Penyelesaian Masalah Nilai Batas Persamaan Diferensial Mathieu Hill

Ukuran: px
Mulai penontonan dengan halaman:

Download "Penyelesaian Masalah Nilai Batas Persamaan Diferensial Mathieu Hill"

Transkripsi

1 JURNAL FOURIER Oktober 13, Vol., No., ISSN 5-763X Penyelesaian Masalah Nilai Batas Persamaan Diferensial Mathieu Hill Santosa, Muhammad Wakhid Musthofa, dan Malahayati Program Studi Matematika Fakultas Sains dan eknologi, UIN Sunan Kalijaga, Jl. Marsda Adisucipto No. 1 Yogyakarta, Indonesia Korespondensi; Santosa, santosa_bumen@yahoo.co.id Abstrak Berbagai masalah fisis dan geometri yang melibatkan a fungsi atau lebih peubah bebas sangat berkaitan dengan persamaan diferensial. Salah satu analisis fisis tersebut dapat dinyatakan dalam bentuk persamaan diferensial. Ilmuwan matematika yang bernama George W. Hill dan Mathieu meneliti tentang getaran pada penlum gantung yang bisa dimodelkan dalam bentuk persamaan diferensial Mathieu-Hill. Persamaan diferensial Mathieu-Hill adalah persamaan diferensial orde a yang didalam fungsi tersebut terdapat fungsi periodik. Persamaan diferensial Mathieu-Hill dapat diselesaikan dengan menggunakan metode aljabar matriks. Pada tahun 5 sudah diteliti tentang solusi dari persamaan diferensial Mathieu-Hill. Penelitian ini menjelaskan tentang penyelesaian masalah nilai batas pada persamaan diferensial Mathieu Hill yang akan manghasilkan suatu solusi dalam bentuk persamaan periodik. Untuk lebih memahami penyelesaian masalah nilai batas pada persamaan diferensial Mathieu-Hill diberikan salah satu contoh aplikasinya dalam menghitung getaran pada mesin lokomotif kereta yang dimodelkan dalam bentuk persamaan diferensial Hill-Meissner. Kata Kunci: Abstract A variety of physical and geometrical problems involving two functions or more independent variables are closely related to differential equations. One such physical analysis can be expressed in terms of differential equations. Mathematical scientists named George W. Hill and Mathieu examined the vibrations of penlum that can be modeled in Mathieu-Hill differential equations. Mathieu-Hill differential equation is a second-order differential equation in which there is a periodic function. Mathieu-Hill differential equations can be solved by using matrix algebra method. In 5 it has been studied about the solution of Mathieu-Hill differential equation. his research explains the solution of boundary value problems to Mathieu Hill differential equations which will proce a solution in the form of periodic equations. o better understand problem-solving the boundary value of the Mathieu-Hill differential equation is given one example of its application in calculating vibrations in rail locomotive engines modeled in the form of Hill-Meissner differential equations. Keywords Pendahuluan Berbagai masalah fisis yang melibatkan a fungsi atau lebih peubah bebas sangat berkaitan dengan persamaan diferensial. Masalah fisis yang paling sederhana dapat dimodelkan dengan persamaan diferensial biasa, sedangkan masalah fisis yang lebih komplek seperti mekanika fluida, teori elekromagnetik, dan sebagainya merupakan masalah-masalah fisis yang harus dimodelkan dengan persamaan diferensial parsial. Salah satu analisis matematis dari masalah fisis tersebut dapat menghasilkan suatu persamaan diferensial yang dapat disederhanakan ke bentuk umum berikut, d y + F(t)y = ; dengan t (1) 13 JURNAL FOURIER Versi online via

2 9 Santosa, et.al dan F(t) suatu fungsi periodik bernilai tunggal, dengan periode pokok. Persamaan (1) disebut persamaan diferensial Mathieu-Hill [1] (Pipes, 1991:911). Persamaan Mathieu-Hill ini ditemukan oleh ilmuwan yang bernama Mathieu dan George W. Hill. Woro Raharjanti [] sudah meneliti tentang penyelesaian persamaan diferensial Mathieu-Hill, dalam penelitiannya Woro Raharjanti sudah menuliskan gambaran umum persamaan umum diferensial Mathieu-Hill beserta solusinya. Penulis tertarik untuk melanjutkan penelitian tersebut dengan menambahkan persamaan syarat batas pada persamaan diferensial Mathieu-Hill. Penulis menambahkan persamaan syarat batas bertujuan untuk menghilangkan konstanta pada penyelesaian umum persamaan diferensial Mathieu- Hill. Suatu persamaan diferensial bersama dengan kondisi-kondisi tambahan terhadap fungsi yang dicari dan turunannya, yang semuanya diberikan pada nilai variabel bebas yang sama maka disebut permasalahan diferensial dengan nilai awal. Jika kondisi-kondisi tambahan diberikan untuk lebih dari satu nilai variabel bebas maka disebut permasalahan diferensial dengan nilai batas. Penelitian ini akan menyajikan langkah-langkah penyelesaian persamaan (1) yang terikat oleh syaratsyarat nilai batas yang ditentukan. Penyelesaian persamaan diferensial akan lebih mudah dan cepat apabila digunakan suatu alat bantu seperti komputer. Saat ini perkembangan perangkat lunak komputer yang berbasis matematika sangatlah pesat. Hal ini terbukti dengan munculnya perangkat lunak yang dapat digunakan untuk kepentingan pengembangan matematika maupun penerapannya. Salah satu perangkat lunak yang dikembangkan untuk kepentingan Sistem Komputer Aljabar (Computer Algebaric System) adalah Maple. Maple banyak digunakan oleh para ilmuwan untuk menyelesaikan permasalahan-permasalahan matematika, karena Maple merupakan perangkat lunak yang lengkap dan komunikatif pada jenisnya. Permasalahan yang dapat diselesaikan dengan Maple merupakan permasalahan matematika murni, seperti aljabar, geometri, kalkulus, matematika diskret, dan statistika. Dengan kemajuan teknologi tersebut penulis tertarik untuk menggunakan Maple dalam menghitung masalah nilai batas pada persamaan diferensial Mathieu-Hill. Penyelesaian Persamaan Diferensial Mathieu-Hill Diberikan persamaan diferensial Mathieu-Hill d y + F(t)y = () Pada selang t apabila dinyatakan dalam nilai-nilai awal untuk y(t) dan. Akan ditunjukkan bahwa solusi dari persamaan () adalah y(t) = A sin F(t) t + B cos F(t) t (3) Dengan A dan B adalah suatu konstanta. Bentuk umum persamaan diferensial homogen orde kea adalah a d y + b + cy = (4) Dari persamaan () diperoleh a = 1, b =, dan c = F(t). Misal akar-akar dari persamaan () adalah t 1 dan t sehingga: t 1 = i F(t) dan t = i F(t) JURNAL FOURIER (13)

3 Penyelesaian Masalah Nilai Batas Persamaan Diferensial Mathieu Hill 93 Sehingga solusi umumnya adalah: Missal: A = (c 1 c ) dan B(c 1 + c ). Jadi penyelesaian dari persamaan (3) adalah y = (c 1 + c ) cos F(t) t + (c 1 c )i sin F(t) t y(t) = A sin F(t) t + B cos F(t) t Fungsi y(t) dan = v(t) dapat ditulis dalam bentuk: Missal: u = F(t), sehingga y(t) = A sin F(t) t + B cos F(t) t (5) y(t) = A sin u t + B cos u t (6) v(t) = A Persamaan (6) dan (7) bisa dituliskan dalam bentuk matriks: Dari persamaan (8) dimisalkan: cos u t B sin u t (7) [ y(t) sin ut cos ut ] = [ v(t) cos u t sin u t] [A B ] (8) w = [ sin ut cos ut cos u t sin u t] (9) Determinan Wronskian dari persamaan tersebut adalah suatu tetapan pada selang pokok t, yaitu: sin ut w = cos u t cos ut = sin u t Jika sin F(t) t dan cos F(t) t adalah a solusi bebas linear karena w, jadi matriks (9) mempunyai invers. Sehingga invers dari matriks (9) adalah w 1 = 1 [ sin ut cos ut cos u t sin u t ] (1) Pada t =, nilai y(t) dan v(t) dinotasikan sebagai y dan v. Dengan demikian persamaan (8) menjadi: [ y 1 v ] = [ ] [A B ] JURNAL FOURIER (13) 91-13

4 94 Santosa, et.al Sehingga diperoleh [ A B ] = 1 Substitusi [ A ] pada persamaan (11) ke persamaan (8) B [ 1 ] [y v ] (11) sin ut Pada akhir periode t =, persamaan (1) berubah menjadi: Pada akhir periode kea dari perubahan F(t) diperoleh [ y cos ut v ] = [ y ] [ t sin u t cos ut v ] (1) sin u [ y cos u v ] = [ y ] [ sin u cos u v ] (13) sin u [ y cos u v ] = [ sin u cos u ] Demikian juga dapat dilihat pada akhir periode ke-n, berlaku sin u [ y cos u v ] = n [ sin u cos u ] Perhatikan persamaan (), jika dilakukan perubahan variabel dengan bentuk τ = t n, dengan τ dan n =,1,,3, maka diperoleh d y dτ n [ y v ] [ y v ] + F(τ)y = dengan F(n + τ) = F(τ). Selanjutnya penyelesaian dalam selang ke n + 1 diperoleh sin uτ [ y cos uτ v ] = [ y ] [ n+τ sin u τ cos uτ v ] n (14) Persamaan (14) merupakan penyelesaian persamaan Mathieu-Hill pada sembarang waktu t > yang dinyatakan dalam syarat-syarat awal dan a penyelesaian bebas linear persamaan hill dalam selang pokok t. JURNAL FOURIER (13)

5 Penyelesaian Masalah Nilai Batas Persamaan Diferensial Mathieu Hill 95 Penyelesaian Masalah Nilai Batas Persamaan Diferensial Mathieu-Hill Berikut ini akan dibahas solusi dari persamaan diferensial Mathieu-Hill jika diberikan nilai batasnya. Diketahui persamaan diferensial Mathieu-Hill sebagai berikut. Dengan: y : Sumbu vertical F(t) : Fungsi periodik terhadap t t : Waktu d y + F(t)y = ; dengan t Penyelesaian umum dari persamaan Mathieu-Hill adalah y(t) = A sin F(t) t + B cos F(t) t Dengan memisalkan u = F(t), diperoleh persamaan (6) dan (7). Diberikan masalah nilai batas a 1 y() + b 1 () = a y() + b () = (15a) (15b) Saat y() = A sin a + B cos a () = A cos u B sin u (16b) (16a) Substitusi persamaan (16) ke (15), diperoleh a 1 B + b 1 A = a (A sin u + B cos u ) + b (A cos u B sin u ) = (17b) (17a) Untuk menyelesaikan persamaan (17) gunakan integral. Dari persamaan () kita rubah ke bentuk persamaan: Dengan y =. L[y] = [y ] Diberikan v dan w adalah kontinu pada t dan v = dv, w = dw L[v]w sehingga: vl[w] = [v (t)w(t) v(t)w (t)] (18) Ambil persamaan sebelah kanan dengan mengasumsikan b 1 dan b pada persamaan (15) maka persamaan (18) menjadi: [v (t)w(t) v(t)w (t)] = JURNAL FOURIER (13) 91-13

6 96 Santosa, et.al Dari persamaan (18) diperoleh: {L[v]w vl[w]} = v dan w adalah fungsi real yang didefinisikan sebagai inner prok dengan interval, jadi dipunyai Jika v = θ m dan w = θ n maka diperoleh Dengan (v, w) = v(t)w(t) t y = θ m (x)θ n (x) dx = δ mn, jika m n δ mn = {, jika m = n (19) Dari persamaan (17) diambil: B + A = B = A () (A sin u + B cos u )B + (A Dari persamaan () substitusi ke persamaan (1) diperoleh cos u B sin u ) = (1) y(t) (A + A ) sin u = () Jika (A + A ) = maka sin u dan sebaliknya jika (A + A ) maka sin u =. Jadi diperoleh: y(t) (A + A ) sin u t = (3) Karena penyelesaian umum dari persamaan diferensial Mathieu-Hill berbentuk tunggal maka Substitusikan persamaan (3) ke persamaan (4) y = (y(t)) = (4) (A + A ) = ( ) cos ut 1 (5) Substitusi persamaan (5) ke persamaan (3) JURNAL FOURIER (13)

7 Penyelesaian Masalah Nilai Batas Persamaan Diferensial Mathieu Hill 97 y(t) = sin ut 1 ( cos ut) (6) Selanjutnya penyelesaian dalam selang ke n 1 diperoleh (A + A ) = ( (τ+n) ) τ+n n cos ut 1 (7) Substitusi persamaan (7) ke persamaan (3), diperoleh y(t) = (τ+n) sin ut 1 τ+n (n cos ut) (8) Jadi solusi dari persamaan diferensial Mathieu-Hill pada interval dengan t nilai batas Adalah a 1 y() + b 1 () = a y() + b () = y(t) = (τ+n) sin ut 1 τ+n (n cos ut) (9) Dengan n = 1,,3, Aplikasi Masalah Nilai Batas pada Persamaan Diferensial Hill-Meissner Salah satu contoh penggunaan diferensial Mathieu-Hill dalam kehipan sehari hari adalah menghitung getaran dalam mesin lokomotif kereta yang bisa dimodelkan dalam persamaan diferensial Hill-Messiner (Gambar 1). Gambar 1 Mesin lokomotif. JURNAL FOURIER (13) 91-13

8 98 Santosa, et.al Getaran pada mesin lokomotif dapat digambarkan dalam penlum sederhana seperti Gambar. Gambar Penlum. Keterangan: y : sumbu vertikal x : sumbu horizontal θ : sut simpangan l : panjang tali m : massa benda g : gravitasi Dengan langkah yang sama untuk mencari persamaan () maka diperoleh Dengan d y + (α + β cos t)y = A=amplitude dan I=momen inersia. α = mla, β = mlg I Iw Misalkan F(t) = cos t, maka diperoleh persamaan diferensial Hill-Meissner sebagai berikut: d y + (α + βf(t))y = Persaamaan Hill-Meissner dirumuskan sebagai berikut: Dengan syarat batas: d y + (α + βf(t))y =, t n (3) y 1 () = y () (31) 1 () = dx dx () (3) JURNAL FOURIER (13)

9 Penyelesaian Masalah Nilai Batas Persamaan Diferensial Mathieu Hill 99 Dengan adalah periode dan Sehingga persamaan (3) menjadi: F(t) = { 1, t 1, t F(t + ) = F(t) d y + (α + β)y = ; t (33) d y + (α β)y = ; t (34) Solusi dari persamaan (33) dan (34) untuk α + β > dan α β > adalah y 1 (t) = A sin α + βt + B cos α + βt ; t (35) y (t) = C sin α βt + D cos α βt ; t (36) Sedangkan untuk α + β > dan α β < solusinya adalah y 1 (t) = A sin α + βt + B cos α + βt ; t (37) Berikut grafik persamaan Hill-Meissner y (t) = C exp( α βt) + D exp( α βt) ; t (38) Gambar 3 Grafik periodik persamaan Hill-Meissner. Untuk mencari α dan β fungsi y 1 (t) dan y (t) diturunkan terlebih dahulu, untuk α + β > dan α β > diperoleh: 1 (t) = A α + β cos α + βt B α + β sin α + βt (39) dx (t) = C α β cos α βt D α β sin α βt (4) dx Substitusikan persamaan (35), (36), (39), dan (4) ke persamaan (31) dan (3) sehingga diperoleh: JURNAL FOURIER (13) 91-13

10 1 Santosa, et.al B C sin (α β) D cos (α β) = (41) A (α + β) C (α β) cos (α β) + D (α β) cos (α β) = (4) Pada saat y 1 () = y () dan 1 () = () diperoleh: dx dx A sin (α+β) A (α + β) cos (α+β) + B cos (α+β) B (α + β) sin (α+β) C sin (α+β) D cos (α β) = (43) C (α β) cos (α+β) + D (α β) sin (α β) = (44) Susun persamaan (41), (4), (43), dan (44) menjadi matriks. Diperoleh bentuk berikut: Sistem (45) mempunyai penyelesaian nontrivial jika dan hanya jika determinannya adalah nol, sehingga (45) Determinannya adalah (46) (47) JURNAL FOURIER (13)

11 Penyelesaian Masalah Nilai Batas Persamaan Diferensial Mathieu Hill 11 Jika α = maka akan diperoleh β = jadi diperoleh α =, β =, dan β =. Substitusikan nilai α = dan β = 1.5 ke persamaan (37) dan (38), diperoleh y 1 (t) = A sin 1.5 t + B cos 1.5 t ; t (49) y (t) = C exp ( t) + D exp ( t) ; t (5) Jadi solusi umum dari persaman (3) adalah y(t) = A sin 1.5 t + B cos 1.5 t ; t n (51) Gunakan persamaan (6) untuk menyelesaiakan persamaan y(t) pada interval t. y(t) = sin 1.5 t ( cos 1.5 t ) cos 1.5 t 1 = sin 5 5 Jadi penyelesaian untuk persamaan y(t) pada batas t adalah: y(t) = sin 3 t ( 5 sin 5) 1 (5) Visualisasi grafik persamaan Differensial Hill-Meissner Berikut akan ditampilkan grafik dari persamaan diferensial Hill-Meissner, karena fungsi dari persaamaan (5) sangat rumit untuk digambarkan maka penulis menggunakan aplikasi Program Maple sehingga akan lebih mudah untuk menggambarnya. Inputkan persamaan (5) pada Program Maple, kemudian masukan batas-batasnya maka diperoleh hasil sebagai berikut: restart; y(t) = sin 3 t ( 5 sin( 5)) 1 y: = t sin ( 1.5 t) sin( 5) 5 JURNAL FOURIER (13) 91-13

12 1 Santosa, et.al plot (y(t), t =,,, title = "gambar"); Gambar 4 Grafik masalah nilai batas pada diferensial Hill-Meissner. Dari Gambar 4 bisa disimpulkan bahwa persamaan diferensial Hill-Meissner memiliki: 1. Panjang gelombang (λ) sebesar. Amplitude (A) sebesar 1 satuan 3. Periode () sebesar 4. Frekuensi gelombang (f) sebesar 1 Kesimpulan Dari hasil pembahasan pada penelitian ini, kesimpulan yang dapat diambil adalah sebagai berikut: 1. Bentuk persamaan Mathieu-Hill adalah d y + F(t)y = pada interval t. Dengan metode matriks diperoleh penyelesaian persamaan diferensial Mathieu-Hill pada sembaran t > yang dinyatakan dalam nilai awal untuk y(t) dan (t) = v(t) dengan a penyelesaian bebas linear dan u = f(t) adalah: Pada saat t = Pada saat t = JURNAL FOURIER (13)

13 Demikian juga dapat dilihat pada akhir periode ke-n, berlaku Penyelesaian Masalah Nilai Batas Persamaan Diferensial Mathieu Hill 13. Penyelesaian masalah nilai batas diferensial Mathieu-Hill dengan batas a 1 y() + b 1 () = a y() + b () = Adalah y(t) = (τ+n) sin ut 1 τ+n (n cos ut) Penginterpretasian hasil output dari program Maple identik dengan penyelesaian dengan penghitungan manual. Namun penghitungan dengan manggunakan Maple akan lebih akurat dan lebih mudah dalam menggambar grafik penyelesaiaannya. Referensi [1] Pipes, Louis A Matematika erapan: untuk Para Insinyur dan Fisikawan. Yogyakarta: Gajah Mada University Press. Rochmad. [] Raharjanti, Woro. 7. Penyelesaian Persamaan Diferensial Jenis Mathieu-Hill. Semarang: UNES. JURNAL FOURIER (13) 91-13

FOURIER Oktober 2013, Vol. 2, No. 2, PENYELESAIAN MASALAH NILAI BATAS PERSAMAAN DIFERENSIAL MATHIEU HILL

FOURIER Oktober 2013, Vol. 2, No. 2, PENYELESAIAN MASALAH NILAI BATAS PERSAMAAN DIFERENSIAL MATHIEU HILL FOURIER Oktober 3, Vol., No., 8 PENYELESAIAN MASALAH NILAI BAAS PERSAMAAN DIFERENSIAL MAHIEU HILL Santosa, M. Wakhid Musthofa, & Malahayati 3,, 3 Program Studi Matematika, UIN Sunan Kalijaga Yogyakarta

Lebih terperinci

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi JURNAL FOURIER Oktober 2013, Vol. 2, No. 2, 113-123 ISSN 2252-763X Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi Annisa Eki Mulyati dan Sugiyanto Program Studi Matematika Fakultas

Lebih terperinci

PENYELESAIAN MASALAH NILAI BATAS PERSAMAAN DIFERENSIAL MATHIEU HILL

PENYELESAIAN MASALAH NILAI BATAS PERSAMAAN DIFERENSIAL MATHIEU HILL PENYELESAIAN MASALAH NILAI BATAS PERSAMAAN DIFERENSIAL MATHIEU HILL Skripsi Untuk memenuhi sebagian persyaratan Mencapai derajat Sarjana S-1 Program Studi Matematika diajukan oleh Santosa 08610023 Kepada

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

FOURIER April 2013, Vol. 2, No. 1, PENYELESAIAN PERSAMAAN TELEGRAPH DAN SIMULASINYA. Abstract

FOURIER April 2013, Vol. 2, No. 1, PENYELESAIAN PERSAMAAN TELEGRAPH DAN SIMULASINYA. Abstract FOURIER April 2013, Vol. 2, No. 1, 42 53 PENYELESAIAN PERSAMAAN TELEGRAPH DAN SIMULASINYA Agus Miftakus Surur 1, Yudi Ari Adi 2, Sugiyanto 3 1, 3 Matematika, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS Tinjauan kasus persamaan... (Agus Supratama) 67 TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS ANALITICALLY REVIEW WAVE EQUATIONS IN ONE-DIMENSIONAL WITH VARIOUS

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2)

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2) INTEGRAL, Vol. 1 No. 1, Maret 5 FUNGSI DELTA DIRAC Marwan Wirianto 1) dan Wono Setya Budhi ) 1) Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Katolik Parahyangan, Bandung

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

PRAKTIKUM 3 PAM 253 PERSAMAAN DIFERENSIAL BIASA

PRAKTIKUM 3 PAM 253 PERSAMAAN DIFERENSIAL BIASA PRAKTIKUM 3 PAM 253 PERSAMAAN DIFERENSIAL BIASA TOPIK: PERSAMAAN DIFERENSIAL BIASA ORDE DUA ========== Dalam praktikum ini selalu gunakan Worksheet Mode dengan tipe input Maple Notation ========== I. Pendahuluan

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL BIASA

BAB II PERSAMAAN DIFERENSIAL BIASA BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL

METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL oleh ASRI SEJATI M0110009 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

BAB PDB Linier Order Satu

BAB PDB Linier Order Satu BAB 1 Konsep Dasar 1 BAB PDB Linier Order Satu BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua Untuk memulai pembahasan ini terlebih dahulu akan ditinjau beberapa teorema tentang konsep umum

Lebih terperinci

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan : BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi

Lebih terperinci

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA Kristiani Panjaitan 1, Syamsudhuha 2, Leli Deswita 2 1 Mahasiswi Program

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE

METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE oleh HILDA ANGGRIYANA M0109035 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika JURUSAN

Lebih terperinci

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT

FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU Syofia Deswita 1, Syamsudhuha 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI Febrian Lisnan, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

PERBANDINGAN PENYELESAIAN SISTEM OREGONATOR DENGAN METODE ITERASI VARIASIONAL DAN METODE ITERASI VARIASIONAL TERMODIFIKASI

PERBANDINGAN PENYELESAIAN SISTEM OREGONATOR DENGAN METODE ITERASI VARIASIONAL DAN METODE ITERASI VARIASIONAL TERMODIFIKASI PERBANDINGAN PENYELESAIAN SISTEM OREGONATOR DENGAN METODE ITERASI VARIASIONAL DAN METODE ITERASI VARIASIONAL TERMODIFIKASI oleh AMELIA FEBRIYANTI RESKA M0109008 SKRIPSI ditulis dan diajukan untuk memenuhi

Lebih terperinci

Model Linear Kuadratik untuk Sistem Deskriptor Berindeks Satu dengan Factor Discount dan Output Feedback

Model Linear Kuadratik untuk Sistem Deskriptor Berindeks Satu dengan Factor Discount dan Output Feedback Model Linear Kuadratik untuk Sistem Deskriptor Berindeks Satu dengan Factor Discount dan Output Feedback Nilwan Andiraja 1, Julia Sasmita Maiza 2 1, 2 Jurusan Matematika, Fakultas Sains dan Teknologi,

Lebih terperinci

Aplikasi Fungsi Diferensial Riccati Pada Sistem Dinamik Dua Kendali Waktu Berhingga

Aplikasi Fungsi Diferensial Riccati Pada Sistem Dinamik Dua Kendali Waktu Berhingga Aplikasi Fungsi Diferensial Riccati Pada Sistem Dinamik Dua Kendali Waktu Berhingga Nilwan Andiraja 1, Fiki Rakasiwi 2 1,2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne

Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne Jurnal Matematika Integratif ISSN 1412-6184 Vol. 9 No. 2, Oktober 2013 pp. 23-30 Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne Elis Ratna Wulan, Fahmi

Lebih terperinci

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL Marpipon Haryandi 1, Asmara Karma 2, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL TUNDA LINIER ORDE 1 DENGAN METODE KARAKTERISTIK

PENYELESAIAN PERSAMAAN DIFERENSIAL TUNDA LINIER ORDE 1 DENGAN METODE KARAKTERISTIK Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 45 49 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN DIFERENSIAL TUNDA LINIER ORDE 1 DENGAN METODE KARAKTERISTIK FEBBY RAHMI ALFIONITA,

Lebih terperinci

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Jurnal LOG!K@, Jilid 6, No. 1, 2016, Hal. 11-22 ISSN 1978 8568 SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Afo Rakaiwa dan Suma inna Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas

Lebih terperinci

JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK

JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK Kasus-kasus fisika yang diangkat pada mata kuliah Fisika Komputasi akan dijawab secara numerik. Validasi jawaban

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

MODEL LOGISTIK DENGAN DIFUSI PADA PERTUMBUHAN SEL TUMOR EHRLICH ASCITIES. Hendi Nirwansah 1 dan Widowati 2

MODEL LOGISTIK DENGAN DIFUSI PADA PERTUMBUHAN SEL TUMOR EHRLICH ASCITIES. Hendi Nirwansah 1 dan Widowati 2 MODEL LOGISTIK DEGA DIFUSI PADA PERTUMBUHA SEL TUMOR EHRLICH ASCITIES Hendi irwansah 1 dan Widowati 1, Jurusan Matematika FMIPA Universitas Diponegoro Jl. Prof. H. Soedarto, SH Tembalang Semarang 5075

Lebih terperinci

APROKSIMASI FUNGSI SINUS DAN KOSINUS SEBAGAI KOMBINASI LINEAR DARI FUNGSI EKSPONENSIAL MUHAMMAD ADAM AZHARI

APROKSIMASI FUNGSI SINUS DAN KOSINUS SEBAGAI KOMBINASI LINEAR DARI FUNGSI EKSPONENSIAL MUHAMMAD ADAM AZHARI APROKSIMASI FUNGSI SINUS DAN KOSINUS SEBAGAI KOMBINASI LINEAR DARI FUNGSI EKSPONENSIAL MUHAMMAD ADAM AZHARI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

Jurnal MIPA 37 (2) (2014): Jurnal MIPA.

Jurnal MIPA 37 (2) (2014): Jurnal MIPA. Jurnal MIPA 37 (2) (2014): 192-199 Jurnal MIPA http://journal.unnes.ac.id/nju/index.php/jm PENYELESAIAN PERSAMAAN DUFFING OSILATOR PADA APLIKASI WEAK SIGNAL DETECTION MENGGUNAKAN METODE AVERAGING Z A Tamimi

Lebih terperinci

PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN

PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 1 (2015), hal 9 16. PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Latar Belakang Historis Fondasi dari integral pertama kali dideklarasikan oleh Cavalieri, seorang ahli matematika berkebangsaan Italia pada tahun 1635. Cavalieri menemukan bahwa

Lebih terperinci

SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH. Jurusan Matematika FMIPA UT ABSTRAK

SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH. Jurusan Matematika FMIPA UT ABSTRAK SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH Sugimin Jurusan Matematika FMIPA UT ugi@mail.ut.ac.id ABSTRAK Suatu persamaan vektor berbentuk x & = f (x dengan variabel bebas t yang tidak dinyatakan

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

I. Sistem Persamaan Diferensial Linier Orde 1 (Review)

I. Sistem Persamaan Diferensial Linier Orde 1 (Review) I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

SOLUSI NON NEGATIF MASALAH NILAI AWAL DENGAN FUNGSI GAYA MEMUAT TURUNAN

SOLUSI NON NEGATIF MASALAH NILAI AWAL DENGAN FUNGSI GAYA MEMUAT TURUNAN SOLUSI NON NEGATIF MASALAH NILAI AWAL DENGAN FUNGSI GAYA MEMUAT TURUNAN Muhafzan Jurusan Matematika Fakultas Matematika Ilmu Pengetahuan Alam Universitas Andalas Kampus Unand Limau Manis Pag 25163 email:

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

Persamaan Di erensial Orde-2

Persamaan Di erensial Orde-2 oki neswan FMIPA-ITB Persamaan Di erensial Orde- Persamaan diferensial orde-n adalah persamaan yang melibatkan x; y; dan turunan-turunan y; dengan yang paling tinggi adalah turunan ke-n: F x; y; y ; y

Lebih terperinci

Syarat Cukup Osilasi Persamaan Diferensial Linier Homogen Orde Dua Dengan Redaman

Syarat Cukup Osilasi Persamaan Diferensial Linier Homogen Orde Dua Dengan Redaman SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 T - 10 Syarat Cukup Osilasi Persamaan Diferensial Linier Homogen Orde Dua Dengan Redaman Maulana Malik, Sri Mardiyati Departemen Matematika

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

KESTABILAN SISTEM PREDATOR-PREY LESLIE

KESTABILAN SISTEM PREDATOR-PREY LESLIE Jurnal Matematika Murni dan Terapan Vol. 3 No. Desember 009: 51-59 KESTABILAN SISTEM PREDATOR-PREY LESLIE Dewi Purnamasari, Faisal, Aisjah Juliani Noor Program Studi Matematika Universitas Lambung Mangkurat

Lebih terperinci

PENERAPAN METODE DERET PANGKAT UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL LINEAR ORDEDUA KHUSUS SKRIPSI

PENERAPAN METODE DERET PANGKAT UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL LINEAR ORDEDUA KHUSUS SKRIPSI PENERAPAN METODE DERET PANGKAT UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL LINEAR ORDEDUA KHUSUS SKRIPSI Oleh: SAMSIATI NUR HASANAH NIM: 11321432 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN

Lebih terperinci

DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA

DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA DESKRIPSI PENGARUH PARAMETER TERHADAP KESTABILAN PERILAKU SISTEM BANDUL GANDA SEDERHANA Thoufina Kurniyati Mahasiswa Jurusan Matematika Fakultas Sains dan Teknologi UIN Maulana Malik Ibrahim Malang E-mail:

Lebih terperinci

MODEL MATEMATIKA DAN SOLUSI DARI SISTEM GETARAN DUA DERAJAT KEBEBASAN (GETARAN TERGANDENG)

MODEL MATEMATIKA DAN SOLUSI DARI SISTEM GETARAN DUA DERAJAT KEBEBASAN (GETARAN TERGANDENG) MODEL MATEMATIKA DAN SOLUSI DARI SISTEM GETARAN DUA DERAJAT KEBEBASAN (GETARAN TERGANDENG) skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar sarjana sains Jurusan Matematika oleh Wahyu

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut dapat dikembangkan melalui pemodelan matematika. Sehingga dengan

Lebih terperinci

Membangun Fungsi Green dari Persamaan Difrensial Linear Non Homogen Tingkat - n

Membangun Fungsi Green dari Persamaan Difrensial Linear Non Homogen Tingkat - n Jurnal Matematika Integratif ISSN : 1412-6184 Volume 11 No 2, Oktober 2015, pp 119-126 Membangun Fungsi Green dari Persamaan Difrensial Linear Non Homogen Tingkat - n Eddy Djauhari Program Studi S1 Matematika

Lebih terperinci

ISSN (Media Cetak) ISSN (Media Online) Implementasi Metode Eliminasi Gauss Pada Rangkaian Listrik Menggunakan Matlab

ISSN (Media Cetak) ISSN (Media Online) Implementasi Metode Eliminasi Gauss Pada Rangkaian Listrik Menggunakan Matlab JITEKH, Vol, No, Tahun 27, -5 ISSN 28-577(Media Cetak) ISSN 2549-4 (Media Online) Implementasi Metode Eliminasi Gauss Pada Rangkaian Listrik Menggunakan Matlab Silmi, Rina Anugrahwaty 2 Staff Pengajar

Lebih terperinci

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3 8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

Penerapan Persamaan Aljabar Riccati Pada Masalah Kendali Dengan Waktu Tak Berhingga

Penerapan Persamaan Aljabar Riccati Pada Masalah Kendali Dengan Waktu Tak Berhingga Penerapan Persamaan Aljabar Riccati Pada Masalah Kendali Dengan Waktu Tak Berhingga Nilwan Andiraja 1, Zulfikar 2 1,2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl.

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

TINJAUAN TERHADAP SIKLOID TERBALIK TERKAIT MASALAH BRACHISTOCHRONE

TINJAUAN TERHADAP SIKLOID TERBALIK TERKAIT MASALAH BRACHISTOCHRONE TINJAUAN TERHADAP SIKLOID TERBALIK TERKAIT MASALAH BRACHISTOCHRONE Mohammad Lutfi Sekolah Tinggi Teknologi Minyak dan Gas Bumi Balikpapan Email: lutfi_plhld@yahoo.co.id Abstrak: Penelitian ini merupakan

Lebih terperinci

Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks

Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks Dewi Erla Mahmudah 1, Ratna Dwi Christyanti 2, Moh. Khoridatul Huda 3,

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

SIFAT SPEKTRAL DARI MASALAH STURM-LIOUVILLE FRAKSIONAL DENGAN POTENSIAL COULOMB

SIFAT SPEKTRAL DARI MASALAH STURM-LIOUVILLE FRAKSIONAL DENGAN POTENSIAL COULOMB SIFAT SPEKTRAL DARI MASALAH STURM-LIOUVILLE FRAKSIONAL DENGAN POTENSIAL COULOMB oleh NURUL KOMIYATUN M0110063 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains

Lebih terperinci

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9,

Lebih terperinci

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Teknikom : Vol. No. (27) ISSN : 2598-2958 (online) Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya

Lebih terperinci

Analisa Matematik untuk Menentukan Kondisi Kestabilan Keseimbangan Pasar Berganda dengan Dua Produk Melalui Sistem Persamaan Diferensial Biasa Linear

Analisa Matematik untuk Menentukan Kondisi Kestabilan Keseimbangan Pasar Berganda dengan Dua Produk Melalui Sistem Persamaan Diferensial Biasa Linear Prosiding Penelitian SPeSIA Unisba 2015 ISSN: 2460-6464 Analisa Matematik untuk Menentukan Kondisi Kestabilan Keseimbangan Pasar Berganda dengan Dua Produk Melalui Sistem Persamaan Diferensial Biasa Linear

Lebih terperinci

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika

Lebih terperinci

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

Osilasi Harmonis Sederhana: Beban Massa pada Pegas OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen Tk. 2 (Differential: Linier Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PD linier homogen orde 2 Bentuk

Lebih terperinci

PEMODELAN MATEMATIKA PADA SISTEM REDAMAN MERIAM

PEMODELAN MATEMATIKA PADA SISTEM REDAMAN MERIAM PEMODELAN MATEMATIKA PADA SISTEM REDAMAN MERIAM skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Eri Prasetiyo 4150406506 JURUSAN MATEMATIKA

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD

SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD SATUAN ACARA PERKULIAHAN MATA KULIAH KALKULUS LANJUT A (S1 / TEKNIK INFORMATIKA ) KODE / SKS KD-045315 Mingg u Ke Pokok Bahasan dan TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajaran Media Tugas

Lebih terperinci

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2. integral 13.1 PENGERTIAN INTEGRAL Untuk itu, coba tentukan turunan fungsi berikut. Perhatikan bahwa fungsi ini memiliki bentuk umum 6 2. Jadi, turunan fungsi = 2 =2 3. Setiap fungsi ini memiliki turunan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial merupakan persamaan yang didalamnya terdapat beberapa derivatif. Persamaan diferensial menyatakan hubungan antara derivatif dari satu variabel

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Kalor Kalor adalah energi yang diterima oleh benda sehingga suhu benda atau wujudnya berubah. Ukuran jumlah kalor dinyatakan dalam satuan joule (J). Kalor disebut

Lebih terperinci

BAB VIII PERSAMAAN DIFERENSIAL PARSIAL

BAB VIII PERSAMAAN DIFERENSIAL PARSIAL BAB VIII PERSAMAAN DIFERENSIAL PARSIAL 1. Pendahuluan : Pemodelan Arus Panas Satu Dimensi Y Bahan penyekat (insulator) A Batang 0 L X Z Misalkan bila ada batang yang dapat menghantarkan panas. Batang tersebut

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

Interpretasi Geometri Dari Sebuah Determinan

Interpretasi Geometri Dari Sebuah Determinan Jurnal Sains Matematika dan Statistika Vol No Juli 5 ISSN 46-454 Interpretasi Geometri Dari Sebuah Determinan Riska Yeni Syamsudhuha M D H Gamal 3 Jurusan Matematika Fakultas Mipa Universitas Riau Jl HR

Lebih terperinci

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1 Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel tak bebas, dan derivatif-derivatif

Lebih terperinci

LAPORAN PENELITIAN PENDULUM TAK LINIER. Oleh: Sumarna Agus Purwanto

LAPORAN PENELITIAN PENDULUM TAK LINIER. Oleh: Sumarna Agus Purwanto LAPORAN PENELITIAN PENDULUM TAK LINIER Oleh: Sumarna Agus Purwanto JURUSAN PENDIDIKAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 003 PENDULUM TAK LINIER (Oleh :

Lebih terperinci

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan Jurnal Matematika Integratif. Vol. 14, No. 1 (2018), pp. 51 60. p-issn:1412-6184, e-issn:2549-903 doi:10.24198/jmi.v14.n1.15953.51-60 Penyelesaian Persamaan Diferensial Linier Orde Satu dan Dua disertai

Lebih terperinci

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra 1, Supriadi Putra 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method) Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 320 Persamaan Laplace Menggunakan Metode Crank-Nicholson (The Solution of Laplace Equation Using Crank-Nicholson Method) Titis

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL Heni Kusnani 1, Leli Deswita, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika

Lebih terperinci

BAB 4 MODEL RUANG KEADAAN (STATE SPACE)

BAB 4 MODEL RUANG KEADAAN (STATE SPACE) BAB 4 MODEL RUANG KEADAAN (STATE SPACE) KOMPETENSI Kemampuan untuk menjelaskan pengertian tentang state space, menentukan nisbah alih hubungannya dengan persamaan ruang keadaan dan Mengembangkan analisis

Lebih terperinci

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Teknikom : Vol. No. (27) E-ISSN : 2598-2958 PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya Utama,

Lebih terperinci

Transformasi Laplace

Transformasi Laplace TKS 43 Matematika II Transformasi Laplace (Laplace Transform) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PENDAHULUAN Pengertian Transformasi Transformasi adalah teknik atau formula

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL Ro fah Nur Rachmawati Jurusan Matematika, Fakultas Sains dan Teknologi, Binus University Jl.

Lebih terperinci

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA Rahmawati Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya,

Lebih terperinci

MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU)

MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU) Jurnal Matematika, Statistika,& Komputasi 1 Vol.... No... 21... MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU) Fachrul Islam 1, Jeffry

Lebih terperinci

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya

Lebih terperinci

METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING

METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING Jurnal Matematika UNAND Vol. 5 No. 3 Hal. 47 55 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE BENTUK NORMAL PADA PENYELESAIAN PERSAMAAN DUFFING LIDYA PRATIWI, MAHDHIVAN SYAFWAN, RADHIATUL HUSNA

Lebih terperinci