 4 4 8 4 =.... 4. Nilai x yang

Lebih terperinci

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010 . Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan

Lebih terperinci

BAB II PROGRAM LINEAR

BAB II PROGRAM LINEAR BAB II PROGRAM LINEAR A RINGKASAN MATERI. Pengertian Program linear adalah suatu permasalahan dalam matematika dengan tujuan untuk mengoptimalkan fungsi obektif ang berbentuk linear dengan kendala/batasan

Lebih terperinci

UJIAN NASIONAL MATEMATIKA TAHUN 2010 TEKNOLOGI

UJIAN NASIONAL MATEMATIKA TAHUN 2010 TEKNOLOGI 1. Nilai x yang memenuhi persamaan : a. 17 b. 1 d. 1 e.. Nilai 2 log 2 log 6 + 2. 2 log 2 adalah a. 3 b. 5 d. 6 e. 2 ( 2x + 3 ) = 5 ( x + 2 ) x + 6 = 5x + x 5x = 6 -x = x = - 2. Diketahui p = 6 3 27 dan

Lebih terperinci

UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA. Soal ini merupakan hasil ketik ulang tanpa merubah isi konten

UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA. Soal ini merupakan hasil ketik ulang  tanpa merubah isi konten DOKUMEN NEGARA SANGAT RAHASIA Matematika SMA/MA IPS UJIAN NASIONAL TAHUN PELAJARAN 016/017 UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA Selasa, 11 April 017 (10.0-1.0) X - m + - : M4TH-LAB BALITBANG Badan

Lebih terperinci

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus :

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : RUMUS-RUMUS PERSAMAAN KUADRAT Bentuk umum: ax 2 + bx + c = 0, a 0 AKAR-AKAR PERSAMAAN KUADRAT Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : X 1.2 = Dengan : D = b 2 4ac, dan

Lebih terperinci

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah...

UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN adalah... adalah... UHAMKA (UNIVERSITAS MUHAMMADYAH FROF. DR. HAMKA) LATIHAN SOAL DAN SOLUSI MATEMATIKA IPS UJIAN AKHIR TAHUN 0. Bentuk sederhana dari 6 A. a b B. 6 6 a b 6 a 8 b 6 9 a b 6 a E. b 8. Bentuk sederhana dari

Lebih terperinci

SOLUSI SOAL-SOAL LATIHAN NASKAH F

SOLUSI SOAL-SOAL LATIHAN NASKAH F URAIAN SLUSI SAL-SAL LATIHAN NASKAH F 1. Tentukan sistem pertidaksamaan linear dua variabel (SPtLDV) dari daerah penyelesaian (DP) berikut ini., 5,,0 dan 0, 2 2xy 8 PtLDV: x2y, dan 5, y x 5 y x x y 9 PtLDV:

Lebih terperinci

SMA / MA Bahasa Mata Pelajaran : Matematika

SMA / MA Bahasa Mata Pelajaran : Matematika Latihan Soal UN 0 Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA Bahasa Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

UJIAN NASIONAL MATEMATIKA 2009 TEKNOLOGI

UJIAN NASIONAL MATEMATIKA 2009 TEKNOLOGI 1. Harga 1 lusin pensil 2B adalah Rp. 2.000. Jika 1 pensil dijual lagi seharga Rp. 2.500 dan semua pensil telah terjual maka persentase keuntungannya adalah. a. 10% d. 25% b. 15% e. 30% c. 20% Harga beli

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPS PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDI IPS PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. EDITOR : Dra. Puji Iryanti, M.Sc.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) I. Identitas Mata Pelajaran: 1. Nama Sekolah :SMA 6 YOGYAKARTA 2. Kelas : XII 3. Semester : 1 4. Program : IPA 5. Mata Pelajaran : Program Linier 6. Waktu : : 8 JP

Lebih terperinci

UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA. Soal ini merupakan hasil ketik ulang tanpa merubah isi konten

UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA. Soal ini merupakan hasil ketik ulang  tanpa merubah isi konten DOKUMEN M4THLAB www.m4th-lab.net UJIAN NASIONAL TAHUN PELAJARAN 016/017 UTAMA SMA/MA PROGRAM STUDI IPS MATEMATIKA Selasa, 11 April 017 (10.0-1.0) X - m + - : M4TH-LAB BALITBANG Badan Standar Nasional Pendidikan

Lebih terperinci

adalah. 3. Bentuk sederhana dari A.!!" B.!!" 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16

adalah. 3. Bentuk sederhana dari A.!! B.!! 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16 . Diketahui premis-premis berikut : Premis : Jika Dasikin belajar maka ia dapat mengerjakan soal Premis : Dasikin tidak dapat mengerjakan soal atau ia bahagia Premis : Dasikin belajar Kesimpulan yang sah

Lebih terperinci

UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK

UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK UJIAN NASIONAL TAHUN 009/00 MATEMATIKA (E-.) SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran (P UTAMA). Konveksi milik Bu Nina mengerjakan

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3

7. Himpunan penyelesaian dari 2(x 3) 4(2x + 3) adalah... a. x -1 c. X 1 e. x -3 b. x 1 d. x -3 . 4% uang Ani diberikan kepada adiknya dan 5% dari uang tersebut untuk membayar rekening listrik dan 5% untuk membayar rekening telpon, sisa uang Ani adalah Rp 4.,. Berapakah jumlah uang Ani a. Rp 4.,

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran

PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran TAHUN PELAJARAN 9/ MATEMATIKA PEMBAHAS: UJIAN NASIONAL

Lebih terperinci

15. TURUNAN (DERIVATIF)

15. TURUNAN (DERIVATIF) 5. TURUNAN (DERIVATIF) A. Rumus-Rumus Turunan Fungsi Aljabar dan Trigonometri Untuk u dan v adalah fungsi dari x, dan c adalah konstanta, maka:. y = u + v, y = u + v. y = c u, y = c u. y = u v, y = v u

Lebih terperinci

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k

Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER IBROHIM AJI KUSUMA. Pendekatan Sainti k Sekolah Menengah Kejuruan (SMK) MATEMATIKA LEMBAR KERJA SISWA PROGRAM LINIER X IBROHIM AJI KUSUMA Pendekatan Sainti k Buku Guru Nama Kelas No. Absen Matematika Lembar Kerja Siswa Program Linier Kurikulum

Lebih terperinci

SOAL DAN SOLUSI SIAP SBMPTN 2013 MATEMATIKA IPA

SOAL DAN SOLUSI SIAP SBMPTN 2013 MATEMATIKA IPA SOAL DAN SOLUSI SIAP SBMPTN 0 MATEMATIKA IPA. Jika 0 b a dan a b ab maka a+b = a - b (A) () (E) (B) (D) o o o o. cos 77 cos sin77 sin.... (A) cos 0 o (B) cos 70 o () sin 70 o (D) cos 0 o (E) sin 0 o. Dari

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci