BAB 2. PROGRAM LINEAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2. PROGRAM LINEAR"

Transkripsi

1 BAB 2. PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan keuntungan dan meminimumkan biaya. PL banyak diterapkan dalam masalah ekonomi, industri, militer, sosial dan lain-lain. PL berkaitan dengan penjelasan suatu kasus dalam dunia nyata sebagai suatu model matematik yang terdiri dari sebuah fungsi tujuan linier dengan beberapa kendala linier. a. Formulasi Permasalahan Urutan pertama dalam penyelesaian adalah mempelajari sistem relevan dan mengembangkan pernyataan permasalahan yang dipertimbangakan dengan jelas. Sistem dalam pernyataan ini termasuk pernyataan tujuan, sumber daya yang membatasi, alternatif keputusan yang mungkin (kegiatan atau aktivitas), batasan waktu pengambilan keputusan, hubungan antara bagian yang dipelajari dan bagian lain dalam perusahaan, dan lain-lain. Penetapan tujuan yang tepat merupakan aspek yang sangat penting dalam formulasi masalah. Untuk membentuk tujuan optimalisasi, diperlukan identifikasi anggota manajemen yang benar-benar akan melakukan pengambilan keputusan dan mendiskusikan pemikiran mereka tentang tujuan yang ingin dicapai. b. Pembentukan model matematik Tahap berikutnya yang harus dilakukan setelah memahami permasalahan optimasi adalah membuat model yang sesuai untuk analisis. Pendekatan konvensional riset operasional untuk pemodelan adalah membangun model matematik yang menggambarkan inti permasalahan. Kasus dari bentuk cerita diterjemahkan ke model matematik. Model matematik merupakan representasi kuantitatif tujuan dan sumber daya yang membatasi sebagai fungsi variabel keputusan. Model matematika

2 permasalahan optimal terdiri dari dua bagian. Bagian pertama memodelkan tujuan optimasi. Model matematik tujuan selalu menggunakan bentuk persamaan. Bentuk persamaan digunakan karena kita ingin mendapatkan solusi optimum pada satu titik. Fungsi tujuan yang akan dioptimalkan hanya satu. Bukan berarti bahwa permasalahan optimasi hanya dihadapkan pada satu tujuan. Tujuan dari suatu usaha bisa lebih dari satu. Tetapi pada bagian ini kita hanya akan tertarik dengan permasalahan optimal dengan satu tujuan. Bagian kedua merupakan model matematik yang merepresentasikan sumber daya yang membatasi. Fungsi pembatas bisa berbentuk persamaan (=) atau pertidaksamaan ( atau ). Fungsi pembatas disebut juga sebagai konstrain. Konstanta (baik sebagai koefisien maupun nilai kanan) dalam fungsi pembatas maupun pada tujuan dikatakan sebagai parameter model. Model matematika mempunyai beberapa keuntungan dibandingkan pendeskripsian permasalahan secara verbal. Salah satu keuntungan yang paling jelas adalah model matematik menggambarkan permasalahan secara lebih ringkas. Hal ini cenderung membuat struktur keseluruhan permasalahan lebih mudah dipahami, dan membantu mengungkapkan relasi sebab akibat penting. Model matematik juga memfasilitasi yang berhubungan dengan permasalahan dan keseluruhannya dan mempertimbangkan semua keterhubungannya secara simultan. Terakhir, model matematik membentuk jembatan ke penggunaan teknik matematik dan komputer kemampuan tinggi untuk menganalisis permasalahan. Di sisi lain, model matematik mempunyai kelemahan. Tidak semua karakteristik sistem dapat dengan mudah dimodelkan menggunakan fungsi matematik. Meskipun dapat dimodelkan dengan fungsi matematik, kadang-kadang penyelesaiannya sulit diperoleh karena kompleksitas fungsi dan teknik yangdibutuhkan. c. Bentuk umum pemrograman linier adalah sebagai berikut : 1. Fungsi tujuan : Maksimumkan atau minimumkan z = c 1 x 1 + c 2 x c n x n 2. Sumber daya yang membatasi :

3 a 11 x 1 + a 12 x a 1n x n = / / b 1 a 21 x 1 + a 22 x a 2n x n = / / b 2 a m1 x 1 + a m2 x a mn x n = / / b m x 1, x 2,, x n 0 Simbol x 1, x 2,..., x n (x i ) menunjukkan variabel keputusan. Jumlah variabel keputusan (x i ) tergantung dari jumlah kegiatan atau aktivitas yang dilakukan untuk mencapai tujuan. Simbol c 1,c 2,...,c n merupakan kontribusi masing-masing variabel keputusan terhadap tujuan, disebut juga koefisien fungsi tujuan pada model matematiknya. Simbol a 11,...,a 1n,...,a mn merupakan penggunaan per unit variabel keputusan akan sumber daya yang membatasi, atau disebut juga sebagai koefisien fungsi kendala pada model matematiknya. Simbol b 1,b 2,...,b m menunjukkan jumlah masing-masing sumber daya yang ada. Jumlah fungsi kendala akan tergantung dari banyaknya sumber daya yang terbatas. Pertidaksamaan terakhir (x 1, x 2,, x n 0) menunjukkan batasan non negatif. Membuat model matematik dari suatu permasalahan bukan hanya menuntut kemampuan matematik tapi juga menuntut seni permodelan. Menggunakan seni akan membuat permodelan lebih mudah dan menarik. Kasus pemrograman linier sangat beragam. Dalam setiap kasus, hal yang penting adalah memahami setiap kasus dan memahami konsep permodelannya. Meskipun fungsi tujuan misalnya hanya mempunyai kemungkinan bentuk maksimisasi atau minimisasi, keputusan untuk memilih salah satunya bukan pekerjaan mudah. Tujuan pada suatu kasus bisa menjadi batasan pada kasus yang lain. Harus hati-hati dalam menentukan tujuan, koefisien fungsi tujuan, batasan dan koefisien pada fungsi pembatas Model Perogram Linear Pada Model Program Linear ada 2 Metode yang dipakai yaitu : Metode Grafik dan Metode matematik. Metode grafik hanya bisa digunakan untuk menyelesaikan

4 permasalahan dimana hanya terdapat dua variabel keputusan. Untuk menyelesaikan permasalahan tersebut, langkah pertama yang harus dilakukan adalah memformulasikan permasalahan yang ada ke dalam bentuk Linear Programming (LP). Langkah-langkah dalam formulasi permasalahan adalah : 1. Pahamilah secara menyeluruh permasalahan manajerial yang dihadapi. 2. Identifikasikan tujuan dan kendalanya 3. Definisikan variabel keputusannya 4. Gunakan variabel keputusan untuk merumuskan fungsi tujuan dan fungsi kendala secara matematis. Sebagai contoh dalam memformulasikan permasalahan, berikut ini akan dibahas perusahaan Furniture yang akan membuat meja dan kursi. Keuntungan yang diperoleh dari satu unit meja adalah Rp ,- sedangkian keuntungan yang diperoleh dari satu unit kursi adalah Rp ,-. Namun untuk meraih keuntungan tersebut Perusahaan menghadapi kendala keterbatasan jam kerja. Untuk pembuatan 1 unit meja memerlukan 4 jam kerja. Untuk pembuatan 1 unit kursi membutuhkan 3 jam kerja. Untuk pengecatan 1 unit meja dibutuhkan 2 jam kerja, dan untuk pengecatan 1 unit kursi dibutuhkan 1 jam kerja. Jumlah jam kerja yang tersedia untuk pembuatan meja dan kursi adalah 240 jam per minggu sedang jumlah jam kerja untuk pengecatan adalah 100 jam per minggu. Berapa jumlah meja dan kursi yang sebaiknya diproduksi agar keuntungan perusahaan maksimum? Dari kasus di atas dapat diketahui bahwa tujuan perusahaan adalah memaksimumkan profit. Sedangkan kendala perusahaan tersebut adalah terbatasnya waktu yang tersedia untuk pembuatan dan pengecatan. Apabila permasalahan tersebut diringkas dalam satu tabel akan tampak sebagai berikut: TABEL 2.1 Informasi Permasalahan Perusahaan Furniture Meja Jam kerja per unit Kursi Waktu tersedia per minggu (jam) Pembuatan Pengecatan Kebutuhan per unit Rp ,- Rp ,-

5 Mengingat produk yang akan dihasilkan adalah meja dan kursi, maka dalam rangka memaksimumkan profit, perusahaan harus memutuskan berapa jumlah meja dan kursi yang sebaiknya diproduksi. Dengan demikian dalam kasus ini, yang merupakan variabel keputusan adalah meja (X 1 ) dan kursi (X 2 ). Setelah kita mendefinisikan variabel keputusan, maka langkah selanjutnya adalah menuliskan secara matematis fungsi tujuan dan fungsi kendala. 1. Fungsi Tujuan Tujuan perusahaan adalah maksimisasi keuntungan, sehingga kita dapat menuliskan fungsi tujuan sebagai berikut : P = (Rp x jumlah meja + Rp x jumlah kursi) yang diproduksi atau secara matematis dapat dituliskan : Maksimumkan Z = X X 2 2. Fungsi kendala Berkaitan dengan sumber daya yang digunakan, perusahaan tidak bisa memperkirakan secara tepat kebutuhan sumber daya yang digunakan untuk mencapai keuntungan tertentu. Biasanya perusahaan menyediakan sumber daya tertentu yang merupakan kebutuhan minimum atau maksimum. Kondisi seperti ini secara matematis diungkapkan dengan pertidaksamaan. Kendala yang pertama adalah waktu yang tersedia di departemen pembuatan. Total waktu yang diperlukan untuk pembuatan X 1 (meja) dimana untuk membuat satu unit meja diperlukan waktu 4 jam kerja dan untuk pembuatan X 2 (kursi) diperlukan waktu 3 jam kerja. Total waktu pembuatan yang tersedia adalah 240 jam. Kendala : Waktu pembuatan 1 unit meja memerlukan 4 jam untuk pembuatan -> 4 X 1 1 unit kursi memerlukan 3 jam untuk pembuatan -> 3 X 2 Total waktu yang tersedia per minggu untuk pembuatan -> 240 Jam Dirumuskan dalam pertidaksamaan matematis -> 4 X X Seperti halnya pada kendala yang pertama, maka pada kendala kedua dapat diketahui bahwa total waktu yang diperlukan untuk pengecatan X 1 (meja)

6 diperlukanwaktu 2 jam kerja dan untuk pengecatan X 2 (kursi) dibutuhkan waktu 1 jam kerja. Total waktu pengecatan yang tersedia adalah 100 jam. Kendala : Waktu pengecatan 1 unit meja memerlukan 2 jam untuk pengecatan -> 2 X 1 1 unit kursi memerlukan 1 jam untuk pengecatan -> 1 X 2 Total waktu yang tersedia per minggu untuk pengecatan -> 100 Jam Dirumuskan dalam pertidaksamaan matematis -> 2 X 1 + X Salah satu syarat yang harus dipenuhi dalam Linear Programming adalah asumsi nilai X 1 dan X 2 tidak negatif. Artinya bahwa X 1 0 (jumlah meja yang diproduksi adalah lebih besar atau sama dengan nol). X2 0 (jumlah kursi yang diproduksi adalah lebih besar atau sama dengan nol) Dari uraian di atas dapat dirumuskan formulasi permasalahan secara lengkap sebagai berikut : 1. Fungsi tujuan : Maksimumkan Z = X X 2 2. Fungsi kendala : 4X 1 + 3X X 1 + 1X X 1, X 2 0 (kendala non negatif pertama) Setelah formulasi lengkapnya dibuat, maka Kasus Furniture tersebut akan diselesaikan dengan metode grafik. Keterbatasan metode grafik adalah bahwa hanya tersedia dua sumbu koordinat, sehingga tidak bisa digunakan untuk menyelesaikan kasus yang lebih dari dua variabel keputusan. Langkah pertama dalam penyelesaian dengan metode grafik adalah menggambarkan fungsi kendalanya. Untuk menggambarkan kendala pertama secara grafik, kita harus merubah tanda pertidaksamaan menjadi tanda persamaan seperti berikut. 4 X X 2 = 240

7 Untuk menggambarkan fungsi linear, maka cari titik potong garis tersebut dengan kedua sumbu. Suatu garis akan memotong salah satu sumbu apabila nilai variabel yang lain sama dengan nol. Dengan demikian kendala pertama akan memotong X 1, pada saat X 2 = 0, demikian juga kendala ini akan memotong X 2, pada saat X 1 = 0. Kendala I : 4 X X 2 = 240 memotong sumbu X 1 pada saat X 2 = 0 4 X = 240 X 1 = 240 / 4 X 1 = 60. memotong sumbu X2 pada saat X 1 = X 2 = 240 X 2 = 240/3 X 2 = 80 Kendala I memotong sumbu X 1 pada titik (60, 0) dan memotong sumbu X 2 pada titik (0, 80). Kendala II : 2 X X 2 = 100 memotong sumbu X 1 pada saat X 2 = 0 2 X = 100 X 1 = 100/2 X 1 = 50 memotong sumbu X 2 pada saat X 1 =0 0 + X 2 = 100 X 2 = 100 Kendala I memotong sumbu X 1 pada titik (50, 0) dan memotong sumbu X 2 pada titik (0, 100).

8 Gambar 2.1. Area Layak Titik potong kedua kendala bisa dicari dengan cara substitusi atau eliminasi 2 X X 2 = 100 X 2 = X 1 4 X X 2 = 240 X 2 = X 1 4 X (100-2 X 1 ) = 240 X 2 = * 30 4 X X 1 = 240 X 2 = X 1 = X 2 = 40-2 X 1 = - 60 X 1 = -60/-2 = 30. Sehingga kedua kendala akan saling berpotongan pada titik (30, 40). Tanda pada kedua kendala ditunjukkan pada area sebelah kiri dari garis kendala. Feasible region (area layak) meliputi daerah sebelah kiri dari titik A (0; 80), B (30; 40), dan C (50; 0). Untuk menentukan solusi yang optimal, ada dua cara yang bisa digunakan yaitu 1. Dengan menggunakan garis profit (iso profit line) 2. Dengan titik sudut (corner point) Penyelesaian dengan menggunakan garis profit adalah penyelesaian dengan menggambarkan fungsi tujuan. Kemudian fungsi tujuan tersebut digeser ke kanan sampai menyinggung titik terjauh dari dari titik nol, tetapi masih berada pada area layak (feasible region). Untuk menggambarkan garis profit, kita mengganti nilai Z dengan

9 sembarang nilai yang mudah dibagi oleh koefisien pada fungsi profit. Pada kasus ini angka yang mudah dibagi angka 7 (koefisien X 1 ) dan 5 (koefisien X 2 ) adalah 35. Sehingga fungsi tujuan menjadi 35 = 7 X X 2. Garis ini akan memotong sumbu X 1 pada titik (5, 0) dan memotong sumbu X 2 pada titik (0, 7). Gambar 2.2. Iso profit line Iso profit line menyinggung titik B yang merupakan titik terjauh dari titik nol. Titik B ini merupakan titik optimal. Untuk mengetahui berapa nilai X 1 dan X 2, serta nilai Z pada titik B tersebut, kita mencari titik potong antara kendala I dan kendala II (karena titik B merupakan perpotongan antara kendala I dan kendala II). Dengan menggunakan eliminiasi atau substitusi diperoleh nilai X 1 = 30, X 2 = 40 dan Z = 410. Dari hasil perhitungan tersebut maka dapat disimpulkan bahwa keputusan perusahaan yang akan memberikan profit maksimal adalah memproduksi X 1 sebanyak 30 unit, X 2 sebanyak 40 unit dan perusahaan akan memperoleh profit sebesar Penyelesaian dengan menggunakan titik sudut (corner point) artinya kita harus mencari nilai tertinggi dari titik-titik yang berada pada area layak (feasible region). Dari peraga 1, dapat dilihat bahwa ada 4 titik yang membatasi area layak, yaitu titik 0 (0, 0), A (0, 80), B (30, 40), dan C (50, 0). Keuntungan pada titik O (0, 0) adalah ( x 0) + ( x 0) = 0 Keuntungan pada titik A (0; 80) adalah ( x 0) + ( x 80) = Keuntungan pada titik B (30; 40) adalah ( x 30) + ( x 40) =

10 Keuntungan pada titik C (50; 0) adalah ( x 50) + ( x 0) = Karena keuntungan tertinggi jatuh pada titik B, maka sebaiknya perusahaan memproduksi meja sebanyak 30 unit dan kursi sebanyak 40 unit, dan perusahaan memperoleh keuntungan optimal sebesar Solusi Grafis Untuk mencari solusi suatu persoalan program linier dengan cara grafis, berikut ini dikemukakan dua buah contoh, yaitu persoalan maksimasi dan minimasi. a. Solusi grafis untuk persoalan maksimasi Contoh: Maksimumkan z = 3x 1 + 5x 2 Berdasarkan x 1 4 2x x 1 + 2x 2 18 x 1, x 2 0 Gambar 2.3 Titik D sebagai titik optimum b. Solusi grafis untuk persoalan minimasi Contoh: PT Auto Indah memproduksi dua jenis mobil, yaitu mobil sedan dan truk. Untuk dapat meraih konsumen berpenghasilan tinggi, perusahaan ini memutuskan untuk melakukan promosi dalam dua macam acara TV, yaitu pada acara hiburan dan acara olah raga. Promosi pada acara hiburan akan disaksikan oleh 7 juta pemirsa wanita

11 dan 2 juta pemirsa pria. Promosi pada acara olah raga akan disaksikan oleh 2 juta pemirsa wanita dan 12 juta pemirsa pria. Biaya promosi pada acara hiburan adalah 5 jutarupiah/menit, sedangkan pada acara olah raga biayanya adalah 10 juta/menit. Jika perusahaan menginginkan promosinya disaksikan sedikitnya oleh 28 juta pemirsa wanita dan sedikitnya oleh 24 juta pemirsa pria, bagaimanakah strategi promosi itu sebaiknya? Penyelesaian: Variabel keputusan: x 1 lamanya promosi dalam acara hiburan x 2 lamanya promosi dalam acara olah raga Formulasi persoalan: Minimumkan z = 5x x 2 Berdasarkan 7x 1 + 2x x x 2 24 x 1, x 2 0 Gambar 2.4 Solusi persoalan untuk PT Auto Indah Kasus Khusus Contoh soal yang telah dibahas di atas mempunyai hanya satu titik optimal. Berikut ini ada persoalan program linier yang mempunyai kasus khusus seperti: 1. Mempunyai solusi optimal yang tidak terbatas, biasa disebut juga mempunyai solusi alternatif atau bersolusi optimal banyak.

12 2. Tidak mempunyai solusi fisibel atau persoalan progama linier yang infisibel. 3. Mempunyai ruang solusi yang tidak terbatas, yaitu kasus dimana ada titik-titik pada daerah fisibel dengan harga z yang sangat besar (pada persoalan maksimasi) Solusi alternatif atau solusi optimal banyak Contoh: Maksimumkan z = 3x 1 + 2x 2 Berdasarkan (1/40)x 1 + (1/60)x 2 1 (1/50)x 1 + (1/50)x 2 1 X 1, x 2 0 Solusi grafis pada persoalan diatas adalah: Gambar 2.5 Solusi alternatif Persoalan programa linier tanpa solusi fisibel Dalam hal ini solusi fisibelnya kosong sehingga dengan sendirinya tidak ada solusi optimal. Contoh: Maksimumkan z = 3x 1 +2x 2 Berdasarkan (1/40)x 1 + (1/60)x 2 1 (1/50)x 1 + (1/50)x 2 1 x 1 30 x 2 20 x 1, x 2 0 Solusi grafis pada persoalan ini adalah:

13 Gambar 2.6 Tidak ada ruang fisibel Persoalan program linier dengan ruang solusi yang tidak terbatas (unbounded) Kasus ini terjadi apabila ruang solusi tidak terbatas sehingga nilai fungsi tujuan dapat meningkat/menurun secara tidak terbatas. Pada umumnya, kasus ini terjadi karena kesalahan dalam memformulasikan persoalan. Contoh: Maksimumkan z = 2x 1 x 2 Berdasarkan x 1 x 2 1 2x 1 + x 2 6 X 1, x 2 0 Solusi grafis pada persoalan ini adalah: Gambar 2.7 Ruang solusi tidak terbatas

14 Latihan soal: 1. Sebuah industri kecil, memproduksi 2 macam hiasan dinding dari tripleks yang proses pengerjaannya dilakukan di 2 stasiun kerja yaitu pemotongan dan perakitan. Hiasan model A mula-mula dikerjakan di bagian pemotongan selama 5 menit kemudian dirakit selama 10 menit. Hiasan model B dikerjakan di bagian pemotongan selama 8 menit kemudian dirakit selama 8 menit. Dalam 1 hari kerja, waktu yang tersedia di bagian pemotongan 3 jam 20 menit, sedang di bagian perakitan tersedia waktu 4 jam. Jika harga jual hiasan model A $ 500/unit dan hiasan model B $ 600/unit. Berapakah masingmasing model harus dibuat agar diperoleh total pendapatan yang optimal? 2. Sebuah pabrik akan mengirimkan hasil produksinya dengan menggunakan 120 kotak berukuran besar (L) dan 180 kotak berukuran sedang (M). Pabrik tsb akan menyewa truk besar dan kecil untuk mengangkut barang-barang itu. Sebuah truk besar dapat memuat 10 kotak L dan 20 kotak M. Sebuah truk kecil dapat memuat 8 kotak L dan 4 kotak M. Ongkos angkutan truk besar sekali jalan Rp dan ongkos truk kecil sekali jalan Rp Berapa truk besar dan kecil yang harus digunakan supaya total ongkos angkutnya optimal? 3. Sebuah perusahanaan sepatu membuat 2 jenis sepatu yaitu sepatu I bersol karet dan sepatu II bersol kulit. Untuk membuat sepatu, perusahaan mempunyai 3 macam mesin. Mesin 1 untuk membuat sol dari karet, mesin 2 untuk membuat sol dari kulit, mesin 3 untuk membuat bagian atas sepatu dan memasangkan dengan sol sepatu. Setiap lusin sepatu I dikerjakan mesin 1 selama 2 jam, kemudian mesin 3 selama 6 jam. Sepatu II dikerjakan mesin 2 selama 3 jam kemudian mesin 3 selama 5 jam. Jam kerja maksimum setiap hari untuk mesin 1 selama 8 jam, mesin 2 selama 15 jam, dan mesin 3 selama 30 jam. Sumbangan laba untuk setiap lusin sepatu I adalah Rp dan sepatu II adalah Rp Berapakah masing2 model harus dibuat, agar laba yang diperoleh optimal? 4. Sebuah industri perakitan komputer, memproduksi 2model komputer yaitu model DeskTop dan model Tower. Pabrik tersebut mampu memproduksi 1000 unit komputer per bulan. Berdasarkan informasi dari bagian penjualan, dinyatakan bahwa untuk model DeskTop mampu menjual 800 unit per bulan sedangkan model Tower sampai 600 unit

15 per bulan. Jika keuntungan yang diperoleh dari penjualan 1 unit komputer model DeksTop adalah $ 120 dan komputer model Tower adalah $ 130. Berapakah masingmasing model harus dibuat agar diperoleh keuntungan yang optimal?. (diasumsikan jumlah sumberdaya yang lain tidak terbatas)

BAB 2 PROGRAM LINEAR

BAB 2 PROGRAM LINEAR BAB 2 PROGRAM LINEAR 2.1. Pengertian Program Linear Pemrograman Linier disingkat PL merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

: METODE GRAFIK. Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya

: METODE GRAFIK. Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya LINEAR PROGRAMMING : METODE GRAFIK Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya terdapat dua variabel keputusan. Untuk menyelesaikan permasalahan tersebut, langkah pertama

Lebih terperinci

Dosen Pembina: HP :

Dosen Pembina: HP : SELAMAT MENEMPUH MATAKULIAH Dosen Pembina: Sujito, S.Kom., M.Pd. HP : 081 233 255 16 E-mail : sujito@pradnya-paramita.ac.id ojitstimata@gmail.com KONTRAK BELAJAR (NORMA AKADEMIK) 1. Kegiatan pembelajaran

Lebih terperinci

METODE GEOMETRIS (METODE GRAFIS)

METODE GEOMETRIS (METODE GRAFIS) METODE GEOMETRIS (METODE GRAFIS) Riani Lubis Jurusan Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan Digunakan bila persoalan programa linier, hanya mempunyai 2 buah variabel keputusan

Lebih terperinci

BAB II. PEMROGRAMAN LINEAR

BAB II. PEMROGRAMAN LINEAR BAB II. PEMROGRAMAN LINEAR KARAKTERISTIK PEMROGRAMAN LINEAR Sifat linearitas suatu kasus dapat ditentukan menggunakan beberapa cara. Secara statistik, kita dapat memeriksa kelinearan menggunakan grafik

Lebih terperinci

BAB 2 Alamanda. LINEAR PROGRAMMING: METODE GRAFIK Fungsi Tujuan Maksimasi dan Minimasi

BAB 2 Alamanda. LINEAR PROGRAMMING: METODE GRAFIK Fungsi Tujuan Maksimasi dan Minimasi BAB 2 Alamanda LINEAR PROGRAMMING: METODE GRAFIK Fungsi Tujuan Maksimasi dan Minimasi Case-1 Ajisakti Furniture Perusahaan Ajisakti Furniture yang akan membuat meja dan kursi. Keuntungan yang diperoleh

Lebih terperinci

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Digunakan bila persoalan programa linier, hanya mempunyai 2 buah variabel keputusan Langkah-langkahnya : 1.

Lebih terperinci

BAB LINEAR PROGRAMMING : METODE GRAFIK PENDAHULUAN PENDAHULUAN

BAB LINEAR PROGRAMMING : METODE GRAFIK PENDAHULUAN PENDAHULUAN PENDAHULUAN BAB 1 LINEAR PROGRAMMING : METODE GRAFIK PENDAHULUAN inear programming adalah suatu teknis matematika yang dirancang untuk membantu manajer dalam merencanakan dan membuat keputusan dalam mengalokasikan

Lebih terperinci

METODE GEOMETRIS (METODE GRAFIS)

METODE GEOMETRIS (METODE GRAFIS) METODE GEOMETRIS (METODE GRAFIS) Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan Digunakan bila persoalan programa linier, hanya mempunyai 2 buah variabel keputusan Langkah-langkahnya

Lebih terperinci

BAB IV PROGRAMA LINIER : METODE GRAFIK

BAB IV PROGRAMA LINIER : METODE GRAFIK BAB IV PROGRAMA LINIER : METODE GRAFIK Pada dasarnya, metode-metode yang dikembangkan untuk memecahkan model programa linier ditujukan untuk mencari solusi dari beberapa alternatif solusi yang dibentuk

Lebih terperinci

BAB III METODOLOGI PENELITIAN. A. Rancangan Penelitian. pooling data yang diambil dari data perusahaan-perusahaan asuransi syariah pada

BAB III METODOLOGI PENELITIAN. A. Rancangan Penelitian. pooling data yang diambil dari data perusahaan-perusahaan asuransi syariah pada BAB III METODOLOGI PENELITIAN A. Rancangan Penelitian Jenis penelitian yang digunakan adalah penelitian dengan metode analisis deskriptif kuantitatif dengan menggunakan pendekatan portofolio optimal dengan

Lebih terperinci

Dosen Pengampu : Dwi Sulistyaningsih

Dosen Pengampu : Dwi Sulistyaningsih Dosen Pengampu : Dwi Sulistyaningsih Secara Umum : Pendahuluan Program linier merupakan salah satu teknik penyelesaian riset operasi dalam hal ini adalah khusus menyelesaikan masalah-masalah optimasi (memaksimalkan

Lebih terperinci

PEMROGRAMAN LINEAR YULIATI,SE,MM

PEMROGRAMAN LINEAR YULIATI,SE,MM PEMROGRAMAN LINEAR YULIATI,SE,MM Prinsip: Setiap organisasi berusaha mencapai tujuan yang telah ditetapkan sesuai dengan keterbatasan sumber daya. Linier Programming: Teknik pengambilan keputusan dalam

Lebih terperinci

BAB III. METODE SIMPLEKS

BAB III. METODE SIMPLEKS BAB III. METODE SIMPLEKS 3.1. PENGANTAR Metode grafik tidak dapat menyelesaikan persoalan linear program yang memilki variabel keputusan yang cukup besar atau lebih dari dua, maka untuk menyelesaikannya

Lebih terperinci

Sejarah Perkembangan Linear Programming

Sejarah Perkembangan Linear Programming Linear programming merupakan suatu model umum yang dapat digunakan dalam pemecahan masalah pengalokasikan sumber-sumber yang terbatas secara optimal. Masalah tersebut timbul apabila seseorang diharuskan

Lebih terperinci

METODE SIMPLEKS DALAM PROGRAM LINIER

METODE SIMPLEKS DALAM PROGRAM LINIER METODE SIMPLEKS DALAM PROGRAM LINIER Dian Wirdasari Abstrak Metode simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahan

Lebih terperinci

Pendahuluan. Secara Umum :

Pendahuluan. Secara Umum : Program Linier Secara Umum : Pendahuluan Program linier merupakan salah satu teknik penyelesaian riset operasi dalam hal ini adalah khusus menyelesaikan masalah-masalah optimasi (memaksimalkan atau meminimumkan)

Lebih terperinci

Modul Mata Kuliah. Pemrograman Linear MAT Disusun Oleh: Rully Charitas Indra Prahmana

Modul Mata Kuliah. Pemrograman Linear MAT Disusun Oleh: Rully Charitas Indra Prahmana Modul Mata Kuliah Pemrograman Linear MAT 3224 Disusun Oleh: Rully Charitas Indra Prahmana Program Studi Pendidikan Matematika Sekolah Tinggi Keguruan dan Ilmu Pendidikan Surya Tangerang 2013 Kata Pengantar

Lebih terperinci

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 1. Linier Programming adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumbersumberdaya yang

Lebih terperinci

CCR314 - Riset Operasional Materi #2 Ganjil 2015/2016 CCR314 RISET OPERASIONAL

CCR314 - Riset Operasional Materi #2 Ganjil 2015/2016 CCR314 RISET OPERASIONAL Materi #2 CCR314 RISET OPERASIONAL Definisi LP 2 Linear Programming/LP (Program Linear) merupakan salah satu teknik dalam Riset Operasional (Operation Research) yang paling luas digunakan dan dikenal dengan

Lebih terperinci

CCR-314 #2 Pengantar Linear Programming DEFINISI LP

CCR-314 #2 Pengantar Linear Programming DEFINISI LP PENGANTAR LINEAR PROGRAMMING DEFINISI LP Linear Programming/LP (Program Linear) merupakan salah satu teknik dalam Riset Operasional (Operation Research) yang paling luas digunakan dan dikenal dengan baik.

Lebih terperinci

Model Linear Programming:

Model Linear Programming: Model Linear Programming: Pengertian, Contoh masalah dan Perumusan model Metode penyelesaian (grafik dan simpleks) Interpretasi hasil Analisis sensistivitas Model Dualitas Penyelesaian kasus (Aplikasi

Lebih terperinci

PROGRAM LINIER DENGAN METODE GRAFIK

PROGRAM LINIER DENGAN METODE GRAFIK PROGRAM LINIER DENGAN METODE GRAFIK Metode grafik hanya bisa digunakan untuk menyelesaikan permasalahan dimana hanya terdapat dua variabel keputusan. Untuk menyelesaikan permasalahan tersebut, langkah

Lebih terperinci

PROGRAM LINIER METODE GRAFIK

PROGRAM LINIER METODE GRAFIK PROGRAM LINIER METODE GRAFIK Program Linier merupakan suatu model umum yang dapat digunakan dalam pemecahan masalah pengalokasian sumbersumber yang terbatas secara optimal. Masalah tersebut timbul apabila

Lebih terperinci

PEMROGRAMAN KOMPUTER KODE MODUL: TIN 202 MODUL III LINEAR PROGRAMMING DAN VISUALISASI

PEMROGRAMAN KOMPUTER KODE MODUL: TIN 202 MODUL III LINEAR PROGRAMMING DAN VISUALISASI PEMROGRAMAN KOMPUTER KODE MODUL: TIN 202 MODUL III LINEAR PROGRAMMING DAN VISUALISASI LABORATORIUM TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA 2013 MODUL II LINEAR PROGRAMMING DAN

Lebih terperinci

Operations Management

Operations Management Operations Management OPERATIONS RESEARCH William J. Stevenson 8 th edition LINEAR PROGRAMMING Suatu model umum yang dapat digunakan dalam pemecahan masalah pengalokasian sumber-sumber yang terbatas secara

Lebih terperinci

CCR314 - Riset Operasional Materi #3 Ganjil 2015/2016 CCR314 RISET OPERASIONAL

CCR314 - Riset Operasional Materi #3 Ganjil 2015/2016 CCR314 RISET OPERASIONAL Materi #3 R314 RISET OPERSIONL Pendahuluan 2 Setelah membuat formulasi model matematika, langkah selanjutnya dalam penerapan program linear untuk mengambil keputusan adalah menentukan pemecaham dari model.

Lebih terperinci

Metodologi Penelitian

Metodologi Penelitian Metodologi Penelitian Modul ke: PEMROGRAMAN LINIER Fakultas Program Pasca Sarjana Hamzah Hilal Program Studi Magister Teknik Elektro 13.1 UMUM Banyak keputusan manajemen dan atau riset operasi berkaitan

Lebih terperinci

Ardaneswari D.P.C., STP, MP.

Ardaneswari D.P.C., STP, MP. Ardaneswari D.P.C., STP, MP. Materi Bahasan Pengantar pemrograman linier Pemecahan pemrograman linier dengan metode grafis PENGANTAR Pemrograman (programming) secara umum berkaitan dengan penggunaan atau

Lebih terperinci

OPERATIONS RESEARCH. oleh Bambang Juanda

OPERATIONS RESEARCH. oleh Bambang Juanda OPERATIONS RESEARCH oleh Bambang Juanda Analisis (Metode) Kuantitatif: pendekatan ilmiah dalam pembuatan keputusan manajerial. Operations Research (Management Sciences): Aplikasi metode-metode kuantitatif

Lebih terperinci

LINEAR PROGRAMMING. 1. Pengertian 2. Model Linear Programming 3. Asumsi Dasar Linear Programming 4. Metode Grafik

LINEAR PROGRAMMING. 1. Pengertian 2. Model Linear Programming 3. Asumsi Dasar Linear Programming 4. Metode Grafik LINEAR PROGRAMMING 1. Pengertian 2. Model Linear Programming 3. Asumsi Dasar Linear Programming 4. Metode Grafik PENGERTIAN LINEAR PROGRAMMING LP merupakan suatu model umum yang dapat digunakan dalam pemecahan

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab 2 LANDASAN TEORI 2.1 Program Linear Menurut Sitorus, Parlin (1997), Program Linier merupakan suatu teknik penyelesaian optimal atas suatu problema keputusan dengan cara menentukan terlebih dahulu suatu

Lebih terperinci

LINIER PROGRAMMING Formulasi Masalah dan Pemodelan. Staf Pengajar Kuliah : Fitri Yulianti, MSi.

LINIER PROGRAMMING Formulasi Masalah dan Pemodelan. Staf Pengajar Kuliah : Fitri Yulianti, MSi. LINIER PROGRAMMING Formulasi Masalah dan Pemodelan Staf Pengajar Kuliah : Fitri Yulianti, MSi. Tahap-tahap Pemodelan dalam RO (Riset Operasional): 1. Merumuskan masalah 2. Pembentukan model 3. Mencari

Lebih terperinci

Metode Grafik. Sistem dan Bidang Kerja. Langkah-langkah Metode Grafik. Metode Grafik Program Linear Taufiqurrahman 1

Metode Grafik. Sistem dan Bidang Kerja. Langkah-langkah Metode Grafik. Metode Grafik Program Linear Taufiqurrahman 1 LINER PROGRMMING METODE GRFIK Metode Grafik Setelah membuat formulasi model matematika, langkah selanjutnya dalam penerapan program linear untuk mengambil keputusan adalah menentukan pemecaham dari model.

Lebih terperinci

Pengantar Teknik Industri TIN 4103

Pengantar Teknik Industri TIN 4103 Pengantar Teknik Industri TIN 4103 Lecture 10 Outline: Penelitian Operasional References: Frederick Hillier and Gerald J. Lieberman. Introduction to Operations Research. 7th ed. The McGraw-Hill Companies,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Menurut Aminudin (2005), program linier merupakan suatu model matematika untuk mendapatkan alternatif penggunaan terbaik atas sumber-sumber yang tersedia. Kata linier

Lebih terperinci

TEKNIK RISET OPERASIONAL

TEKNIK RISET OPERASIONAL DIKTAT TEKNIK RISET OPERASIONAL Oleh: Ir. Rizani Teguh, MT. Ir. Sudiadi, M.M.A.E. PROGRAM STUDI SISTEM INFORMASI SEKOLAH TINGGI MANAJEMEN INFORMATIKA GI MDP PALEMBANG 2014 i KATA PENGANTAR Puji syukur

Lebih terperinci

Pengambilan Keputusan dalam keadaan ada kepastian. IRA PRASETYANINGRUM, S.Si,M.T

Pengambilan Keputusan dalam keadaan ada kepastian. IRA PRASETYANINGRUM, S.Si,M.T Pengambilan Keputusan dalam keadaan ada kepastian IRA PRASETYANINGRUM, S.Si,M.T Model Pengambilan Keputusan dikaitkan Informasi yang dimiliki : Ada 3 (tiga) Model Pengambilan keputusan. 1. Model Pengambilan

Lebih terperinci

Taufiqurrahman 1

Taufiqurrahman 1 LINER PROGRMMING METODE GRFIK Metode Grafik Setelah membuat formulasi model matematika, langkah selanjutnya dalam penerapan program linear untuk mengambil keputusan adalah menentukan pemecaham dari model.

Lebih terperinci

Model Linear Programming:

Model Linear Programming: Model Linear Programming: Pengertian, Contoh masalah dan Perumusan model Metode penyelesaian (grafik dan simpleks) Interpretasi hasil Analisis sensistivitas Penyimpangan-penyimpangan dari bentuk baku Model

Lebih terperinci

MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT / 2 SKS]

MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT / 2 SKS] MATA KULIAH MATEMATIKA SISTEM INFORMASI 2 [KODE/SKS : IT011215 / 2 SKS] LINIER PROGRAMMING Formulasi Masalah dan Pemodelan Pengertian Linear Programming Linear Programming (LP) adalah salah satu teknik

Lebih terperinci

Pemodelan dalam RO. Sesi XIV PEMODELAN. (Modeling)

Pemodelan dalam RO. Sesi XIV PEMODELAN. (Modeling) Mata Kuliah :: Riset Operasi Kode MK : TKS 4019 Pengampu : Achfas Zacoeb Sesi XIV PEMODELAN (Modeling) e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 Pemodelan dalam RO Outline:

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bagian ini diberikan beberapa konsep dasar yang menjadi landasan berpikir dalam penelitian ini, seperti pengertian persediaan, metode program linier. 2.1. Persediaan 2.1.1. Pengertian

Lebih terperinci

Gambar 1.1 Mesin dan SDM perusahaan

Gambar 1.1 Mesin dan SDM perusahaan BAB I PROGRAM LINEAR Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menyelesaikan sistem pertidaksamaan linear dua variabel, 2. merancang model matematika dari masalah

Lebih terperinci

BAB 3 LINEAR PROGRAMMING

BAB 3 LINEAR PROGRAMMING BAB 3 LINEAR PROGRAMMING Teori-teori yang dijelaskan pada bab ini sebagai landasan berpikir untuk melakukan penelitian ini dan mempermudah pembahasan hasil utama pada bab selanjutnya. 3.1 Linear Programming

Lebih terperinci

Riset Operasional LINEAR PROGRAMMING

Riset Operasional LINEAR PROGRAMMING Bahan Kuliah Riset Operasional LINEAR PROGRAMMING Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 25 1 ANALISA SISTEM Agar lebih mendekati langkah-langkah operasional, Hall & Dracup

Lebih terperinci

OPTIMIZATION THE NUMBER OF GENTRY FILLING OIL (BBM) USING A LINEAR PROGRAMMING APPROACH TO FULFILL THE DEMAND (Case Study : PT.

OPTIMIZATION THE NUMBER OF GENTRY FILLING OIL (BBM) USING A LINEAR PROGRAMMING APPROACH TO FULFILL THE DEMAND (Case Study : PT. OPTIMASI BANYAKNYA GENTRY PENGISIAN BAHAN BAKAR MINYAK (BBM) DENGAN PENDEKATAN PROGRAM LINIER UNTUK MEMENUHI PERMINTAAN (Studi Kasus : PT.XYZ Surabaya) OPTIMIZATION THE NUMBER OF GENTRY FILLING OIL (BBM)

Lebih terperinci

Matematika Bisnis (Linear Programming-Metode Grafik Minimisasi) Dosen Febriyanto, SE, MM.

Matematika Bisnis (Linear Programming-Metode Grafik Minimisasi) Dosen Febriyanto, SE, MM. (Linear Programming-Metode Grafik Minimisasi) Dosen Febriyanto, SE, MM. www.febriyanto79.wordpress.com - Linear Programming Linear programing (LP) adalah salah satu metode matematis yang digunakan untuk

Lebih terperinci

BAB I PENDAHULUAN. besar dan mampu membantu pemerintah dalam mengurangi tingkat pengangguran.

BAB I PENDAHULUAN. besar dan mampu membantu pemerintah dalam mengurangi tingkat pengangguran. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam menghadapi globalisasi dunia saat ini mendorong persaingan diantara para pelaku bisnis yang semakin ketat. Di Indonesia sebagai negara berkembang, pembangunan

Lebih terperinci

RISET OPERASIONAL MINGGU KE-2. Disusun oleh: Nur Azifah., SE., M.Si. Linier Programming: Formulasi Masalah dan Model

RISET OPERASIONAL MINGGU KE-2. Disusun oleh: Nur Azifah., SE., M.Si. Linier Programming: Formulasi Masalah dan Model RISET OPERASIONAL MINGGU KE- Linier Programming: Formulasi Masalah dan Model Disusun oleh: Nur Azifah., SE., M.Si Pengertian Linear Programming Linear Programming (LP) adalah salah satu teknik riset operasi

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN 3.1. Kerangka Penelitian Dalam setiap perusahaan berusaha untuk menghasilkan nilai yang optimal dengan biaya tertentu yang dikeluarkannya. Proses penciptaan nilai yang optimal dapat

Lebih terperinci

Pemrograman Linier (1)

Pemrograman Linier (1) Bentuk umum dan solusi dengan metode grafis Ahmad Sabri Universitas Gunadarma, Indonesia 2 Komponen pada Pemrograman Linier (PL) Model PL memiliki tiga komponen dasar: Variabel keputusan yang akan dicari

Lebih terperinci

BAHAN KULIAH TEKNIK RISET OPERASI

BAHAN KULIAH TEKNIK RISET OPERASI BAHAN KULIAH TEKNIK RISET OPERASI JURUSAN FAKULTAS KOMPUTER UNDA - SAMPIT 28 Materi : SILABUS Matakuliah :Riset Operasional (Operation Research) 1 PENDAHULUAN Perkembangan Riset Operasi Arti Riset Operasi

Lebih terperinci

III. KERANGKA PEMIKIRAN

III. KERANGKA PEMIKIRAN III. KERANGKA PEMIKIRAN 3.1 Kerangka Pemikiran Teoritis 3.1.1 Teori Produksi Produksi adalah suatu kegiatan atau proses yang mentransformasikan masukan (input) menjadi hasil keluaran (output) yang berupa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pemrograman Non Linier Pemrograman Non linier merupakan pemrograman dengan fungsi tujuannya saja atau bersama dengan fungsi kendala berbentuk non linier yaitu pangkat dari variabelnya

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1. Definisi Usaha Kecil Menengah

II. TINJAUAN PUSTAKA 2.1. Definisi Usaha Kecil Menengah II. TINJAUAN PUSTAKA 2.1. Definisi Usaha Kecil Menengah Pengertian Usaha Kecil Menengah (UKM) menurut Keputusan Presiden RI No. 99 tahun 1998, yaitu kegiatan ekonomi rakyat yang berskala kecil dengan bidang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier merupakan suatu model matematika untuk mendapatkan alternatif penggunaan terbaik atas sumber-sumber yang tersedia. Kata linier digunakan untuk menunjukkan

Lebih terperinci

MATEMATIKA SISTEM INFORMASI 2 IT

MATEMATIKA SISTEM INFORMASI 2 IT MATEMATIKA SISTEM INFORMASI 2 IT 011215 UMMU KALSUM UNIVERSITAS GUNADARMA 2016 Penerapan Riset Operasi Bidang akuntansi dan keuangan Penentuan jumlah kelayakan kredit Alokasi modal investasi, dll Bidang

Lebih terperinci

Manajemen Operasional

Manajemen Operasional Linear Programming (LP) Dosen Febriyanto, SE. MM. www.febriyanto79.wordpress.com Linear Programming Linear programing (LP) adalah salah satu metode matematis yang digunakan untuk membantu manajer dalam

Lebih terperinci

LINEAR PROGRAMMING. Pembentukan model bukanlah suatu ilmu pengetahuan tetapi lebih bersifat seni dan akan menjadi dimengerti terutama karena praktek.

LINEAR PROGRAMMING. Pembentukan model bukanlah suatu ilmu pengetahuan tetapi lebih bersifat seni dan akan menjadi dimengerti terutama karena praktek. LINEAR PROGRAMMING Formulasi Model LP Masalah keputusan yang biasa dihadapi para analis adalah alokasi optimum sumber daya yang langka. Sumber daya dapat berupa modal, tenaga kerja, bahan mentah, kapasitas

Lebih terperinci

Pemodelan dan Linier Programming (LP)

Pemodelan dan Linier Programming (LP) Pemodelan dan Linier Programming (LP) Entin Martiana, S.Kom, M.Kom Pemodelan dalam mss Model statistik (analisis regresi) digunakan untuk mencari relasi diantara variabel. Model ini merupakan preprogram

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Matriks 2.1.1 Pengertian Matriks Matriks adalah susunan segi empat siku-siku dari bilangan bilangan. Bilanganbilangan dalam susunan tersebut dinamakan entri dalam matriks (Anton,

Lebih terperinci

PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA GRAFIK

PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA GRAFIK Maximize or Minimize 2X 1 = 8 X 2 Z = f (x,y) Subject to: 5 D C g (x,y) = c 3X 2 = 15 0 Daerah feasible A 4 B 6X 1 + 5X 2 = 30 X 1 PENYELESAIAN MODEL LINEAR PROGRAMMING SECARA GRAFIK Prof. Dr. Ir. ZULKIFLI

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Program linier (Linier Programming) Pemrograman linier merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

BAB III. SOLUSI GRAFIK

BAB III. SOLUSI GRAFIK BAB III. SOLUSI GRAFIK Salah satu metode pengoptimalan yang dapat digunakan adalah grafik. Fungsi tujuan dan kendala permasalahan digambarkan menggunakan bantuan sumbu absis (horizontal) dan ordinat (vertikal)

Lebih terperinci

memaksimumkan pendapatan jumlah meja dan kursi waktu kerja karyawan dan perbandingan jumlah kursi dan meja yang harus diproduksi

memaksimumkan pendapatan jumlah meja dan kursi waktu kerja karyawan dan perbandingan jumlah kursi dan meja yang harus diproduksi PEMODELAN Kasus 1 Seorang pengrajin menghasilkan satu tipe meja dan satu tipe kursi. Proses yang dikerjakan hanya merakit meja dan kursi. Dibutuhkan waktu 2 jam untuk merakit 1 unit meja dan 30 menit untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Manajemen Produksi dan Operasi Menurut Heizer dan Render (2006:4) manajemen operasi (operation management-om) adalah serangkaian aktivitas yang menghasilkan nilai

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program Linier Program linier adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang bersaing, dengan cara

Lebih terperinci

BAB I PENDAHULUAN. yang dikemukakan oleh George Dantzig pada tahun Linear Programming (LP) adalah perencanaan aktivitas-aktivitas untuk

BAB I PENDAHULUAN. yang dikemukakan oleh George Dantzig pada tahun Linear Programming (LP) adalah perencanaan aktivitas-aktivitas untuk BAB I PENDAHULUAN 1.1 Latar Belakang Program Linear adalah suatu alat yang digunakan untuk menyelesaikan masalah optimasi suatu model linear dengan keterbatasan-keterbatasan sumber daya yang tersedia.

Lebih terperinci

PEMROGRAMAN LINIER: FORMULASI DAN PEMECAHAN GRAFIS

PEMROGRAMAN LINIER: FORMULASI DAN PEMECAHAN GRAFIS RISET OPERASIONAL Riset operasi adalah metode yang digunakan untuk memformulasikan dan merumuskan permasalahan sehari hari ke dalam pemodelan matematis untuk memperoleh solusi yang optimal. Bagian terpenting

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN 3.1. Kerangka Pemikiran Penelitian Operation Research (OR) digunakan dalam penyelesaian masalahmasalah manajemen untuk meningkatkan produktivitas, atau efisiensi. Metode dalam Teknik

Lebih terperinci

TIN102 - Pengantar Teknik Industri Materi #8 Ganjil 2016/2017 TIN102 PENGANTAR TEKNIK INDUSTRI

TIN102 - Pengantar Teknik Industri Materi #8 Ganjil 2016/2017 TIN102 PENGANTAR TEKNIK INDUSTRI Materi #8 TIN102 PENGANTAR TEKNIK INDUSTRI Pendahuluan 2 Operational Persoalan di Lapangan Research Perumusan Masalah (Model Matematis) Pemecahan Masalah ART SCIENCE 6623 - Taufiqur Rachman 1 Penugasan

Lebih terperinci

BAB 3 LEXICOGRAPHIC GOAL PROGRAMMING 3.1 DESKRIPSI UMUM LEXICOGRAPHIC GOAL PROGRAMMING

BAB 3 LEXICOGRAPHIC GOAL PROGRAMMING 3.1 DESKRIPSI UMUM LEXICOGRAPHIC GOAL PROGRAMMING BAB 3 LEXICOGRAPHIC GOAL PROGRAMMING 3.1 DESKRIPSI UMUM LEXICOGRAPHIC GOAL PROGRAMMING Lexicographic goal programming adalah salah satu jenis dari goal programming. Model ini adalah model paling umum digunakan

Lebih terperinci

PENDAHULUAN. Buku Bacaan Sementara : Diktat Gunadarma penulis Media Anugrah Ayu Riset Operasi penulis a.l. Pangestu Subagyo, T.

PENDAHULUAN. Buku Bacaan Sementara : Diktat Gunadarma penulis Media Anugrah Ayu Riset Operasi penulis a.l. Pangestu Subagyo, T. PENDAHULUAN Catatan : Bahan kuliah ini diperuntukan bagi Mahasiswa yang sedang mengambil mata kuliah Riset Operasional. (Mohon materi dicek dengan bukunya, untuk menghindari salah pemahaman atau pengertian,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Manajemen Produksi dan Operasi Manajeman (management) merupakan proses kerja dengan menggunakan orang dan sumber daya yang ada untuk mencapai tujuan (Bateman, Thomas S. : 2014)

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab 2 LANDASAN TEORI 2.1 Linear Programming Linear Programming (LP) merupakan metode yang digunakan untuk mencapai hasil terbaik (optimal) seperti keuntungan maksimum atau biaya minimum dalam model matematika

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming)

BAB 2 LANDASAN TEORI. 2.1 Pengertian Program Linier (Linear Programming) BAB 2 LANDASAN TEORI 2.1 Pengertian Program Linier (Linear Programming) Menurut Sri Mulyono (1999), Program Linier (LP) merupakan metode matematik dalam mengalokasikan sumber daya yang langka untuk mencapai

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Riset Operasi Masalah Riset Operasi (Operation Research) pertama kali muncul di Inggris selama Perang Dunia II. Inggris mula-mula tertarik menggunakan metode kuantitatif dalam

Lebih terperinci

PROGRAM LINIER PROGRAM LINIER DENGAN GRAFIK PERTEMUAN 2 DEFINISI PROGRAM LINIER (1)

PROGRAM LINIER PROGRAM LINIER DENGAN GRAFIK PERTEMUAN 2 DEFINISI PROGRAM LINIER (1) PROGRAM LINIER PROGRAM LINIER DENGAN GRAFIK PERTEMUAN 2 DEFINISI PROGRAM LINIER (1) Program tidak ada hubungannya dengan program komputer. Program berarti memilih serangkaian tindakan/ perencanaan untuk

Lebih terperinci

III KERANGKA PEMIKIRAN

III KERANGKA PEMIKIRAN III KERANGKA PEMIKIRAN 3.1 Kerangka Pemikiran Teoritis 3.1.1 Sistem Produksi Secara umum produksi dapat diartikan sebagai suatu kegiatan atau proses yang mentransformasikan masukan (input) menjadi hasil

Lebih terperinci

Contoh Kasus Program Linier K A S U S M A K S I M A S I D A N K A S U S M I N I M A S I

Contoh Kasus Program Linier K A S U S M A K S I M A S I D A N K A S U S M I N I M A S I Contoh Kasus Program Linier K A S U S M A K S I M A S I D A N K A S U S M I N I M A S I Kasus maksimasi Seorang pengrajin menghasilkan satu tipe meja dan satu tipe kursi. Proses yang dikerjakan hanya merakit

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

contoh soal metode simplex dengan minimum

contoh soal metode simplex dengan minimum contoh soal metode simplex dengan minimum Perusahaan Maju Terus merencanakan untuk menginvestasikan uang paling banyak $ 1.200.000. uang ini akan ditanamkan pada 2 buah cabang usaha yaitu P dan Q. setiap

Lebih terperinci

Program Linear. Bab I

Program Linear. Bab I Program Linear 1 Bab I Program Linear Sumber: Ensiklopedia Pelajar, 1999 Motivasi Setiap pedagang, pengusaha, atau orang yang berkecimpung di bidang usaha pasti menginginkan keuntungan sebanyak-banyaknya

Lebih terperinci

II LANDASAN TEORI. suatu fungsi dalam variabel-variabel. adalah suatu fungsi linear jika dan hanya jika untuk himpunan konstanta,.

II LANDASAN TEORI. suatu fungsi dalam variabel-variabel. adalah suatu fungsi linear jika dan hanya jika untuk himpunan konstanta,. II LANDASAN TEORI Pada pembuatan model penjadwalan pertandingan sepak bola babak kualifikasi Piala Dunia FIFA 2014 Zona Amerika Selatan, diperlukan pemahaman beberapa teori yang digunakan di dalam penyelesaiannya,

Lebih terperinci

BAB IV. METODE SIMPLEKS

BAB IV. METODE SIMPLEKS BAB IV. METODE SIMPLEKS Penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan dengan memeriksa titik ekstrim (ingat kembali solusi

Lebih terperinci

METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia METODE SIMPLEKS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3 Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Metode simpleks merupakan sebuah prosedur matematis

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Perencanaan Produksi 1. Pengertian Perencanaan Produksi Perencanaan produksi merupakan perencanaan tentang produk apa dan berapa yang akan diproduksi oleh perusahaan yang bersangkutan

Lebih terperinci

OPTIMALISALI KASUS PEMROGRAMAN LINEAR DENGAN METODE GRAFIK DAN SIMPLEKS

OPTIMALISALI KASUS PEMROGRAMAN LINEAR DENGAN METODE GRAFIK DAN SIMPLEKS OPTIMALISALI KASUS PEMROGRAMAN LINEAR DENGAN METODE GRAFIK DAN SIMPLEKS RISNAWATI IBNAS Jurusan Matematika, Fakultas Sains dan Teknologi, UINAM risnawati988@gmail.com Info: Jurnal MSA Vol. 2 No. 1 Edisi:

Lebih terperinci

METODE SIMPLEKS DALAM PROGRAM LINIER

METODE SIMPLEKS DALAM PROGRAM LINIER Staf Gunadarma Gunadarma University METODE SIMPLEKS DALAM PROGRAM LINIER Metode Simpleks merupakan salah satu teknik pengambilan keputusan dalam permasalahan yang berkaitan dengan pengalokasian sumber

Lebih terperinci

PEMROGRAMAN LINIER. Metode Simpleks

PEMROGRAMAN LINIER. Metode Simpleks PEMROGRAMAN LINIER Metode Simpleks Metode Simpleks Metode simpleks digunakan untuk memecahkan permasalahan PL dengan dua atau lebih variabel keputusan. Prosedur Metode Simpleks: Kasus Maksimisasi a. Formulasi

Lebih terperinci

BAB II LANDASAN TEORI. A. Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear

BAB II LANDASAN TEORI. A. Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear 5 BAB II LANDASAN TEORI A Sistem Persamaan Linear dan Sistem Pertidaksamaan Linear Persamaan linear adalah bentuk kalimat terbuka yang memuat variabel dengan derajat tertinggi adalah satu Sedangkan sistem

Lebih terperinci

Program Linier. Rudi Susanto

Program Linier. Rudi Susanto Program Linier Rudi Susanto 1 Pengunaan Program linier Keputusan manajemen harus segera diambil untuk segera mencapai tujuan profit maksimal Namun hal ini tidak mudah karena faktor pembatas meliputi sumber

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian. Perekonomian Indonesia menghadapi perdagangan bebas dituntut untuk lebih giat dan

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian. Perekonomian Indonesia menghadapi perdagangan bebas dituntut untuk lebih giat dan BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Perekonomian Indonesia menghadapi perdagangan bebas dituntut untuk lebih giat dan berusaha semaksimal mungkin dalam melaksanakan program-program pembangunan.

Lebih terperinci

METODE SIMPLEKS DALAM PROGRAM LINIER

METODE SIMPLEKS DALAM PROGRAM LINIER METODE SIMPLEKS DALAM PROGRAM LINIER Metode Simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahn yang berhubungan

Lebih terperinci

Metode Simpleks M U H L I S T A H I R

Metode Simpleks M U H L I S T A H I R Metode Simpleks M U H L I S T A H I R PENDAHULUAN Metode Simpleks adalah metode penentuan solusi optimal menggunakan simpleks didasarkan pada teknik eliminasi Gauss Jordan. Penentuan solusi optimal dilakukan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Konsep program linier ditemukan dan diperkenalkan pertamakali oleh George Dantzig yang berupa metode mencari solusi masalah program linier dengan banyak variabel keputusan.

Lebih terperinci

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia

Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia Team Dosen Riset Operasional Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Metode simpleks merupakan sebuah prosedur matematis berulang untuk menemukan penyelesaian optimal soal programa

Lebih terperinci

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi Lecture 4: (B) Supaya terdapat penyelesaian basis awal yang fisibel, pada kendala berbentuk = dan perlu ditambahkan variabel semu (artificial variable) pada ruas kiri bentuk standarnya, untuk siap ke tabel

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Program Linear Program Linear adalah suatu cara yang digunakan untuk menyelesaikan masalah optimasi suatu model linear dengan berbagai kendala yang dihadapinya. Masalah program

Lebih terperinci